1
|
Fan Y, Yao X, Wang G, Xie Y, Wu T, Zhou N, Wei Y, Qu G. Interlayer Spacing Optimization Combined with Zinc-Philic Engineering Fostering Efficient Zn 2+ Storage of V 2CT x MXenes for Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2408930. [PMID: 39817878 DOI: 10.1002/smll.202408930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/04/2025] [Indexed: 01/18/2025]
Abstract
As emerging cutting-edge energy storage technologies, aqueous zinc-ion batteries (AZIBs) have garnered extensive research attention for its high safety, low cost, abundant raw materials, and, eco-friendliness. Nevertheless, the commercialization of AZIBs is mainly limited by insufficient development of cathode materials. Among potential candidates, MXene-based materials stand out as a promising option for their unique combination of hydrophilicity and conductivity. However, the low Zn2+ kinetics, structural instability, and narrow interlayer spacing of MXenes hinder its practical application. Comprehensively addressing these issues remains a challenge. Herein, different ion pre-embedded V2CTx MXenes are constructed to tune interlayer spacing, with findings showing NH4 + pre-intercalation is more effective. To accelerate kinetics, it is proposed for the first time a zinc-philic engineering that can effectively reduce Zn2+ migration energy barrier, achieved by decorating the NH4 +-intercalated V2CTx (NH4-V2CTx) with ZnO nanoparticles. Various analyses and theoretical calculations prove there is a strong coupling effect between ZnO and V2CTx, which notably boosts reaction kinetics and structural stability. The ZnO-decorated NH4-V2CTx exhibits a high reversible capacity of 256.58 mAh g-1 at 0.1 A g-1 and excellent rate capability (173.07 mAh g-1 at 2 A g-1). This study pioneers a zinc-philic engineering strategy for the modification of cathode materials in AZIBs.
Collapse
Affiliation(s)
- Yulong Fan
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xinyi Yao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Guoxin Wang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yingying Xie
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Tianli Wu
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Future Technology, Henan University, Kaifeng, 475004, China
| | - Naigen Zhou
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guoxing Qu
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi, 330031, China
- The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Wang L, Zhao S, Zhang X, Xu Y, An Y, Li C, Yi S, Liu C, Wang K, Sun X, Zhang H, Ma Y. In Situ Construction of Bimetallic Selenides Heterogeneous Interface on Oxidation-Stable Ti 3C 2T x MXene Toward Lithium Storage with Ultrafast Charge Transfer Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403078. [PMID: 39221641 DOI: 10.1002/smll.202403078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Ti3C2Tx (MXene) is widely acknowledged as an excellent substrate for constructing heterogeneous structures with transition metal chalcogenides (TMCs) for boosting the electrochemical performance of lithium-ion storage. However, conventional synthesis strategies inevitably lead to poor electrochemical charge transfer due to Ti3C2Tx-derived TiO2 at the heterogeneous interface between Ti3C2Tx and TMCs. Here, an innovative in situ selenization strategy is proposed to replace the originally generated TiO2 on Ti3C2Tx with metallic TiSe2 interphase, clearing the bottleneck of slow charge transfer barrier caused by MXene oxidation. The construction of bimetallic selenide formed by CoSe2 and TiSe2 generates intrinsic electric fields to guide the fast ion diffusion kinetics in a heterogeneous interface. Additionally, the CoSe2/TiSe2/Ti3C2Tx heterogeneous structure with enhanced structural stability and improved rate performance is confirmed by both experiments and theoretical calculations. The engineered heterogeneous structure exhibits an ultra-high pseudocapacitance contribution (73.1% at 0.1 mV s-1), rendering it well-suited to offset the kinetics differences between double-layer materials. The assembled lithium-ion capacitor based on CoSe2/TiSe2/Ti3C2Tx possesses a high energy density and an ultralong life span (89.5% after 10 000 times at 2 A g-1). This devised strategy provides a feasible solution for utilizing the performance advantages of MXene substrates in lithium storage with ultrafast charge transfer kinetics.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China North Vehicle Research Institute, Beijing, 100072, China
| | - Shasha Zhao
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiong Zhang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Yanan Xu
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Yabin An
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Chen Li
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Sha Yi
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Cong Liu
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Wang
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Xianzhong Sun
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
| | - Haitao Zhang
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yanwei Ma
- Key Laboratory of High Density Electromagnetic Power and Systems (Chinese Academy of Sciences), Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan, Shandong, 250013, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Fu W, Aizudin M, Lee PS, Ang EH. Recent Progress in the Applications of MXene-Based Materials in Multivalent Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404093. [PMID: 39136426 DOI: 10.1002/smll.202404093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Indexed: 11/22/2024]
Abstract
Multivalent-ion batteries have garnered significant attention as promising alternatives to traditional lithium-ion batteries due to their higher charge density and potential for sustainable energy storage solutions. Nevertheless, the slow diffusion of multivalent ions is the primary issue with electrode materials for multivalent-ion batteries. In this review, the suitability of MXene-based materials for multivalent-ion batteries applications is explored, focusing onions such as magnesium (Mg2+), aluminum (Al3+), zinc (Zn2+), and beyond. The unique structure of MXene offers large interlayer spacing and abundant surface functional groups that facilitates efficient ion intercalation and diffusion, making it an excellent candidate for multivalent-ion batteries electrodes with excellent specific capacity and power density. The latest advancements in MXene synthesis and engineering techniques to enhance its electrochemical performance have been summarized and discussed. With the versatility of MXenes and their ability to harness diverse multivalent ions, this review underscores the promising future of MXene-based materials in revolutionizing the landscape of multivalent-ion batteries.
Collapse
Affiliation(s)
- Wangqin Fu
- National Institute of Education Singapore, Nanyang Technological University Singapore, Singapore, 637616, Singapore
| | - Marliyana Aizudin
- National Institute of Education Singapore, Nanyang Technological University Singapore, Singapore, 637616, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Edison Huixiang Ang
- National Institute of Education Singapore, Nanyang Technological University Singapore, Singapore, 637616, Singapore
| |
Collapse
|
4
|
Zhang A, Yin X, Saadoune I, Wei Y, Wang Y. Zwitterion Intercalated Manganese Dioxide Nanosheets as High-Performance Cathode Materials for Aqueous Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402811. [PMID: 38845061 DOI: 10.1002/smll.202402811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Indexed: 10/19/2024]
Abstract
In this study, a novel approach is introduced to address the challenges associated with structural instability and sluggish reaction kinetics of δ-MnO2 in aqueous zinc ion batteries. By leveraging zwitterionic betaine (Bet) for intercalation, a departure from traditional cation intercalation methods, Bet-intercalated MnO2 (MnO2-Bet) is synthesized. The positively charged quaternary ammonium groups in Bet form strong electrostatic interactions with the negatively charged oxygen atoms in the δ-MnO2 layers, enhancing structural stability and preventing layer collapse. Concurrently, the negatively charged carboxylate groups in Bet facilitate the rapid diffusion of H+/Zn2+ ions through their interactions, thus improving reaction kinetics. The resulting MnO2-Bet cathode demonstrates high specific capacity, excellent rate capability, fast reaction kinetics, and extended cycle life. This dual-function intercalation strategy significantly optimizes the electrochemical performance of δ-MnO2, establishing it as a promising cathode material for advanced aqueous zinc ion batteries.
Collapse
Affiliation(s)
- Aina Zhang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiuxiu Yin
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ismael Saadoune
- Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Yingjin Wei
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Li J, Wang C, Yu Z, Chen Y, Wei L. MXenes for Zinc-Based Electrochemical Energy Storage Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304543. [PMID: 37528715 DOI: 10.1002/smll.202304543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/08/2023] [Indexed: 08/03/2023]
Abstract
As an economical and safer alternative to lithium, zinc (Zn) is promising for realizing new high-performance electrochemical energy storage devices, such as Zn-ion batteries, Zn-ion hybrid capacitors, and Zn-air batteries. Well-designed electrodes are needed to enable efficient Zn electrochemistry for energy storage. Two-dimensional transition metal carbides and nitrides (MXenes) are emerging materials with unique electrical, mechanical, and electrochemical properties and versatile surface chemistry. They are potential material candidates for constructing high-performance electrodes of Zn-based energy storage devices. This review first briefly introduces the working mechanisms of the three Zn-based energy storage devices. Then, the recent progress on the synthesis, chemical functionalization, and structural design of MXene-based electrodes is summarized. Their performance in Zn-based devices is analyzed to establish relations between material properties, electrode structures, and device performance. Last, several research topics are proposed to be addressed for developing practical MXene-based electrodes for Zn-based energy storage devices to enable their commercialization and broad adoption in the near future.
Collapse
Affiliation(s)
- Jing Li
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Darlington, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Hussain I, Kewate OJ, Hanan A, Bibi F, Javed MS, Rosaiah P, Ahmad M, Chen X, Shaheen I, Hanif MB, Bhatti AH, Assiri MA, Zoubi WA, Zhang K. V-MXenes for Energy Storage/Conversion Applications. CHEMSUSCHEM 2024; 17:e202400283. [PMID: 38470130 DOI: 10.1002/cssc.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Onkar Jaywant Kewate
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Ali Hassan Bhatti
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, South Korea
| | - Mohammed Ali Assiri
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| |
Collapse
|
7
|
Dai J, Zhang S, Wang F, Wen L, Sun Y, Ren K, Xu Y, Zeng W, Wang S. A new In Situ Oxidized 2D Layered MnBi 2Te 4 Cathode for High-Performance Aqueous Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307033. [PMID: 38552219 DOI: 10.1002/smll.202307033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Indexed: 08/17/2024]
Abstract
Recently, aqueous zinc ion batteries (AZIBs) with the superior theoretical capacity, high safety, low prices, and environmental protection, have emerged as a contender for advanced energy storage. However, challenges related to cathode materials, such as dissolution, instability, and structural collapse, have hindered the progress of AZIBs. Here, a novel AZIB is constructed using an oxidized 2D layered MnBi2Te4 cathode for the first time. The oxidized MnBi2Te4 cathode with large interlayer spacing and low energy barrier for zinc ion diffusion at 240 °C, exhibited impressive characteristics, including a high reversibility capacity of 393.1 mAh g-1 (0.4 A g-1), outstanding rate performance, and long cycle stability. Moreover, the corresponding aqueous button cell also exhibits excellent electrochemical performance. To demonstrate the application in practice in the realm of flexible wearable electronics, a quasi-solid-state micro ZIB (MZIB) is constructed and shows excellent flexibility and high-temperature stability (the capacity does not significantly degrade when the temperature reaches 100 °C and the bending angle exceeds 150°). This research offers effective tactics for creating high-performance cathode materials for AZIBs.
Collapse
Affiliation(s)
- Jiaao Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Shaojun Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Fei Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Li Wen
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics and Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuhao Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Ke Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Yaohua Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
- East China Institute of Photo-Electron ICs, Suzhou, 215163, China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province & Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei, 230601, China
- East China Institute of Photo-Electron ICs, Suzhou, 215163, China
| |
Collapse
|
8
|
Liu Q, Yang K, Wang Z, Chen S, Zhang W, Ma H, Geng X, Deng Q, Zhao Q, Zhu N. One-Stone-for-Two-Birds Strategy for VSe 2 to Enable High Capacity and Long-Life Zinc Storage. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38598659 DOI: 10.1021/acsami.4c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Based on a specific zinc storage mechanism and excellent electronic conductivity, transition metal dichalcogenides, represented by vanadium diselenide, are widely used in aqueous zinc-ion battery (AZIB) energy storage systems. However, most vanadium diselenide cathode materials are presently limited by low specific capacity and poor cycling life. Herein, a simple hydrothermal process has been proposed for obtaining a vanadium diselenide cathode for an AZIB. The interaction of defects and crystal planes enhances zinc storage capacity and reduces the migration energy barrier. Moreover, abundant lamellar structure greatly increases reaction sites and alleviates volume expansion during the electrochemical process. Thus, the as-obtained vanadium diselenide AZIB exhibits an excellent reversible specific capacity of 377 mAh g-1 at 1 A g-1, and ultralong cycle stability of 291 mAh g-1 after 3200 cycles, with a nearly negligible capacity loss. This one-stone-for-two-birds strategy would be expected to be applied to large-scale synthesis of a high-performance zinc-ion battery cathode in the future.
Collapse
Affiliation(s)
- Quanli Liu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kai Yang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhangyu Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Siyan Chen
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wenrui Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongting Ma
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaodong Geng
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qinghua Deng
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Qian Zhao
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Nan Zhu
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
9
|
Han F, Fan L, Zhang Z, Zhang X, Wu L. Platinum Electrocatalyst Promoting Redox Kinetics of Li 2S and Regulating Li 2S Nucleation for Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307950. [PMID: 37990375 DOI: 10.1002/smll.202307950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Indexed: 11/23/2023]
Abstract
The development of lithium-sulfur batteries (LSBs) is impeded by the shuttle effect of polysulfides (LiPSs) and the sluggish nucleation of Li2S. To address these challenges, incorporating electrocatalysts into sulfur host materials represents an effective strategy for promoting polysulfide conversion, in tandem with the rational design of multifunctional sulfur host materials. In this study, Pt nanoparticles are integrated into biomass-derived carbon materials by solution deposition method. Pt, as an electrocatalyst, not only enhances the electrical conductivity of sulfur cathodes and effectively immobilizes LiPSs but also catalyzes the redox reactions of sulfur species bidirectionally. Additionally, Pt helps regulate the 3D deposition and growth of Li2S while reducing the reaction energy barrier. Consequently, this accelerates the conversion of LiPSs in LSBs. Furthermore, the catalytic ability of Pt for the redox reactions of sulfur species, along with its influence on the 3D deposition and growth of Li2S, is elucidated using electrochemical kinetic analyses and classical models of electrochemical deposition. The cathodes exhibit a high initial specific capacity of 1019.1 mAh g-1 at 1 C and a low decay rate of 0.045% over 1500 cycles. This study presents an effective strategy to regulate Li2S nucleation and enhance the kinetics of polysulfide conversion in LSBs.
Collapse
Affiliation(s)
- Fengfeng Han
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Liwen Fan
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, P. R. China
| | - Zhiguo Zhang
- Department of Physics, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lili Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| |
Collapse
|
10
|
Bao Z, Lu C, Liu Q, Ye F, Li W, Zhou Y, Pan L, Duan L, Tang H, Wu Y, Hu L, Sun Z. An acetate electrolyte for enhanced pseudocapacitve capacity in aqueous ammonium ion batteries. Nat Commun 2024; 15:1934. [PMID: 38431736 PMCID: PMC10908845 DOI: 10.1038/s41467-024-46317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Ammonium ion batteries are promising for energy storage with the merits of low cost, inherent security, environmental friendliness, and excellent electrochemical properties. Unfortunately, the lack of anode materials restricts their development. Herein, we utilized density functional theory calculations to explore the V2CTx MXene as a promising anode with a low working potential. V2CTx MXene demonstrates pseudocapacitive behavior for ammonium ion storage, delivering a high specific capacity of 115.9 mAh g-1 at 1 A g-1 and excellent capacity retention of 100% after 5000 cycles at 5 A g-1. In-situ electrochemical quartz crystal microbalance measurement verifies a two-step electrochemical process of this unique pseudocapacitive storage behavior in the ammonium acetate electrolyte. Theoretical simulation reveals reversible electron transfer reactions with [NH4+(HAc)3]···O coordination bonds, resulting in a superior ammonium ion storage capacity. The generality of this acetate ion enhancement effect is also confirmed in the MoS2-based ammonium-ion battery system. These findings open a new door to realizing high capacity on ammonium ion storage through acetate ion enhancement, breaking the capacity limitations of both Faradaic and non-Faradaic energy storage.
Collapse
Affiliation(s)
- Zhuoheng Bao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Qiang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Weihuan Li
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yang Zhou
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Long Pan
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lunbo Duan
- School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Hongjian Tang
- School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Yuping Wu
- School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
11
|
Tang Q, Wang Y, Chen N, Pu B, Qing Y, Zhang M, Bai J, Yang Y, Cui J, Liu Y, Zhou B, Yang W. Ultra-Efficient Synthesis of Nb 4 C 3 T x MXene via H 2 O-Assisted Supercritical Etching for Li-Ion Battery. SMALL METHODS 2024; 8:e2300836. [PMID: 37926701 DOI: 10.1002/smtd.202300836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.
Collapse
Affiliation(s)
- Qi Tang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yongbin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ningjun Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ben Pu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Qing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Mingzhe Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jia Bai
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yi Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jin Cui
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yan Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Bin Zhou
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
12
|
Xu X, Jiang Q, Yang C, Ruan J, Zhao W, Wang H, Lu X, Li Z, Chen Y, Zhang C, Hu J, Zhou T. Elastic MXene conductive layers and electrolyte engineering enable robust potassium storage. Chem Sci 2024; 15:3262-3272. [PMID: 38425519 PMCID: PMC10901491 DOI: 10.1039/d3sc06079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.
Collapse
Affiliation(s)
- Xinyue Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
| | - Qingqing Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
| | - Chenyu Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Jinxi Ruan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Weifang Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
| | - Houyu Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Xinxin Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University Xi'an 710049 China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Juncheng Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University Wuhan 430074 China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
13
|
Cao B, Xu C, Jiang B, Jin B, Zhang J, Ling L, Lu Y, Zou T, Zhang T. Electrolyte Optimization Strategy: Enabling Stable and Eco-Friendly Zinc Adaptive Interfacial Layer in Zinc Ion Batteries. Molecules 2024; 29:874. [PMID: 38398631 PMCID: PMC10892866 DOI: 10.3390/molecules29040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Aqueous zinc ion batteries (AZIBs) have emerged as a promising battery technology due to their excellent safety, high capacity, low cost, and eco-friendliness. However, the cycle life of AZIBs is limited by severe side reactions and zinc dendrite growth on the zinc electrode surface, hindering large-scale application. Here, an electrolyte optimization strategy utilizing the simplest dipeptide glycylglycine (Gly-Gly) additive is first proposed. Theoretical calculations and spectral analysis revealed that, due to the strong interaction between the amino group and Zn atoms, Gly-Gly preferentially adsorbs on zinc's surface, constructing a stable and adaptive interfacial layer that inhibits zinc side reactions and dendrite growth. Furthermore, Gly-Gly can regulate zinc ion solvation, leading to a deposition mode shift from dendritic to lamellar and limiting two-dimensional dendrite diffusion. The symmetric cell with the addition of a 20 g/L Gly-Gly additive exhibits a cycle life of up to 1100 h. Under a high current density of 10 mA cm-2, a cycle life of 750 cycles further demonstrates the reliable adaptability of the interfacial layer. This work highlights the potential of Gly-Gly as a promising solution for improving the performance of AZIBs.
Collapse
Affiliation(s)
- Bozhong Cao
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Chunyan Xu
- Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun 130052, China;
| | - Bingchun Jiang
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Biao Jin
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Jincheng Zhang
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Lei Ling
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Yusheng Lu
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Tianyu Zou
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| | - Tong Zhang
- College of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523000, China; (B.C.); (B.J.); (B.J.); (J.Z.); (L.L.); (Y.L.); (T.Z.)
| |
Collapse
|
14
|
Liu H, Xin Z, Cao B, Zhang B, Fan HJ, Guo S. Versatile MXenes for Aqueous Zinc Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305806. [PMID: 37985557 PMCID: PMC10885665 DOI: 10.1002/advs.202305806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) are gaining popularity for their cost-effectiveness, safety, and utilization of abundant resources. MXenes, which possess outstanding conductivity, controllable surface chemistry, and structural adaptability, are widely recognized as a highly versatile platform for AZIBs. MXenes offer a unique set of functions for AZIBs, yet their significance has not been systematically recognized and summarized. This review article provides an up-to-date overview of MXenes-based electrode materials for AZIBs, with a focus on the unique functions of MXenes in these materials. The discussion starts with MXenes and their derivatives on the cathode side, where they serve as a 2D conductive substrate, 3D framework, flexible support, and coating layer. MXenes can act as both the active material and a precursor to the active material in the cathode. On the anode side, the functions of MXenes include active material host, zinc metal surface protection, electrolyte additive, and separator modification. The review also highlights technical challenges and key hurdles that MXenes currently face in AZIBs.
Collapse
Affiliation(s)
- Huan Liu
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Zijun Xin
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bin Cao
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Bao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Zhang Y, Bao Z, Wang R, Su Y, Wang Y, Cao X, Hu R, Sha D, Pan L, Sun Z. Simultaneous derivatization and exfoliation of a multilayered Ti 3C 2T x MXene into amorphous TiO 2 nanosheets for stable K-ion storage. NANOSCALE 2024; 16:1751-1757. [PMID: 38198211 DOI: 10.1039/d3nr05723b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Two-dimensional transition metal compounds (2D TMCs) have been widely reported in the fields of energy storage and conversion, especially in metal-ion storage. However, most of them are crystalline and lack active sites, and this brings about sluggish ion storage kinetics. In addition, TMCs are generally nonconductors or semiconductors, impeding fast electron transfer at high rates. Herein, we propose a facile one-step route to synthesize amorphous 2D TiO2 with a carbon coating (a-2D-TiO2@C) by simultaneous derivatization and exfoliation of a multilayered Ti3C2Tx MXene. The amorphous structure endows 2D TiO2 with abundant active sites for fast ion adsorption and diffusion, while the carbon coating can facilitate electron transport in an electrode. Owing to these intriguing structural and compositional synergies, a-2D-TiO2@C delivers good cycling stability with a long-term capacity retention of 86% after 2000 cycles at 1.0 A g-1 in K-ion storage. When paired with Prussian blue (KPB) cathodes, it exhibits a high full-cell capacity of 50.8 mA h g-1 at 100 mA g-1 after 140 cycles, which demonstrates its great potential in practical applications. This contribution exploits a new approach for the facile synthesis of a-2D-TMCs and their broad applications in energy storage and conversion.
Collapse
Affiliation(s)
- Yuan Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhuoheng Bao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Rui Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yifan Su
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
16
|
Wang Z, Tan G, Zhang B, Yang Q, Feng S, Liu Y, Liu T, Guo L, Zeng C, Liu W, Xia A, Ren H, Yin L, Fan S. Intrinsic Polarized Electric Field Induces a Storing Mechanism to Achieve Energy Storing Catalysis in V 2 C MXene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307795. [PMID: 37823519 DOI: 10.1002/adma.202307795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Efficient storage and separation of holes and electrons pose significant challenges for catalytic reactions, particularly in the context of single-phase catalysis. Herein, V2 C MXene, with its intrinsic polarized electric field, successfully overcomes this obstacle. To enhance hole storage, a multistep etching process is employed under reducing conditions to control the content of surface termination groups, thus exposing more defective active sites. The intrinsically polarized electric field confines holes to the surface of the layer and free electrons within the layer, leading to a lag in e- release compared to h+ . The quantities of stored holes and electrons are measured to be 18.13 µmol g-1 and 106.37 µmol g-1 , respectively. Under dark, V2 C demonstrates excellent and stable dark-catalytic performance, degrading 57.91% of tetracycline (TC 40 mg L-1 ) and removing 23% of total organic carbon (TOC) after 140 min. In simulated sunlight and near-infrared light, the corresponding degradation rates reach 72.24% and 79.54%, with corresponding TOC removal rates of 49% and 48%, respectively. The hole and electron induced localized surface plasmon resonance (LSPR) effects contribute to a long-lasting and enhanced broad-spectrum mineralization of V2 C MXene. This study provides valuable insights into the research and application of all-weather MXene energy storage catalytic materials.
Collapse
Affiliation(s)
- Zeqiong Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoqiang Tan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bixin Zhang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qian Yang
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuaijun Feng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Tian Liu
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Linxin Guo
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chunyan Zeng
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenlong Liu
- School of Electronic Information and Artiffcial Intelligence, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Ao Xia
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huijun Ren
- School of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lixiong Yin
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Sizhe Fan
- Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
17
|
Wang Z, Wei C, Jiang H, Zhang Y, Tian K, Li Y, Zhang X, Xiong S, Zhang C, Feng J. MXene-Based Current Collectors for Advanced Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306015. [PMID: 37615277 DOI: 10.1002/adma.202306015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/06/2023] [Indexed: 08/25/2023]
Abstract
As an indispensable component of rechargeable batteries, the current collector plays a crucial role in supporting the electrode materials and collecting the accumulated electrical energy. However, some key issues, like uneven resources, high weight percentage, electrolytic corrosion, and high-voltage instability, cannot meet the growing need for rechargeable batteries. In recent years, MXene-based current collectors have achieved considerable achievements due to its unique structure, large surface area, and high conductivity. The related research has increased significantly. Nonetheless, a comprehensive review of this area is seldom. Herein the applications and progress of MXene in current collector are systematically summarized and discussed. Meanwhile, some challenges and future directions are presented.
Collapse
Affiliation(s)
- Zhengran Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Huiyu Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong, 264005, P. R. China
| | - Yuchan Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Kangdong Tian
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Yuan Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Xinlu Zhang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Chenghui Zhang
- School of Control Science and Engineering, Jinan, Shandong, 250061, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| |
Collapse
|
18
|
Zong Y, Chen H, Wang J, Wu M, Chen Y, Wang L, Huang X, He H, Ning X, Bai Z, Wen W, Zhu D, Ren X, Wang N, Dou S. Cation Defect-Engineered Boost Fast Kinetics of Two-Dimensional Topological Bi 2 Se 3 Cathode for High-Performance Aqueous Zn-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306269. [PMID: 37882357 DOI: 10.1002/adma.202306269] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/18/2023] [Indexed: 10/27/2023]
Abstract
The challenge with aqueous zinc-ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two-dimensional topological Bi2 Se3 with acceptable Bi-vacancies for ZIBs cathode (Cu-Bi2-x Se3 ) is constructed through one-step hydrothermal process accompanied by Cu heteroatom introduction. The cation-deficient Cu-Bi2-x Se3 nanosheets (≈4 nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density-functional theory (DFT) calculations illustrate the decreased Coulombic ion-lattice repulsion of Cu-Bi2-x Se3 . Therefore, Cu-Bi2-x Se3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X-ray diffraction (SXRD). These features endow Cu-Bi2-x Se3 with sufficient specific capacity (320 mA h g-1 at 0.1 A g-1 ), high-rate performance (97 mA h g-1 at 10 A g-1 ), and reliable cycling stability (70 mA h g-1 at 10 A g-1 after 4000 cycles). Furthermore, quasi-solid-state fiber-shaped ZIBs employing the Cu-Bi2-x Se3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high-performance battery electrochemistry.
Collapse
Affiliation(s)
- Yu Zong
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Haichao Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Jinsong Wang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Menghua Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Yu Chen
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Liyu Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Xinliang Huang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Hongwei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Zhongchao Bai
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Daming Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaochuan Ren
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Shandong Center for Engineered Nonwovens, Institute of Materials for Energy and Environment, Qingdao University, Qingdao, 266071, China
| | - Nana Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, New South Wales, 2500, Australia
| | - Shixue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, North Wollongong, New South Wales, 2500, Australia
| |
Collapse
|
19
|
Pan L, Hu R, Zhang Y, Sha D, Cao X, Li Z, Zhao Y, Ding J, Wang Y, Sun Z. Built-In Electric Field-Driven Ultrahigh-Rate K-Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti 3C 2T x MXene. NANO-MICRO LETTERS 2023; 15:225. [PMID: 37831299 PMCID: PMC10575839 DOI: 10.1007/s40820-023-01202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/26/2023] [Indexed: 10/14/2023]
Abstract
Exploiting high-rate anode materials with fast K+ diffusion is intriguing for the development of advanced potassium-ion batteries (KIBs) but remains unrealized. Here, heterostructure engineering is proposed to construct the dual transition metal tellurides (CoTe2/ZnTe), which are anchored onto two-dimensional (2D) Ti3C2Tx MXene nanosheets. Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe2/ZnTe interfaces, improving K+ diffusion and adsorption. In addition, the different work functions between CoTe2/ZnTe induce a robust built-in electric field at the CoTe2/ZnTe interface, providing a strong driving force to facilitate charge transport. Moreover, the conductive and elastic Ti3C2Tx can effectively promote electrode conductivity and alleviate the volume change of CoTe2/ZnTe heterostructures upon cycling. Owing to these merits, the resulting CoTe2/ZnTe/Ti3C2Tx (CZT) exhibit excellent rate capability (137.0 mAh g-1 at 10 A g-1) and cycling stability (175.3 mAh g-1 after 4000 cycles at 3.0 A g-1, with a high capacity retention of 89.4%). More impressively, the CZT-based full cells demonstrate high energy density (220.2 Wh kg-1) and power density (837.2 W kg-1). This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs.
Collapse
Affiliation(s)
- Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yuan Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhuoran Li
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jiangxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, 243002, Anhui, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
20
|
Guo R, Chen C, Bannenberg LJ, Wang H, Liu H, Yu M, Sofer Z, Lei Z, Wang X. Interfacial Designs of MXenes for Mild Aqueous Zinc-Ion Storage. SMALL METHODS 2023; 7:e2201683. [PMID: 36932899 DOI: 10.1002/smtd.202201683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Limited Li resources, high cost, and safety risks of using organic electrolytes have stimulated a strong motivation to develop non-Li aqueous batteries. Aqueous Zn-ion storage (ZIS) devices offer low-cost and high-safety solutions. However, their practical applications are at the moment restricted by their short cycle life arising mainly from irreversible electrochemical side reactions and processes at the interfaces. This review sums up the capability of using 2D MXenes to increase the reversibility at the interface, assist the charge transfer process, and thereby improve the performance of ZIS. First, they discuss the ZIS mechanism and irreversibility of typical electrode materials in mild aqueous electrolytes. Then, applications of MXenes in different ZIS components are highlighted, including as electrodes for Zn2+ intercalation, protective layers of Zn anode, hosts for Zn deposition, substrates, and separators. Finally, perspectives are put forward on further optimizing MXenes to improve the ZIS performance.
Collapse
Affiliation(s)
- Rui Guo
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Chaofan Chen
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Lars J Bannenberg
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Hao Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haozhe Liu
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| | - Minghao Yu
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden Technische Universität Dresden Modulgebäude, 01217, Dresden, Germany
| | - Zdenek Sofer
- Institute of Chemical Technology, University of Chemistry and Technology Prague, Prague 6, 16628, Czech Republic
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuehang Wang
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, 2629JB, The Netherlands
| |
Collapse
|
21
|
Guo Y, Du Z, Cao Z, Li B, Yang S. MXene Derivatives for Energy Storage and Conversions. SMALL METHODS 2023; 7:e2201559. [PMID: 36811328 DOI: 10.1002/smtd.202201559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Associated with the rapid development of 2D transition metal carbides, nitrides, and carbonitrides (MXenes), MXene derivatives have been recently exploited and exhibited unique physical/chemical properties, holding promising applications in the areas of energy storage and conversions. This review provides a comprehensive summarization of the latest research and progress on MXene derivatives, including termination-tailored MXenes, single-atom implanted MXenes, intercalated MXenes, van der Waals atomic layers, and non-van der Waals heterostructures. The intrinsic relationship between structure, properties, and corresponding applications for MXene derivatives are then emphasized. Finally, the essential challenges are addressed and perspectives for the MXene derivatives are also discussed.
Collapse
Affiliation(s)
- Yu Guo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiguo Du
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhenjiang Cao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Bin Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shubin Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
22
|
Akir S, Azadmanjiri J, Antonatos N, Děkanovský L, Roy PK, Mazánek V, Lontio Fomekong R, Regner J, Sofer Z. Atomic-layered V 2C MXene containing bismuth elements: 2D/0D and 2D/2D nanoarchitectonics for hydrogen evolution and nitrogen reduction reaction. NANOSCALE 2023. [PMID: 37464871 DOI: 10.1039/d3nr01144e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The exploitation of two-dimensional (2D) vanadium carbide (V2CTx, denoted as V2C) in electrocatalytic hydrogen evolution reaction (HER) and nitrogen reduction reaction (NRR) is still in the stage of theoretical study with limited experimental exploration. Here, we present the experimental studies of V2C MXene-based materials containing two different bismuth compounds to confirm the possibility of using V2C as a potential electrocatalyst for HER and NRR. In this context, for the first time, we employed two different methods to synthesize 2D/0D and 2D/2D nanostructures. The 2D/2D V2C/BVO consisted of BiVO4 (denoted BVO) nanosheets wrapped in layers of V2C which were synthesized by a facile hydrothermal method, whereas the 2D/0D V2C/Bi consisted of spherical particles of Bi (Bi NPs) anchored on V2C MXenes using the solid-state annealing method. The resultant V2C/BVO catalyst was proven to be beneficial for HER in 0.5 M H2SO4 compared to pristine V2C. We demonstrated that the 2D/2D V2C/BVO structure can favor the higher specific surface area, exposure of more accessible catalytic active sites, and promote electron transfer which can be responsible for optimizing the HER activity. Moreover, V2C/BVO has superior stability in an acidic environment. Whilst we observed that the 2D/0D V2C/Bi could be highly efficient for electrocatalytic NRR purposes. Our results show that the ammonia (NH3) production and faradaic efficiency (FE) of V2C/Bi can reach 88.6 μg h-1 cm-2 and 8% at -0.5 V vs. RHE, respectively. Also V2C/Bi exhibited excellent long-term stability. These achievements present a high performance in terms of the highest generated NH3 compared to recent investigations of MXenes-based electrocatalysts. Such excellent NRR of V2C/Bi activity can be attributed to the effective suppression of HER which is the main competitive reaction of the NRR.
Collapse
Affiliation(s)
- Sana Akir
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jalal Azadmanjiri
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Lukáš Děkanovský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Pradip Kumar Roy
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Roussin Lontio Fomekong
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Jakub Regner
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
23
|
Wang Y, Li J, Song P, Yang J, Gu Z, Wang T, Wang C. In-situ decoration of tin sulfide on Niobium carbide MXene with robust electronic coupling for improved sodium storage performance. J Colloid Interface Sci 2023; 636:255-266. [PMID: 36634395 DOI: 10.1016/j.jcis.2023.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Tin sulfide (SnS) has been considered as one of the most promising sodium storage materials because of its excellent electrochemical activity, low cost, and low-dimensional structure. However, owing to the serious volume change upon discharging/charging and poor electronic conductivity, the SnS-based electrodes often suffer from electrode pulverization and sluggish reaction kinetics, thus resulting in serious capacity fading and degraded rate capability. In this work, SnS nanoparticles uniformly distributed on the surface of the layered Niobium carbide MXene (SnS/Nb2CTx) were fabricated through a facile solvothermal approach followed by calcination, endowing the SnS/Nb2CTx with a three-dimensional interconnected framework as well as fast charge transfer. Benefitting from the excellent electronic/ionic conductivity, efficient buffering matrix, abundant active sites, and high sodium storage activity inherited from the structure design, the robust electronic coupling between SnS nanoparticle and Nb2CTx MXene results in excellent electrochemical output, which demonstrates superior reversible capacities of 479.6 (0.1 A/g up to 100 cycles) and 278.9 mAh/g (0.5 A/g up to 500 cycles) upon sodium storage, respectively. The excellent electrochemical performance manifests the promise of the combination of metal sulfides with Nb2CTx MXene to fabricate high-performance electrodes for sodium storage.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jiabao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Penghao Song
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Jian Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Zhihao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, Jiangsu 225002, China.
| |
Collapse
|
24
|
Sha D, You Y, Hu R, Cao X, Wei Y, Zhang H, Pan L, Sun Z. Comprehensively Understanding the Role of Anion Vacancies on K-Ion Storage: A Case Study of Se-Vacancy-Engineered VSe 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211311. [PMID: 36661113 DOI: 10.1002/adma.202211311] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Anion vacancy engineering (AVE) is widely used to improve the Li-ion and Na-ion storage of conversion-type anode materials. However, AVE is still an emerging strategy in K-ion batteries, which are promising for large-scale energy storage. In addition, the role of anion vacancies on ion storage is far from clear, despite several proposed explanations. Herein, by employing VSe2 as a model conversion-type anode material, Se vacancies are intentionally introduced (labeled as P-VSe2-x ) to investigate their effect on K+ storage. The P-VSe2-x shows excellent cyclability in half cells (143 mA h g-1 at 3.0 A g-1 after 1000 cycles) and high energy density in coin-type full cells (206.8 Wh kg-1 ). By applying various electrochemical techniques, the effects of Se vacancies on the redox potentials of K-ion insertion/extraction and the K-ion diffusion in electrodes upon cycling are uncovered. In addition, the structural evolution of Se vacancies during potassiation/de-potassiation using various operando and ex characterizations is revealed. Moreover, it is demonstrated that Se vacancies can facilitate the breaking of VSe bonds upon the P-VSe2-x conversion using theoretical calculations. This work comprehensively explains the role of anion vacancies in ion storage for developing high-performance conversion-type anode materials.
Collapse
Affiliation(s)
- Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yurong You
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Rongxiang Hu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yicheng Wei
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Heng Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
25
|
Mao Y, Zhao B, Bai J, Ma H, Wang P, Li W, Xiao K, Wang S, Zhu X, Sun Y. Carbon Foam-Supported VS 2 Cathode for High-Performance Flexible Self-Healing Quasi-Solid-State Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207998. [PMID: 36929331 DOI: 10.1002/smll.202207998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
As the new generation of energy storage systems, the flexible battery can effectively broaden the application area and scope of energy storage devices. Flexibility and energy density are the two core evaluation parameters for the flexible battery. In this work, a flexible VS2 material (VS2 @CF) is fabricated by growing the VS2 nanosheet arrays on carbon foam (CF) using a simple hydrothermal method. Benefiting from the high electric conductivity and 3D foam structure, VS2 @CF shows an excellent rate capability (172.8 mAh g-1 at 5 A g-1 ) and cycling performance (130.2 mAh g-1 at 1 A g-1 after 1000 cycles) when it served as cathode material for aqueous zinc-ion batteries. More importantly, the quasi-solid-state battery VS2 @CF//Zn@CF assembled by the VS2 @CF cathode, CF-supported Zn anode, and a self-healing gel electrolyte also exhibits excellent rate capability (261.5 and 149.8 mAh g-1 at 0.2 and 5 A g-1 , respectively) and cycle performance with a capacity of 126.6 mAh g-1 after 100 cycles at 1 A g-1 . Moreover, the VS2 @CF//Zn@CF full cell also shows good flexible and self-healing properties, which can be charged and discharged normally under different bending angles and after being destroyed and then self-healing.
Collapse
Affiliation(s)
- Yunjie Mao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bangchuan Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin Bai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Hongyang Ma
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peiyao Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wanyun Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ke Xiao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Siya Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
26
|
Huang P, Han WQ. Recent Advances and Perspectives of Lewis Acidic Etching Route: An Emerging Preparation Strategy for MXenes. NANO-MICRO LETTERS 2023; 15:68. [PMID: 36918453 PMCID: PMC10014646 DOI: 10.1007/s40820-023-01039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/05/2023] [Indexed: 05/31/2023]
Abstract
Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.
Collapse
Affiliation(s)
- Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
27
|
Liu W, Zong H, Li M, Zeng Z, Gong S, Yu K, Zhu Z. Ta 4C 3-Modulated MOF-Derived 3D Crosslinking Network of VO 2(B)@Ta 4C 3 for High-Performance Aqueous Zinc Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13554-13564. [PMID: 36876348 DOI: 10.1021/acsami.2c23314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A two-dimensional MXene (Ta4C3) was innovatively used herein to modulate the space group and electronic properties of vanadium oxides, and the MXene/metal-organic framework (MOF) derivative VO2(B)@Ta4C3 with 3D network cross-linking was prepared, which was then employed as a cathode to improve the performance of aqueous zinc ion batteries (ZIBs). A novel method combining HCl/LiF and hydrothermal treatments was used to etch Ta4AlC3 to obtain a large amount of accordion-like Ta4C3, and the V-MOF was then hydrothermally grown on the surface of the stripped Ta4C3 MXene. During the annealing process of V-MOF@Ta4C3, the addition of Ta4C3 MXene liberates the V-MOF from agglomerative stacking, allowing it to show additional active sites. More significantly, Ta4C3 prevents the V-MOF in the composite structure from converting into V2O5 of space group Pmmn but into VO2(B) of space group C2/m after annealing. A considerable advantage of VO2(B) for Zn2+ intercalation is provided by the negligible structural transformation during the intercalation process and the special tunnel transport channels, which have an enormous area (0.82 nm2 along the b axis). According to first-principles calculations, there is a strong interfacial interaction between VO2(B) and Ta4C3, which deliver remarkable electrochemical activity and kinetic performances for the storage of Zn2+. Therefore, the ZIBs prepared with the VO2(B)@Ta4C3 cathode material exhibit an ultra-high capacity of 437 mA h·g-1 at 0.1 A·g-1 while showing good cycle performance and dynamic performance. This study will offer a fresh approach and a reference for creating metal oxide/MXene composite structures.
Collapse
Affiliation(s)
- Weicai Liu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Hui Zong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Mengshu Li
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ziquan Zeng
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Shijing Gong
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ziqiang Zhu
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Xu X, Sha D, Tian Z, Wu F, Zheng W, Yang L, Xie S, Zhang P, Sun Z. Lithium storage performance and mechanism of nano-sized Ti 2InC MAX phase. NANOSCALE HORIZONS 2023; 8:331-337. [PMID: 36621903 DOI: 10.1039/d2nh00489e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fine powders of MAX phases (a family of layered carbides/nitrides) have been showing great promise in energy storage applications. A feasible method of obtaining nano-sized MAX phase particles is critical to realizing the practical application of the vast MAX phase family in more technologically important fields. Herein, ball milling, a commercial and feasible method, is employed to prepare nano-sized Ti2InC, which delivers a high specific capacity of 590 mA h g-1 after 500 cycles and maintains 574.4 mA h g-1 after 600 cycles at 0.1 A g-1 when used as a lithium storage anode. Compared with other methods (e.g., partial etching), decreasing the size of Ti2InC particles by ball milling can preserve the exfoliated indium (In) atoms, which have great volumetric and gravimetric capacities. In situ XRD analysis indicates that the capacity of the nano-sized Ti2InC primarily comes from the lithiation of elemental In exfoliated from Ti2InC, and in particular, the exfoliated In atoms by ball milling can increase the initial capacity. The lithiation/delithiation cycle can effectively activate and even exfoliate the Ti2InC grains, which accounts for the increasing capacity upon cycling.
Collapse
Affiliation(s)
- Xueqin Xu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Dawei Sha
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhihua Tian
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Fushuo Wu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Wei Zheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Li Yang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Shengyu Xie
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Peigen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
| |
Collapse
|
29
|
Huang D, Zhou X, Liu L, Li H, Lin G, Li J, Wei Z. Improved electrochemical performance of aqueous zinc-ion batteries with modified glass fiber separator by Ketjen Black. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Chen S, Wang H, Zhu M, You F, Lin W, Chan D, Lin W, Li P, Tang Y, Zhang Y. Revitalizing zinc-ion batteries with advanced zinc anode design. NANOSCALE HORIZONS 2022; 8:29-54. [PMID: 36268641 DOI: 10.1039/d2nh00354f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) have attracted significant attention in large-scale energy storage systems due to their unique merits, such as intrinsic safety, low cost, and relatively high theoretical energy density. However, the dilemma of the uncontrollable Zn dendrites, severe hydrogen evolution reaction (HER), and side reactions that occur on the Zn anodes have hindered their commercialization. Herein, a state-of-the-art review of the rational design of highly reversible Zn anodes for high-performance AZIBs is provided. Firstly, the fundamental understanding of Zn deposition, with regard to the nucleation, electro-crystallization, and growth of the Zn nucleus is systematically clarified. Subsequently, a comprehensive survey of the critical factors influencing Zn plating together with the current main challenges is presented. Accordingly, the rational strategies emphasizing structural design, interface engineering, and electrolyte optimization have been summarized and analyzed in detail. Finally, future perspectives on the remaining challenges are recommended, and this review is expected to shed light on the future development of stable Zn anodes toward high-performance AZIBs.
Collapse
Affiliation(s)
- Shuwei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Huibo Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, P. R. China
| | - Mengyu Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Fan You
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wang Lin
- Army Logistics Academy, Chongqing 401311, P. R. China
| | - Dan Chan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Wanxin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Peng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
- Qingyuan Innovation Laboratory, Quanzhou 362801, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
31
|
Xi W, Jin J, Zhang Y, Wang R, Gong Y, He B, Wang H. Hierarchical MXene/transition metal oxide heterostructures for rechargeable batteries, capacitors, and capacitive deionization. NANOSCALE 2022; 14:11923-11944. [PMID: 35920652 DOI: 10.1039/d2nr02802f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
2D MXenes have attracted considerable attention due to their high electronic conductivity, tunable metal compositions, functional termination groups, low ion diffusion barriers, and abundant active sites. However, MXenes suffer from sheet stacking and partial surface oxidation, limiting their energy storage and water treatment development. To solve these problems and enhance the performance of MXenes in practical applications, various hierarchical MXene/transition metal oxide (MXene/TMO) heterostructures are rationally designed and constructed. The hierarchical MXene/TMO heterostructures can not only prevent the stacking of MXene sheets and improve the electronic conductivity and buffer the volume change of TMOs during the electrochemical reaction process. The synergistic effect of conductive MXenes and active TMOs also makes MXene/TMO heterostructures promising electrode materials for energy storage and seawater desalination. This review mainly introduces and discusses the recent research progress in MXene/TMO heterostructures, focusing on their synthetic strategies, heterointerface engineering, and applications in rechargeable batteries, capacitors, and capacitive deionization (CDI). Finally, the key challenges and prospects for the future development of the MXene/TMO heterostructures in rechargeable batteries, capacitors, and CDI are proposed.
Collapse
Affiliation(s)
- Wen Xi
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Jun Jin
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Youfang Zhang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Rui Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yansheng Gong
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Beibei He
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Huanwen Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
32
|
The Synthesis of Manganese Hydroxide Nanowire Arrays for a High-Performance Zinc-Ion Battery. NANOMATERIALS 2022; 12:nano12152514. [PMID: 35893482 PMCID: PMC9331603 DOI: 10.3390/nano12152514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023]
Abstract
The morphology, microstructure as well as the orientation of cathodic materials are the key issues when preparing high-performance aqueous zinc-ion batteries (ZIBs). In this paper, binder-free electrode Mn(OH)2 nanowire arrays were facilely synthesized via electrodeposition. The nanowires were aligned vertically on a carbon cloth. The as-prepared Mn(OH)2 nanowire arrays were used as cathode to fabricate rechargeable ZIBs. The vertically aligned configuration is beneficial to electron transport and the free space between the nanowires can provide more ion-diffusion pathways. As a result, Mn(OH)2 nanowire arrays yield a high specific capacitance of 146.3 Ma h g−1 at a current density of 0.5 A g−1. They also demonstrates ultra-high diffusion coefficients of 4.5 × 10−8~1.0 × 10−9 cm2 s−1 during charging and 1.0 × 10−9~2.7 × 10−11 cm−2 s−1 during discharging processes, which are one or two orders of magnitude higher than what is reported in the studies. Furthermore, the rechargeable Zn//Mn(OH)2 battery presents a good capacity retention of 61.1% of the initial value after 400 cycles. This study opens a new avenue to boost the electrochemical kinetics for high-performance aqueous ZIBs.
Collapse
|
33
|
Javed MS, Mateen A, Ali S, Zhang X, Hussain I, Imran M, Shah SSA, Han W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201989. [PMID: 35620957 DOI: 10.1002/smll.202201989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Indexed: 05/26/2023]
Abstract
Rechargeable zinc-ion batteries (ZIBs) with exceptional theoretical capacity have garnered significant interest in large-scale electrochemical energy storage devices due to their low cost, abundant material, inherent safety, high specific energy, and ecofriendly nature. Metal carbides/nitrides, known as MXenes, have emerged as a large family of 2D transition metal carbides or carbonitrides with excellent properties, e.g., high electrical conductivity, large surface functional groups (e.g., F, O, and OH), low energy barriers for the diffusion of electrolyte ions with wide interlayer spaces. After a decade of effort, significant development has been achieved in the synthesis, properties, and applications of MXenes. Thus, it has opened up various exciting opportunities to construct advanced MXene-based nanostructures for ZIBs with excellent specific energy and power. Herein, this review summarizes the advances across multiple synthesis routes, related properties, morphological and structural characteristics, and chemistries of MXenes for ZIBs. The recent development of MXene-based electrodes is introduced, and electrolytes for ZIBs are elucidated in detail. MXene-based rocking chair ZIBs, strategies to enhance the performance of MXene-based cathodes, suppress the dendrites in MXene-based anodes, and MXene-based flexible ZIBs are pointed out. A rational design and modification of the MXenes as well as the production of composites with metal oxides exhibits promise in solving issues and enhancing the electrochemical performance of ZIBs. Finally, the present challenges and future prospects for MXene-based ZIBs are discussed.
Collapse
Affiliation(s)
- Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Abdul Mateen
- Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100084, China
| | - Salamat Ali
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofeng Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Weihua Han
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|