1
|
Li P, Bera S, Kumar-Saxena S, Pecht I, Sheves M, Cahen D, Selzer Y. Electron transport through two interacting channels in Azurin-based solid-state junctions. Proc Natl Acad Sci U S A 2024; 121:e2405156121. [PMID: 39110736 PMCID: PMC11331140 DOI: 10.1073/pnas.2405156121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
The fundamental question of "what is the transport path of electrons through proteins?" initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metal-protein-metal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the protein's polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes' Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
Collapse
Affiliation(s)
- Ping’an Li
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| | - Sudipta Bera
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Shailendra Kumar-Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur603203, Tamil Nadu, India
| | - Israel Pecht
- Department of Regenerative Biology and Immunology, Weizmann Institute of Science, Rehovot76100, Israel
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - David Cahen
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot76100, Israel
| | - Yoram Selzer
- Department of Chemical Physics, School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
2
|
Ju H, Cheng L, Li M, Mei K, He S, Jia C, Guo X. Single-Molecule Electrical Profiling of Peptides and Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401877. [PMID: 38639403 PMCID: PMC11267281 DOI: 10.1002/advs.202401877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 04/20/2024]
Abstract
In recent decades, there has been a significant increase in the application of single-molecule electrical analysis platforms in studying proteins and peptides. These advanced analysis methods have the potential for deep investigation of enzymatic working mechanisms and accurate monitoring of dynamic changes in protein configurations, which are often challenging to achieve in ensemble measurements. In this work, the prominent research progress in peptide and protein-related studies are surveyed using electronic devices with single-molecule/single-event sensitivity, including single-molecule junctions, single-molecule field-effect transistors, and nanopores. In particular, the successful commercial application of nanopores in DNA sequencing has made it one of the most promising techniques in protein sequencing at the single-molecule level. From single peptides to protein complexes, the correlation between their electrical characteristics, structures, and biological functions is gradually being established. This enables to distinguish different molecular configurations of these biomacromolecules through real-time electrical monitoring of their life activities, significantly improving the understanding of the mechanisms underlying various life processes.
Collapse
Affiliation(s)
- Hongyu Ju
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Li Cheng
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Mengmeng Li
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Kunrong Mei
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Suhang He
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Chuancheng Jia
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
| | - Xuefeng Guo
- Center of Single‐Molecule SciencesInstitute of Modern OpticsFrontiers Science Center for New Organic MatterTianjin Key Laboratory of Microscale Optical Information Science and TechnologyCollege of Electronic Information and Optical EngineeringNankai UniversityTianjin300350P. R. China
- Beijing National Laboratory for Molecular SciencesNational Biomedical Imaging CenterCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
| |
Collapse
|
3
|
Guo J, Chen PK, Chang S. Molecular-Scale Electronics: From Individual Molecule Detection to the Application of Recognition Sensing. Anal Chem 2024; 96:9303-9316. [PMID: 38809941 DOI: 10.1021/acs.analchem.3c04656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
4
|
Dominguez-Alfaro A, Casado N, Fernandez M, Garcia-Esnaola A, Calvo J, Mantione D, Calvo MR, Cortajarena AL. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307536. [PMID: 38126666 DOI: 10.1002/smll.202307536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Poly (3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrene sulfonate (PSS) is the most used conducting polymer from energy to biomedical applications. Despite its exceptional properties, there is a need for developing new materials that can improve some of its inherent limitations, e.g., biocompatibility. In this context, doping PEDOT is propose with a robust recombinant protein with tunable properties, the consensus tetratricopeptide repeated protein (CTPR). The doping consists of an oxidative polymerization, where the PEDOT chains are stabilized by the negative charges of the CTPR protein. CTPR proteins are evaluated with three different lengths (3, 10, and 20 identical CTPR units) and optimized varied synthetic conditions. These findings revealed higher doping rate and oxidized state of the PEDOT chains when doped with the smallest scaffold (CTPR3). These PEDOT:CTPR hybrids possess ionic and electronic conductivity. Notably, PEDOT:CTPR3 displayed an electronic conductivity of 0.016 S cm-1, higher than any other reported protein-doped PEDOT. This result places PEDOT:CTPR3 at the level of PEDOT-biopolymer hybrids, and brings it closer in performance to PEDOT:PSS gold standard. Furthermore, PEDOT:CTPR3 dispersion is successfully optimized for inkjet printing, preserving its electroactivity properties after printing. This approach opens the door to the use of these novel hybrids for bioelectronics.
Collapse
Affiliation(s)
- Antonio Dominguez-Alfaro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maxence Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Andrea Garcia-Esnaola
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Javier Calvo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Daniele Mantione
- POLYMAT, University of the Basque Country UPV/EHU, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maria Reyes Calvo
- Departamento de Física Aplicada, Universidad de Alicante, Alicante, 03690, Spain
- Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Alicante, 03690, Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
5
|
Song D, Li J, Liu K, Guo J, Li H, Okulov A. Size- and Voltage-Dependent Electron Transport of C 2N-Rings-Based Molecular Chains. Molecules 2023; 28:7994. [PMID: 38138484 PMCID: PMC10745836 DOI: 10.3390/molecules28247994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
C2N-ring-based molecular chains were designed at the molecular level and theoretically demonstrated to show distinctive and valuable electron transport properties that were superior to the parent carbonaceous system and other similar nanoribbon-based molecular chains. This new -type molecular chain presented an exponential attenuation of the conductance and electron transmission with the length. Essentially, the molecular chain retained the electron-resonant tunneling within 7 nm and the dominant transport orbital was the LUMO. Shorter molecular chains with stronger conductance anomalously possessed a larger tunnel barrier energy, attributing to the compensation of a much smaller HOMO-LUMO gap, and these two internal factors codetermined the transport capacity. Some influencing factors were also studied. In contrast to the common O impurity with a tiny effect on electron transmission of the C2N rings chain, the common H impurity clearly improved it. When the temperature was less than 400 K, the electron transmission varied with temperature within a narrow range, and the structural disorder deriving from proper heating did not greatly modify the transmission possibility and the exponentially decreasing tendency with the length. In a non-equilibrium condition, the current increased overall with the bias but the growth rate varied with size. A valuable negative differential resistance (NDR) effect appeared in longer molecular chains with an even number of big carbon-nitrogen rings and strengthened with size. The emergence of such an effect originated from the reduction in transmission peaks. The conductance of longer molecular chains was enhanced with the voltage but the two shortest ones presented completely different trends. Applying the bias was demonstrated to be an effective way for C2N-ring-based molecular chains to slow down the conductance decay constant and affect the transport regime. C2N-ring-based molecular chains show a perfect application in tunneling diodes and controllable molecular devices.
Collapse
Affiliation(s)
- Dian Song
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Jie Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Kun Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Junnan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| | - Artem Okulov
- M.N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620077, Russia;
| |
Collapse
|
6
|
López-Ortiz M, Zamora RA, Giannotti MI, Gorostiza P. The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance. ACS NANO 2023; 17:20334-20344. [PMID: 37797170 DOI: 10.1021/acsnano.3c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Charge exchange is the fundamental process that sustains cellular respiration and photosynthesis by shuttling electrons in a cascade of electron transfer (ET) steps between redox cofactors. While intraprotein charge exchange is well characterized in protein complexes bearing multiple redox sites, interprotein processes are less understood due to the lack of suitable experimental approaches and the dynamic nature of the interactions. Proteins constrained between electrodes are known to support electron transport (ETp) through the protein matrix even without redox cofactors, as the charges housed by the redox sites in ET are furnished by the electrodes. However, it is unknown whether protein ETp mechanisms apply to the interprotein medium present under physiological conditions. We study interprotein charge exchange between plant photosystem I (PSI) and its soluble redox partner plastocyanin (Pc) and address the role of the Pc copper center. Using electrochemical scanning tunneling spectroscopy (ECSTS) current-distance and blinking measurements, we quantify the spatial span of charge exchange between individual Pc/PSI pairs and ETp through transient Pc/PSI complexes. Pc devoid of the redox center (Pcapo) can exchange charge with PSI at longer distances than with the copper ion (Pcholo). Conductance bursts associated with Pcapo/PSI complex formation are higher than in Pcholo/PSI. Thus, copper ions are not required for long-distance Pc/PSI ETp but regulate its spatial span and conductance. Our results suggest that the redox center that carries the charge in Pc is not necessary to exchange it in interprotein ET through the aqueous solution and question the canonical view of tight complex binding between redox protein partners.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Department of Materials Science and Physical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
- CIBER-BBN, ISCIII, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
7
|
Afsari S, Mukherjee S, Halloran N, Ghirlanda G, Ryan E, Wang X, Lindsay S. Heavy Water Reduces the Electronic Conductance of Protein Wires via Deuteron Interactions with Aromatic Residues. NANO LETTERS 2023; 23:8907-8913. [PMID: 37772726 PMCID: PMC11177565 DOI: 10.1021/acs.nanolett.3c02263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proteins are versatile, self-assembling nanoelectronic components, but their hopping conductivity is expected to be influenced by solvent fluctuations. The role of the solvent was investigated by measuring the single molecule conductance of several proteins in both H2O and D2O. The conductance of a homologous series of protein wires decreases more rapidly with length in D2O, indicating a 6-fold decrease in carrier diffusion constant relative to the same protein in H2O. The effect was found to depend on the specific aromatic amino acid composition. A tryptophan zipper protein showed a decrease in conductance similar to that of the protein wires, whereas a phenylalanine zipper protein was insensitive to solvent changes. Tryptophan contains an indole amine, whereas the phenylalanine aromatic ring has no exchangeable protons, so the effect of heavy water on conductance is a consequence of specific D- or H-interactions with the aromatic residues.
Collapse
Affiliation(s)
- Sepideh Afsari
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Sohini Mukherjee
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Nicholas Halloran
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
| | - Stuart Lindsay
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287
- Department of Physics, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
8
|
Krishnan S, Aksimentiev A, Lindsay S, Matyushov D. Long-Range Conductivity in Proteins Mediated by Aromatic Residues. ACS PHYSICAL CHEMISTRY AU 2023; 3:444-455. [PMID: 37780537 PMCID: PMC10540285 DOI: 10.1021/acsphyschemau.3c00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 09/30/2023]
Abstract
Single-molecule measurements show that many proteins, lacking any redox cofactors, nonetheless exhibit electrical conductance on the order of a nanosiemen over 10 nm distances, implying that electrons can transit an entire protein in less than a nanosecond when subject to a potential difference of less than 1 V. This is puzzling because, for fast transport (i.e., a free energy barrier of zero), the hopping rate is determined by the reorganization energy of approximately 0.8 eV, and this sets the time scale of a single hop to at least 1 μs. Furthermore, the Fermi energies of typical metal electrodes are far removed from the energies required for sequential oxidation and reduction of the aromatic residues of the protein, which should further reduce the hopping current. Here, we combine all-atom molecular dynamics (MD) simulations of non-redox-active proteins (consensus tetratricopeptide repeats) with an electron transfer theory to demonstrate a molecular mechanism that can account for the unexpectedly fast electron transport. According to our MD simulations, the reorganization energy produced by the energy shift on charging (the Stokes shift) is close to the conventional value of 0.8 eV. However, the non-ergodic sampling of molecular configurations by the protein results in reaction-reorganization energies, extracted directly from the distribution of the electrostatic energy fluctuations, that are only ∼0.2 eV, which is small enough to enable long-range conductivity, without invoking quantum coherent transport. Using the MD values of the reorganization energies, we calculate a current decay with distance that is in agreement with experiment.
Collapse
Affiliation(s)
- Siddharth Krishnan
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department
of Physics and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stuart Lindsay
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign
Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Dmitry Matyushov
- Department
of Physics, Arizona State University, Tempe, Arizona 85281, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
9
|
Abstract
Extracellular electron transfer (EET) is the physiological process that enables the reduction or oxidation of molecules and minerals beyond the surface of a microbial cell. The first bacteria characterized with this capability were Shewanella and Geobacter, both reported to couple their growth to the reduction of iron or manganese oxide minerals located extracellularly. A key difference between EET and nearly every other respiratory activity on Earth is the need to transfer electrons beyond the cell membrane. The past decade has resolved how well-conserved strategies conduct electrons from the inner membrane to the outer surface. However, recent data suggest a much wider and less well understood collection of mechanisms enabling electron transfer to distant acceptors. This review reflects the current state of knowledge from Shewanella and Geobacter, specifically focusing on transfer across the outer membrane and beyond-an activity that enables reduction of highly variable minerals, electrodes, and even other organisms.
Collapse
Affiliation(s)
- J A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| | - D R Bond
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA; ,
| |
Collapse
|
10
|
Jiang T, Zeng BF, Zhang B, Tang L. Single-molecular protein-based bioelectronics via electronic transport: fundamentals, devices and applications. Chem Soc Rev 2023; 52:5968-6002. [PMID: 37498342 DOI: 10.1039/d2cs00519k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Biomolecular electronics is a rapidly growing multidisciplinary field that combines biology, nanoscience, and engineering to bridge the two important fields of life sciences and molecular electronics. Proteins are remarkable for their ability to recognize molecules and transport electrons, making the integration of proteins into electronic devices a long sought-after goal and leading to the emergence of the field of protein-based bioelectronics, also known as proteotronics. This field seeks to design and create new biomolecular electronic platforms that allow for the understanding and manipulation of protein-mediated electronic charge transport and related functional applications. In recent decades, there have been numerous reports on protein-based bioelectronics using a variety of nano-gapped electrical devices and techniques at the single molecular level, which are not achievable with conventional ensemble approaches. This review focuses on recent advances in physical electron transport mechanisms, device fabrication methodologies, and various applications in protein-based bioelectronics. We discuss the most recent progress of the single or few protein-bridged electrical junction fabrication strategies, summarise the work on fundamental and functional applications of protein bioelectronics that enable high and dynamic electron transport, and highlight future perspectives and challenges that still need to be addressed. We believe that this specific review will stimulate the interdisciplinary research of topics related to protein-related bioelectronics, and open up new possibilities for single-molecule biophysics and biomedicine.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Biao-Feng Zeng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bintian Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Quantum Sensing, Interdisciplinary Centre for Quantum Information, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Mostajabi Sarhangi S, Matyushov DV. Electron Tunneling in Biology: When Does it Matter? ACS OMEGA 2023; 8:27355-27365. [PMID: 37546584 PMCID: PMC10399179 DOI: 10.1021/acsomega.3c02719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Electrons can tunnel between cofactor molecules positioned along biological electron transport chains up to a distance of ≃ 20 Å on the millisecond time scale of enzymatic turnover. This tunneling range determines the design of biological energy chains facilitating the cross-membrane transport of electrons. Tunneling distance and cofactors' redox potentials become the main physical parameters affecting the rate of electron transport. In addition, universal charge-transport properties are assigned to all proteins, making protein identity, flexibility, and dynamics insignificant. This paradigm is challenged by dynamical models of electron transfer, showing that the electron hopping rate is constant within the crossover distance R* ≃ 12 Å, followed with an exponential falloff at longer distances. If this hypothesis is fully confirmed, natural and man-made energy chains for electron transport should be best designed by placing redox cofactors near the crossover distance R*. Protein flexibility and dynamics affect the magnitude of the maximum hopping rate within the crossover distance. Changes in protein flexibility between forward and backward transitions contribute to vectorial charge transport. For biological energy chains, charge transport through proteins is not defined by universal parameters, and protein identity matters.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- School of Molecular Sciences and Department
of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United
States
| | - Dmitry V. Matyushov
- School of Molecular Sciences and Department
of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United
States
| |
Collapse
|
12
|
Kontkanen OV, Biriukov D, Futera Z. Applicability of perturbed matrix method for charge transfer studies at bio/metallic interfaces: a case of azurin. Phys Chem Chem Phys 2023; 25:12479-12489. [PMID: 37097130 DOI: 10.1039/d3cp00197k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
As the field of nanoelectronics based on biomolecules such as peptides and proteins rapidly grows, there is a need for robust computational methods able to reliably predict charge transfer properties at bio/metallic interfaces. Traditionally, hybrid quantum-mechanical/molecular-mechanical techniques are employed for systems where the electron hopping transfer mechanism is applicable to determine physical parameters controlling the thermodynamics and kinetics of charge transfer processes. However, these approaches are limited by a relatively high computational cost when extensive sampling of a configurational space is required, like in the case of soft biomatter. For these applications, semi-empirical approaches such as the perturbed matrix method (PMM) have been developed and successfully used to study charge-transfer processes in biomolecules. Here, we explore the performance of PMM on prototypical redox-active protein azurin in various environments, from solution to vacuum interfaces with gold surfaces and protein junction. We systematically benchmarked the robustness and convergence of the method with respect to the quantum-centre size, size of the Hamiltonian, number of samples, and level of theory. We show that PMM can adequately capture all the trends associated with the structural and electronic changes related to azurin oxidation at bio/metallic interfaces.
Collapse
Affiliation(s)
- Outi Vilhelmiina Kontkanen
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Denys Biriukov
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Zdenek Futera
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
13
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
14
|
Sarhangi SM, Matyushov DV. Theory of Protein Charge Transfer: Electron Transfer between Tryptophan Residue and Active Site of Azurin. J Phys Chem B 2022; 126:10360-10373. [PMID: 36459590 DOI: 10.1021/acs.jpcb.2c05258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
One reaction step in the conductivity relay of azurin, electron transfer between the Cu-based active site and the tryptophan residue, is studied theoretically and by classical molecular dynamics simulations. Oxidation of tryptophan results in electrowetting of this residue. This structural change makes the free energy surfaces of electron transfer nonparabolic as described by the Q-model of electron transfer. We analyze the medium dynamical effect on protein electron transfer produced by coupled Stokes-shift dynamics and the dynamics of the donor-acceptor distance modulating electron tunneling. The equilibrium donor-acceptor distance falls in the plateau region of the rate constant, where it is determined by the protein-water dynamics, and the probability of electron tunneling does not affect the rate. The crossover distance found here puts most intraprotein electron-transfer reactions under the umbrella of dynamical control. The crossover between the medium-controlled and tunneling-controlled kinetics is combined with the effect of the protein-water medium on the activation barrier to formulate principles of tunability of protein-based charge-transfer chains. The main principle in optimizing the activation barrier is the departure from the Gaussian-Gibbsian statistics of fluctuations promoting activated transitions. This is achieved either by incomplete (nonergodic) sampling, breaking the link between the Stokes-shift and variance reorganization energies, or through wetting-induced structural changes of the enzyme's active site.
Collapse
Affiliation(s)
- Setare Mostajabi Sarhangi
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| | - Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona85287-1504, United States
| |
Collapse
|
15
|
Hall DA, Ananthapadmanabhan N, Choi C, Zheng L, Pan PP, Von Jutrzenka C, Nguyen T, Rizo J, Weinstein M, Lobaton R, Sinha P, Sauerbrey T, Sigala C, Bailey K, Mudondo PJ, Chaudhuri AR, Severi S, Fuller CW, Tour JM, Jin S, Mola PW, Merriman B. A Scalable CMOS Molecular Electronics Chip for Single-Molecule Biosensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1030-1043. [PMID: 36191107 DOI: 10.1109/tbcas.2022.3211420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This work reports the first CMOS molecular electronics chip. It is configured as a biosensor, where the primary sensing element is a single molecule "molecular wire" consisting of a ∼100 GΩ, 25 nm long alpha-helical peptide integrated into a current monitoring circuit. The engineered peptide contains a central conjugation site for attachment of various probe molecules, such as DNA, proteins, enzymes, or antibodies, which program the biosensor to detect interactions with a specific target molecule. The current through the molecular wire under a dc applied voltage is monitored with millisecond temporal resolution. The detected signals are millisecond-scale, picoampere current pulses generated by each transient probe-target molecular interaction. Implemented in a 0.18 μm CMOS technology, 16k sensors are arrayed with a 20 μm pitch and read out at a 1 kHz frame rate. The resulting biosensor chip provides direct, real-time observation of the single-molecule interaction kinetics, unlike classical biosensors that measure ensemble averages of such events. This molecular electronics chip provides a platform for putting molecular biosensing "on-chip" to bring the power of semiconductor chips to diverse applications in biological research, diagnostics, sequencing, proteomics, drug discovery, and environmental monitoring.
Collapse
|
16
|
Dahl PJ, Yi SM, Gu Y, Acharya A, Shipps C, Neu J, O’Brien JP, Morzan UN, Chaudhuri S, Guberman-Pfeffer MJ, Vu D, Yalcin SE, Batista VS, Malvankar NS. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. SCIENCE ADVANCES 2022; 8:eabm7193. [PMID: 35544567 PMCID: PMC9094664 DOI: 10.1126/sciadv.abm7193] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/28/2022] [Indexed: 06/10/2023]
Abstract
Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.
Collapse
Affiliation(s)
- Peter J. Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Sophia M. Yi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Yangqi Gu
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Atanu Acharya
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Catharine Shipps
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Jens Neu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - J. Patrick O’Brien
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Uriel N. Morzan
- Department of Chemistry, Yale University, New Haven, CT, USA
| | | | - Matthew J. Guberman-Pfeffer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Dennis Vu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| | | | - Nikhil S. Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Shapiro DM, Mandava G, Yalcin SE, Arranz-Gibert P, Dahl PJ, Shipps C, Gu Y, Srikanth V, Salazar-Morales AI, O'Brien JP, Vanderschuren K, Vu D, Batista VS, Malvankar NS, Isaacs FJ. Protein nanowires with tunable functionality and programmable self-assembly using sequence-controlled synthesis. Nat Commun 2022; 13:829. [PMID: 35149672 PMCID: PMC8837800 DOI: 10.1038/s41467-022-28206-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis. Bacterial hairs called pili become highly-conductive electric wires upon addition of both natural and synthetic amino acids conjugated with gold nanoparticles. Here the authors use computationally-guided ordering further increasing their conductivity, thus yielding genetically-programmable materials.
Collapse
Affiliation(s)
- Daniel Mark Shapiro
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Gunasheil Mandava
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Sibel Ebru Yalcin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Pol Arranz-Gibert
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Catharine Shipps
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Yangqi Gu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Aldo I Salazar-Morales
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - J Patrick O'Brien
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Koen Vanderschuren
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA.,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Dennis Vu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06520, USA. .,Systems Biology Institute, Yale University, West Haven, CT, 06516, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|