1
|
Lei Y, Liu Y, Xie W, Wei Y, Zhuang X, Zhang H, Cao H, Wang X. Cardiovascular developmental hazards of valproic acid in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117165. [PMID: 39405976 DOI: 10.1016/j.ecoenv.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024]
Abstract
Valproic acid (VPA) is predominantly prescribed for epilepsy, convulsions, and other psychiatric disorders. As an epigenetic regulator, it is also used to treat various forms of cancer. The clinical demand for the drug may pose an environmental hazard. Evidence indicates that VPA's significant therapeutic value comes at the cost of possible side toxic effects, as symptoms of birth defects have been confirmed in animal experiments using VPA. However, the effects of VPA during the development of the circulatory system remain unclear. In this study, zebrafish embryos were exposed to a series of concentrations of VPA between three hours post fertilization (hpf) and five days post fertilization (dpf). The results demonstrated time- and dose-dependent developmental delays in the zebrafish, including cardiovascular malformation and decreased movement and reaction time. Consistent with the in vivo results, exposure to VPA increased the levels of myocardial reactive oxygen species (ROS) and cell apoptosis through cardiac mitochondrial turnover disorders. The expression levels of genes related to cardiovascular development and antioxidant response were downregulated, while genes related to apoptosis pathways were upregulated. Overall, our toxicological studies of VPA exposure illustrate the damage to cardiovascular development, raising concerns about the hazard of VPA exposure in early pregnancy. Our study provides novel insights into the potential environmental risks of VPA.
Collapse
Affiliation(s)
- Yuqing Lei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Yingying Liu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Wenpeng Xie
- Department of Cardiac Surgery, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350011, China
| | - Yalan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Xudong Zhuang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Haitao Zhang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China
| | - Hua Cao
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350013, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian 350001, China.
| |
Collapse
|
2
|
Sun W, Zhong J, Gao B, Feng J, Ye Z, Lin Y, Zhang K, Su W, Zhu S, Li Y, Jia W. In vitro/In vivo Evaluations of Hydroxyapatite Nanoparticles with Different Geometry. Int J Nanomedicine 2024; 19:8661-8679. [PMID: 39193530 PMCID: PMC11348988 DOI: 10.2147/ijn.s469687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Hydroxyapatite-based nanoparticles have found diverse applications in drug delivery, gene carriers, diagnostics, bioimaging and tissue engineering, owing to their ability to easily enter the bloodstream and target specific sites. However, there is limited understanding of the potential adverse effects and molecular mechanisms of these nanoparticles with varying geometries upon their entry into the bloodstream. Here, we used two commercially available hydroxyapatite nanoparticles (HANPs) with different geometries (less than 100 nm in size each) to investigate this issue. Methods First, the particle size, Zeta potential, and surface morphology of nano-hydroxyapatite were characterized. Subsequently, the effects of 2~2000 μM nano-hydroxyapatite on the proliferation, migration, cell cycle distribution, and apoptosis levels of umbilical vein endothelial cells were evaluated. Additionally, the impact of nanoparticles of various shapes on the differential expression of genes was investigated using transcriptome sequencing. Additionally, we investigated the in vivo biocompatibility of HANPs through gavage administration of nanohydroxyapatite in mice. Results Our results demonstrate that while rod-shaped HANPs promote proliferation in Human Umbilical Vein Endothelial Cell (HUVEC) monolayers at 200 μM, sphere-shaped HANPs exhibit significant toxicity to these monolayers at the same concentration, inducing apoptosis/necrosis and S-phase cell cycle arrest through inflammation. Additionally, sphere-shaped HANPs enhance SULT1A3 levels relative to rod-shaped HANPs, facilitating chemical carcinogenesis-DNA adduct signaling pathways in HUVEC monolayers. In vivo experiments have shown that while HANPs can influence the number of blood cells and comprehensive metabolic indicators in blood, they do not exhibit significant toxicity. Conclusion In conclusion, this study has demonstrated that the geometry and surface area of HANPs significantly affect VEC survival status and proliferation. These findings hold significant implications for the optimization of biomaterials in cell engineering applications.
Collapse
Affiliation(s)
- Weitang Sun
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingbin Zhong
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jieling Feng
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zijie Ye
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yueling Lin
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kelan Zhang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenqi Su
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Hooshyar MR, Raygan S, Mehdinavaz Aghdam R. Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:29. [PMID: 38884680 PMCID: PMC11182833 DOI: 10.1007/s10856-024-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) coated by chitosan (CS) were shown to be a proper candidate as a carrier for drug delivery purposes. However, choosing the suitable drug-containing complexes to be applied on MSNPs-CS is of much greater importance to evaluate the possible candidate for an efficient combination of cell viability, drug release kinetics, and atherosclerosis prevention. In this regard, this study concentrates on the synthesis and assessment of coated MSNPs-CS designed for drug delivery purposes. The MSNPs are coated with polyelectrolyte complexes (PEC) composed of CS and dextran sulfate (MSNPs-CS-DX), serving as a versatile drug carrier with favorable biological characteristics. CS-DX is applied to MSNPs without requiring complex or multi-step synthesis procedures. Rosuvastatin, a cholesterol-lowering medication, is chosen for its therapeutic relevance. Additionally, CS-DX is found to relatively impede the uptake of low-density lipoproteins (LDLs) by macrophages, enhancing their potential therapeutic utility. FTIR pattern, FESEM, and TEM images prove MSNPs-CS-DX formation. DLS measurement demonstrates the average particle size of 110 nm for MSNPs, with the combined thickness of CS and DX layers ranging from 10 to 15 nm. BET test is carried out to evaluate the pore size and porosity of structure, showing outstanding results that cause an entrapment efficiency of 57% for MSNPs-CS-DX. Furthermore, the findings demonstrate the pH sensitivity of MSNPs-CS-DX on drug release kinetics. Notably, the CS-DX layer exhibits a significant enhancement in cell viability of human umbilical vein endothelial cells (HUVEC) by approximately 24% within a 24 h timeframe compared to MSNPs lacking CS-DX.
Collapse
Affiliation(s)
- Mohammad Reza Hooshyar
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Shahram Raygan
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Rouhollah Mehdinavaz Aghdam
- Biomaterials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| |
Collapse
|
4
|
Zhang X, Shi J, Jin S, Wang R, Li M, Zhang Z, Yang X, Ma H. Metabolic landscape of head and neck squamous cell carcinoma informs a novel kynurenine/Siglec-15 axis in immune escape. Cancer Commun (Lond) 2024; 44:670-694. [PMID: 38734931 PMCID: PMC11194450 DOI: 10.1002/cac2.12545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Metabolic reprograming and immune escape are two hallmarks of cancer. However, how metabolic disorders drive immune escape in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, the aim of the present study was to investigate the metabolic landscape of HNSCC and its mechanism of driving immune escape. METHODS Analysis of paired tumor tissues and adjacent normal tissues from 69 HNSCC patients was performed using liquid/gas chromatography-mass spectrometry and RNA-sequencing. The tumor-promoting function of kynurenine (Kyn) was explored in vitro and in vivo. The downstream target of Kyn was investigated in CD8+ T cells. The regulation of CD8+ T cells was investigated after Siglec-15 overexpression in vivo. An engineering nanoparticle was established to deliver Siglec-15 small interfering RNA (siS15), and its association with immunotherapy response were investigated. The association between Siglec-15 and CD8+ programmed cell death 1 (PD-1)+ T cells was analyzed in a HNSCC patient cohort. RESULTS A total of 178 metabolites showed significant dysregulation in HNSCC, including carbohydrates, lipids and lipid-like molecules, and amino acids. Among these, amino acid metabolism was the most significantly altered, especially Kyn, which promoted tumor proliferation and metastasis. In addition, most immune checkpoint molecules were upregulated in Kyn-high patients based on RNA-sequencing. Furthermore, tumor-derived Kyn was transferred into CD8+ T cells and induced T cell functional exhaustion, and blocking Kyn transporters restored its killing activity. Accroding to the results, mechanistically, Kyn transcriptionally regulated the expression of Siglec-15 via aryl hydrocarbon receptor (AhR), and overexpression of Siglec-15 promoted immune escape by suppressing T cell infiltration and activation. Targeting AhR in vivo reduced Kyn-mediated Siglec-15 expression and promoted intratumoral CD8+ T cell infiltration and killing capacity. Finally, a NH2-modified mesoporous silica nanoparticle was designed to deliver siS15, which restored CD8+ T cell function status and enhanced anti-PD-1 efficacy in tumor-bearing immunocompetent mice. Clinically, Siglec-15 was positively correlated with AhR expression and CD8+PD-1+ T cell infiltration in HNSCC tissues. CONCLUSIONS The findings describe the metabolic landscape of HNSCC comprehensively and reveal that the Kyn/Siglec-15 axis may be a novel potential immunometabolism mechanism, providing a promising therapeutic strategy for cancers.
Collapse
Affiliation(s)
- Xin‐Yu Zhang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Jian‐Bo Shi
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Shu‐Fang Jin
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
- Department of Second Dental CenterShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong UniversityShanghaiP. R. China
| | - Rui‐Jie Wang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Ming‐Yu Li
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Zhi‐Yuan Zhang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Xi Yang
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| | - Hai‐Long Ma
- Department of Oral Maxillofacial‐Head and Neck OncologyShanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
- National Clinical Research Center for Oral DiseasesShanghaiP. R. China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiP. R. China
| |
Collapse
|
5
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Ji Y, Wang Y, Wang X, Lv C, Zhou Q, Jiang G, Yan B, Chen L. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133800. [PMID: 38368688 DOI: 10.1016/j.jhazmat.2024.133800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The exploration of nanoparticle applications is filled with promise, but their impact on the environment and human health raises growing concerns. These tiny environmental particles can enter the human body through various routes, such as the respiratory system, digestive tract, skin absorption, intravenous injection, and implantation. Once inside, they can travel to distant organs via the bloodstream and lymphatic system. This journey often results in nanoparticles adhering to cell surfaces and being internalized. Upon entering cells, nanoparticles can provoke significant structural and functional changes. They can potentially disrupt critical cellular processes, including damaging cell membranes and cytoskeletons, impairing mitochondrial function, altering nuclear structures, and inhibiting ion channels. These disruptions can lead to widespread alterations by interfering with complex cellular signaling pathways, potentially causing cellular, organ, and systemic impairments. This article delves into the factors influencing how nanoparticles behave in biological systems. These factors include the nanoparticles' size, shape, charge, and chemical composition, as well as the characteristics of the cells and their surrounding environment. It also provides an overview of the impact of nanoparticles on cells, organs, and physiological systems and discusses possible mechanisms behind these adverse effects. Understanding the toxic effects of nanoparticles on physiological systems is crucial for developing safer, more effective nanoparticle-based technologies.
Collapse
Affiliation(s)
- Yunxia Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
7
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Zhou X, Jin W, Zhang R, Mao X, Jia J, Zhou H. Perturbation of autophagy pathways in murine alveolar macrophage by 2D TMDCs is chalcogen-dependent. J Environ Sci (China) 2024; 135:97-107. [PMID: 37778845 DOI: 10.1016/j.jes.2022.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 10/03/2023]
Abstract
Increasing risks of incidental and occupational exposures to two-dimensional transition metal dichalcogenides (2D TMDCs) due to their broad application in various areas raised their public health concerns. While the composition-dependent cytotoxicity of 2D TMDCs has been well-recognized, how the outer chalcogenide atoms and inner transition metal atoms differentially contribute to their perturbation on cell homeostasis at non-lethal doses remains to be identified. In the present work, we compared the autophagy induction and related mechanisms in response to WS2, NbS2, WSe2 and NbSe2 nanosheets exposures in MH-S murine alveolar macrophages. All these 2D TMDCs had comparable physicochemical properties, overall cytotoxicity and capability in triggering autophagy in MH-S cells, but showed outer chalcogen-dependent subcellular localization and activation of autophagy pathways. Specifically, WS2 and NbS2 nanosheets adhered on the cell surface and internalized in the lysosomes, and triggered mTOR-dependent activation of autophagy. Meanwhile, WSe2 and NbSe2 nanosheets had extensive distribution in cytoplasm of MH-S cells and induced autophagy in an mTOR-independent manner. Furthermore, the 2D TMDCs-induced perturbation on autophagy aggravated the cytotoxicity of respirable benzo[a]pyrene. These findings provide a deeper insight into the potential health risk of environmental 2D TMDCs from the perspective of homeostasis perturbation.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Rui Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
9
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Wang Y, Zhang Y, Yang Z, Zhang L, Chen X, Yang G, Zhan J, Li S, He F, Fan G. Mesoporous silica-based nanocarriers with dual response to pH and ROS for enhanced anti-inflammation therapy of 5-demethylnobiletin against psoriasis-like lesions. Int J Pharm 2023; 645:123373. [PMID: 37673281 DOI: 10.1016/j.ijpharm.2023.123373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Psoriasis is an inflammatory skin disease accompanied with chronic papulosquamous lesions and multiple comorbidities that considerably affect patients' quality of life. In order to develop an enhanced therapeutic strategy for psoriasis, 5-demethylnobiletin (5-DN), a kind of polymethoxyflavones (PMFs) with high anti-inflammatory activity, was delivered in vitro and in vivo by the nanocarrier of mesoporous silica nanoparticles (MSNs) both in the human keratinocytes HaCaT cell line and the mouse model with psoriasis-like lesions. The drug-loaded nanocarrier system (MSNs@5-DN) significantly improved the biocompatibility and bioavailability of 5-DN. Investigations at cell biological, histopathological, and molecular levels revealed the pharmacological mechanism of the drug delivery system, including the inhibition of inflammatory responses by downregulating the proinflammatory cytokine levels of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6). The upregulation of anti‑inflammatory cytokine of transforming growth factor-β1 (TGF-β1) and microRNA-17-5p, a critical regulator of the PTEN/AKT pathway, was also observed. The psoriasis-like lesions were markedly ameliorated in the mouse models treated with MSNs@5-DN. The designed drug-loading system shows an enhanced therapeutic outcome for psoriasis-like lesion compared with free 5-DN. This study revealed the synergistic effect of functionalized MSNs loaded with PMFs on the clinical treatment of human psoriasis.
Collapse
Affiliation(s)
- Yimin Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Yanan Zhang
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, PR China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Lei Zhang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Xiangping Chen
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Guliang Yang
- National Research Center of Rice Deep Process and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Jianfeng Zhan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, PR China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang 438000, PR China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.
| |
Collapse
|
11
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, Zhu XM. Autophagy inhibitors for cancer therapy: Small molecules and nanomedicines. Pharmacol Ther 2023; 249:108485. [PMID: 37406740 DOI: 10.1016/j.pharmthera.2023.108485] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/27/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Autophagy is a conserved process in which the cytosolic materials are degraded and eventually recycled for cellular metabolism to maintain homeostasis. The dichotomous role of autophagy in pathogenesis is complicated. Accumulating reports have suggested that cytoprotective autophagy is responsible for tumor growth and progression. Autophagy inhibitors, such as chloroquine (CQ) and hydroxychloroquine (HCQ), are promising for treating malignancies or overcoming drug resistance in chemotherapy. With the rapid development of nanotechnology, nanomaterials also show autophagy-inhibitory effects or are reported as the carriers delivering autophagy inhibitors. In this review, we summarize the small-molecule compounds and nanomaterials inhibiting autophagic flux as well as the mechanisms involved. The nanocarrier-based drug delivery systems for autophagy inhibitors and their distinct advantages are also described. The progress of autophagy inhibitors for clinical applications is finally introduced, and their future perspectives are discussed.
Collapse
Affiliation(s)
- Jian-Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xuan Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Dan Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Hui Jia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Ze-Yun Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xiao-Ming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
13
|
Li Y, Lin J, Wang P, Zhu F, Wu M, Luo Q, Zhang Y, Liu X. Tumor Microenvironment-Responsive Yolk-Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy via Osmolarity Surge and Oxidative Stress Amplification. ACS NANO 2022; 16:7380-7397. [PMID: 35435672 DOI: 10.1021/acsnano.1c09496] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-interference therapy, which utilizes ions to disturb intracellular biological processes, provides inspiration for tumor therapy. Artificially reversing osmotic pressure by transporting large amounts of physiological ions to tumor cells is a straightforward yet low-toxic strategy for ion-interference therapy. However, it is hard to achieve due to the serious limitations of single-ion delivery. Herein, we skillfully deliver NaCl nanocrystals to tumor sites and sequentially realize the explosive release of Na+/Cl- inside tumor cells by utilizing a virus-mimicking and glutathione (GSH)-responsive hollow mesoporous tetrasulfide-bridged organosilica (ssss-VHMS). Once the ssss-VHMS-wrapped NaCl nanocrystals (NaCl@ssss-VHMS) accumulate in the tumors, they would rapidly invade tumor cells via spike surface-assisted endocytosis, thus bypassing Na+/K+-ATPase transmembrane ion transporters. Afterward, the intracellular overproduced GSH of tumor cells would trigger the rapid degradation of ssss-VHMS via thiol-tetrasulfide exchange, which could not only remarkably deplete the GSH but also explosively release the Na+/Cl-, leading to the osmolarity surge accompanied by reactive oxygen species (ROS) generation. The cell swelling, ROS storm, and GSH exhaustion of NaCl@ssss-VHMS effectively eradicated tumor cells by caspase-1-dependent pyroptosis, caspase-3-dependent apoptosis, and GPX4-dependent ferroptosis, respectively, thus synergistically inhibiting tumor growth. We believe that NaCl@ssss-VHMS would be a potential cancer therapeutic agent, and this discovery could provide a perspective for exploring synergistic ion-interference therapy.
Collapse
Affiliation(s)
- Yang Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Jinyan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Peiyuan Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Fukai Zhu
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
| | - Qiang Luo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yun Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, People's Republic of China
| |
Collapse
|
14
|
Zhang B, Qin Y, Yang L, Wu Y, Chen N, Li M, Li Y, Wan H, Fu D, Luo R, Yuan L, Wang Y. A Polyphenol-Network-Mediated Coating Modulates Inflammation and Vascular Healing on Vascular Stents. ACS NANO 2022; 16:6585-6597. [PMID: 35301848 DOI: 10.1021/acsnano.2c00642] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized drug delivery from drug-eluting stents (DESs) to target sites provides therapeutic efficacy with minimal systemic toxicity. However, DESs failure may cause thrombosis, delay arterial healing, and impede re-endothelialization. Bivalirudin (BVLD) and nitric oxide (NO) promote arterial healing. Nevertheless, it is difficult to combine hydrophilic signal molecules with hydrophobic antiproliferative drugs while maintaining their bioactivity. Here, we fabricated a micro- to nanoscale network assembly consisting of copper ion and epigallocatechin gallate (EGCG) via π-π interactions, metal coordination, and oxidative polymerization. The network incorporated rapamycin and immobilized BVLD by the thiol-ene "click" reaction and provided sustained rapamycin and NO release. Unlike rapamycin-eluting stents, those coated with the EGCG-Cu-rapamycin-BVLD complex favored competitive endothelial cell (EC) growth over that of smooth muscle cells, exhibited long-term antithrombotic efficacy, and attenuated the negative impact of rapamycin on the EC. In vivo stent implantation demonstrated that the coating promoted endothelial regeneration and hindered restenosis. Therefore, the polyphenol-network-mediated surface chemistry can be an effective strategy for the engineering of multifunctional surfaces.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Ye Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Mingyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Daihua Fu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Lu Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
15
|
Shen Y, Shen Y, Li J, Ding F, Wang Y. Polyethyleneimine-anchored liposomes as scavengers for improving the efficiency of protein-bound uremic toxin clearance during dialysis. J Biomed Mater Res A 2021; 110:976-983. [PMID: 34908219 DOI: 10.1002/jbm.a.37346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Protein-bound uremic toxins (PBUTs) are significant toxins that are closely related to the prognosis of chronic kidney disease. They cannot be effectively removed by conventional dialysis therapies due to their high albumin binding affinity. Our previous research revealed that cationic liposomes (i.e., polyethyleneimine [PEI]-decorated liposomes) could enhance the clearance of PBUTs via electrostatic interactions. However, the poor biocompatibility (hemolysis) restricted their applications in clinical dialysis treatment. Herein, we produced PEI-anchored, linoleic acid-decorated liposomes (CP-LA liposomes) via the conjugation of PEI to cholesterol chloroformate (Chol-PEI, CP), and linoleic acid (LA) was added to provide liposomal colloidal stability. The CP-LA liposomes outperformed the plain liposomes, demonstrating significantly higher PBUT binding rates and removal rates. In addition, in vitro dialysis simulation verified that the CP-LA liposomes had a better capacity for PBUT clearance than the plain liposomes, especially for PBUTs with a strong negative net charge. Hemolysis and cytotoxicity tests revealed that the biocompatibility of the CP-LA liposomes was better than that of the physically-decorated PEI-liposome. CP-LA liposomes possess great potential for PBUT clearance in clinical dialysis therapy.
Collapse
Affiliation(s)
- Yuqi Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaolun Li
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Ding
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|