1
|
Song X, Udani S, Ouyang M, Sahin MA, Di Carlo D, Destgeer G. Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411014. [PMID: 39716940 DOI: 10.1002/advs.202411014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated. Three dimensional computational fluid dynamics simulations predict droplet formation dynamics and differing equilibrium conditions depending on the patterning configuration. Experiments recapitulate equilibrium conditions, enabling tunable dropicle configurations with reproducible volumes down to ≈200 pL templated by the amphiphilic particles. The dropicle configurations depend predominantly on the size of the hydrophilic patches of the 4C particles. This validates that the modeling approach can inform the design of dropicles with varying volumes and numbers per particle, which can be harnessed in new amplified bioassays for greater sensitivity, dynamic range, and statistical confidence.
Collapse
Affiliation(s)
- Xinpei Song
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Shreya Udani
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mengxing Ouyang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
2
|
Wei Y, Zhang F, Li J, Qi Z, Wang JH, Wang Z. Composition Tuning of Semi-Open Cell Carriers via Phase Freeze-Shrink Self-Molding. ACS NANO 2024; 18:26872-26881. [PMID: 39299910 DOI: 10.1021/acsnano.4c08148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Extracellular matrix (ECM)-mimicking microsized cell carriers featuring a semi-isolated chamber facilitate the study of cellular heterogeneity as well as intercellular communication. However, the semiopen shaping of the designated gel mixture remains unattainable with current methods. We report an oil-phase freeze-shrink self-molding mechanism for generating size- and composition-tunable cradle-shaped microgels (microcradles) from water-in-oil droplets. The universality of this shape transition principle is demonstrated with six types of polysaccharides dispersed in a poly(ethylene glycol) diacrylate (PEGDA) or methacrylate gelatin (GelMA) matrix. By doping the microcradles with the major ECM component, hyaluronic acid sodium, we demonstrate a label-free selective culture of CD44 receptor-rich cells and the formation of cell spheroids within 3 days. This cryo-induced cradle-shaping strategy enables the functionalization of microcarriers for selective cell culture, thereby allowing them to be used for intercellular communication, drug delivery, and the construction of structural units for osteogenesis and 3D printing.
Collapse
Affiliation(s)
- Yanan Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fei Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiaqi Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zhijie Qi
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
3
|
Tang RC, Shang L, Scumpia PO, Di Carlo D. Injectable Microporous Annealed Crescent-Shaped (MAC) Particle Hydrogel Scaffold for Enhanced Cell Infiltration. Adv Healthc Mater 2024; 13:e2302477. [PMID: 37985462 PMCID: PMC11102933 DOI: 10.1002/adhm.202302477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/10/2023] [Indexed: 11/22/2023]
Abstract
Hydrogels are widely used for tissue engineering applications to support cellular growth, yet the tightly woven structure often restricts cell infiltration and expansion. Consequently, granular hydrogels with microporous architectures have emerged as a new class of biomaterial. Particularly, the development of microporous annealed particle (MAP) hydrogel scaffolds has shown improved stability and integration with host tissue. However, the predominant use of spherically shaped particles limits scaffold porosity, potentially limiting the level of cell infiltration. Here, a novel microporous annealed crescent-shaped particle (MAC) scaffold that is predicted to have improved porosity and pore interconnectivity in silico is presented. With microfluidic fabrication, tunable cavity sizes that optimize interstitial void space features are achieved. In vitro, cells incorporated into MAC scaffolds form extensive 3D multicellular networks. In vivo, the injectable MAC scaffold significantly enhances cell infiltration compared to spherical MAP scaffolds, resulting in increased numbers of myofibroblasts and leukocytes present within the gel without relying on external biomolecular chemoattractants. The results shed light on the critical role of particle shape in cell recruitment, laying the foundation for MAC scaffolds as a next-generation granular hydrogel for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Rui-Chian Tang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lily Shang
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine David Geffen School of Medicine University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Dermatology, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California Nano Systems Institute (CNSI) University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Lee KCM, Chung BMF, Siu DMD, Ho SCK, Ng DKH, Tsia KK. Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particle filtration and analysis. LAB ON A CHIP 2024; 24:4182-4197. [PMID: 39101363 DOI: 10.1039/d4lc00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF). This new method minimizes particle size-dependent dispersion while maintaining the high throughput and precision of standard inertial focusing, even in a highly polydisperse scenario. We demonstrate a rule-of-thumb principle to reinvent an inertial focusing system and achieve an efficient focusing of particles ranging from 6 to 30 μm in diameter onto a single plane with less than 3 μm variance and over 95% focusing efficiency at highly scalable throughput (2.4-30 mL h-1) - a stark contrast to existing technologies that struggle with polydispersity. We demonstrated that DIF could be applied in a broad range of applications, particularly enabling high-yield continuous microparticle filtration and large-scale high-resolution single-cell morphological analysis of heterogeneous cell populations. This new technique is also readily compatible with the existing inertial microfluidic design and thus could unleash more diverse systems and applications.
Collapse
Affiliation(s)
- Kelvin C M Lee
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Bob M F Chung
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Dickson M D Siu
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Sam C K Ho
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Daniel K H Ng
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
| | - Kevin K Tsia
- The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| |
Collapse
|
5
|
Challa D, de Rutte J, Konu C, Udani S, Liang J, Krohl PJ, Rondon R, Bondensgaard K, Di Carlo D, Watkins-Yoon J. Function-first discovery of high affinity monoclonal antibodies using Nanovial-based plasma B cell screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608174. [PMID: 39229089 PMCID: PMC11370415 DOI: 10.1101/2024.08.15.608174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Antibody discovery technologies, essential for research and therapeutic applications, have evolved significantly since the development of hybridoma technology. Various in vitro (display) and in vivo (animal immunization and B cell-sequencing) workflows have led to the discovery of antibodies against diverse antigens. Despite this success, standard display and B-cell sequencing-based technologies are limited to targets that can be produced in a soluble form. This limitation inhibits the screening of function-inducing antibodies, which require the target to be expressed in cells to monitor function or signaling, and antibodies targeting proteins that maintain their physiological structure only when expressed on cell membranes, such as G-protein coupled receptors (GPCRs). A high-throughput two-cell screening workflow, which localizes an antibody-secreting cell (ASC) and a cell expressing the target protein in a microenvironment, can overcome these challenges. To make function-first plasma cell-based antibody discovery accessible and scalable, we developed hydrogel Nanovials that can capture single plasma cells, target-expressing cells, and plasma cell secretions (antibodies). The detection and isolation of Nanovials harboring the antigen-specific plasma cells are then carried out using a flow cytometry cell sorter - an instrument that is available in most academic centers and biopharmaceutical companies. The antibody discovery workflow employing Nanovials was first validated in the context of two different cell membrane-associated antigens produced in recombinant form. We analyzed over 40,000 plasma cells over two campaigns and were able to identify a diversity of binders that i) exhibited high affinity (picomolar) binding, ii) targeted multiple non-overlapping epitopes and iii) demonstrated high developability scores. A campaign using the two-cell assay targeting the immune checkpoint membrane protein PD-1 yielded cell binders with similar EC50s to clinically used Pembrolizumab and Nivolumab. The highest selectivity for binders was observed for sorted events corresponding with the highest signal bound to target cells on Nanovials. Overall, Nanovials can provide a strong foundation for function-first antibody discovery, yielding direct cell binding information and quantitative data on prioritization of hits with flexibility for additional functional readouts in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dino Di Carlo
- Partillion Bioscience Corporation
- University of California, Los Angeles
| | | |
Collapse
|
6
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
7
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Liu J, Yang M, Chen F, Huang C, Xu X, Zhang F, Chen Y. Preparation of immunomagnetic composite nanostructures with bifunctional four-arm PEG derivatives as linkers for the ultrafast enrichment of zearalenone and its metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134321. [PMID: 38723478 DOI: 10.1016/j.jhazmat.2024.134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/30/2024]
Abstract
It is challenging to prepare sample pretreatment materials with simple use, strong selectivity and satisfactory enrichment performance. In this study, the antibody (3D4) that can specifically recognize zearalenone (ZEN) and its metabolites was immobilized on the surface of gold-coated magnetic Fe3O4 nanoparticles (GMN) by streptavidin (SA)-biotin interaction using GMN as the substrate and our designed four-arm PEG derivative (HS-4ARMPEG10K-(CM)3) as the linker. The immunomagnetic nanoparticles (GMN-4ARMPEG10K-SA-3D4) prepared by this strategy can achieve rapid enrichment (only 5 min) of analytes directly in the matrix, and higher enrichment capacity compared with the previous immunomagnetic particles. The sensitive and accurate analysis of ZEN and its metabolites can be achieved coupled with HPLC-MS/MS. The LODs and LOQs were 0.02-0.05 μg/kg and 0.05-0.10 μg/kg, respectively. The recoveries were 84.13%-112.67%, and the RSDs were 1.09%-9.39%. The method can provide a powerful tool for highly sensitive and rapid monitoring of mycotoxins in complex matrices due to its' strong selectivity and resistance to matrix interference.
Collapse
Affiliation(s)
- Jiawei Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Chenxi Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China.
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Wulandari DA, Tsuru K, Minamihata K, Wakabayashi R, Egami G, Kawabe Y, Kamihira M, Goto M, Kamiya N. Design and validation of functionalized redox-responsive hydrogel beads for high-throughput screening of antibody-secreting mammalian cells. J Biosci Bioeng 2024; 138:89-95. [PMID: 38644063 DOI: 10.1016/j.jbiosc.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024]
Abstract
Antibody drugs play a vital role in diagnostics and therapy. However, producing antibodies from mammalian cells is challenging owing to cellular heterogeneity, which can be addressed by applying droplet-based microfluidic platforms for high-throughput screening (HTS). Here, we designed an integrated system based on disulfide-bonded redox-responsive hydrogel beads (redox-HBs), which were prepared through enzymatic hydrogelation, to compartmentalize, screen, select, retrieve, and recover selected Chinese hamster ovary (CHO) cells secreting high levels of antibodies. Moreover, redox-HBs were functionalized with protein G as an antibody-binding module to capture antibodies secreted from encapsulated cells. As proof-of-concept, cells co-producing immunoglobulin G (IgG) as the antibody and green fluorescent protein (GFP) as the reporter molecule, denoted as CHO(IgG/GFP), were encapsulated into functionalized redox-HBs. Additionally, antibody-secreting cells were labeled with protein L-conjugated horseradish peroxidase using a tyramide amplification system, enabling fluorescence staining of the antibody captured inside the beads. Redox-HBs were then applied to fluorescence-activated droplet sorting, and selected redox-HBs were degraded by reducing the disulfide bonds to recover the target cells. The results indicated the potential of the developed HTS platform for selecting a single cell viable for biopharmaceutical production.
Collapse
Affiliation(s)
- Diah Anggraini Wulandari
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyosuke Tsuru
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Go Egami
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
10
|
Yang Y, Vagin SI, Rieger B, Destgeer G. Fabrication of Crescent Shaped Microparticles for Particle Templated Droplet Formation. Macromol Rapid Commun 2024; 45:e2300721. [PMID: 38615246 DOI: 10.1002/marc.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Crescent-shaped hydrogel microparticles are shown to template uniform volume aqueous droplets upon simple mixing with aqueous and oil media for various bioassays. This emerging "lab on a particle" technique requires hydrogel particles with tunable material properties and dimensions. The crescent shape of the particles is attained by aqueous two-phase separation of polymers followed by photopolymerization of the curable precursor. In this work, the phase separation of poly(ethylene glycol) diacrylate (PEGDA, Mw 700) and dextran (Mw 40 000) for tunable manufacturing of crescent-shaped particles is investigated. The particles' morphology is precisely tuned by following a phase diagram, varying the UV intensity, and adjusting the flow rates of various streams. The fabricated particles with variable dimensions encapsulate uniform aqueous droplets upon mixing with an oil phase. The particles are fluorescently labeled with red and blue emitting dyes at variable concentrations to produce six color-coded particles. The blue fluorescent dye shows a moderate response to the pH change. The fluorescently labeled particles are able to tolerate an extremely acidic solution (pH 1) but disintegrate within an extremely basic solution (pH 14). The particle-templated droplets are able to effectively retain the disintegrating particle and the fluorescent signal at pH 14.
Collapse
Affiliation(s)
- Yimin Yang
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, TUM School of Computation, Information and Technology, TranslaTUM - Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| | - Sergei I Vagin
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Department of Electrical Engineering, TUM School of Computation, Information and Technology, TranslaTUM - Center for Translational Cancer Research, Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany
| |
Collapse
|
11
|
Koo D, Cheng X, Udani S, Baghdasarian S, Zhu D, Li J, Hall B, Tsubamoto N, Hu S, Ko J, Cheng K, Di Carlo D. Optimizing cell therapy by sorting cells with high extracellular vesicle secretion. Nat Commun 2024; 15:4870. [PMID: 38849333 PMCID: PMC11161503 DOI: 10.1038/s41467-024-49123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27607, USA
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sevana Baghdasarian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dashuai Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | | | - Brian Hall
- Cytek Biosciences, Fremont, CA, 94538, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiqi Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Jina Ko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY, 10032, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
Brandi C, De Ninno A, Ruggiero F, Limiti E, Abbruzzese F, Trombetta M, Rainer A, Bisegna P, Caselli F. On the compatibility of single-cell microcarriers (nanovials) with microfluidic impedance cytometry. LAB ON A CHIP 2024; 24:2883-2892. [PMID: 38717432 DOI: 10.1039/d4lc00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We investigate for the first time the compatibility of nanovials with microfluidic impedance cytometry (MIC). Nanovials are suspendable crescent-shaped single-cell microcarriers that enable specific cell adhesion, the creation of compartments for undisturbed cell growth and secretion, as well as protection against wall shear stress. MIC is a label-free single-cell technique that characterizes flowing cells based on their electrical fingerprints and it is especially targeted to cells that are naturally in suspension. Combining nanovial technology with MIC is intriguing as it would represent a robust framework for the electrical analysis of single adherent cells at high throughput. Here, as a proof-of-concept, we report the MIC analysis of mesenchymal stromal cells loaded in nanovials. The electrical analysis is supported by numerical simulations and validated by means of optical analysis. We demonstrate that the electrical diameter can discriminate among free cells, empty nanovials, cell-loaded nanovials, and clusters, thus grounding the foundation for the use of nanovials in MIC. Furthermore, we investigate the potentiality of MIC to assess the electrical phenotype of cells loaded in nanovials and we draw directions for future studies.
Collapse
Affiliation(s)
- Cristian Brandi
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Adele De Ninno
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Filippo Ruggiero
- Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy
| | - Emanuele Limiti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Franca Abbruzzese
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Marcella Trombetta
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128, Rome, Italy
- National Research Council - Institute of Nanotechnology (CNR-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| | - Paolo Bisegna
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| | - Federica Caselli
- Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
13
|
Liu J, Yang M, Chen F, Xu X, Chen Y, Zhang F. A Novel Multiarmed Bifunctional PEG Derivative for the Preparation of Mass Spectrometry Ion Sources with Antifouling Property and High Selectivity. Anal Chem 2024; 96:8484-8491. [PMID: 38753368 DOI: 10.1021/acs.analchem.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It is challenging to prepare a highly selective mass spectrometry (MS) ion source for the rapid and highly sensitive detection of analytes, especially mycotoxins. In this study, an amino and tetrazine bifunctionalized multiarm PEG derivative (NH2HCl-4armPEG10K-(MTz)3), which can be easily immobilized on the substrate by the addition reaction between amino and polydopamine, was used for the preparation of MS ionization substrate. NH2HCl-4armPEG10K-(MTz)3 can also be used as a linker to immobilize sufficient streptavidin (SA) on the surface of the substrate by a click reaction. The process further promotes the immobilization of broad-spectrum antibodies (3D4), which were used as the recognition element for ZEN and its metabolites. The prepared SSS-Au-PDA-4armPEG10K-SA-3D4 not only can rapidly enrich ZEN and its metabolites with high selectivity but also shows good antifouling properties in the matrix. After simple sample preparation, the prepared SSS-Au-PDA-4armPEG10K-SA-3D4 can be directly coupled with MS to achieve high sensitivity (LODs: 0.18-0.66 ng/mL, LOQs: 0.5-1.0 ng/mL) and selective detection of ZEN and its metabolites in the matrix. At the same time, satisfactory recoveries (83.60-97.80%) and precision (RSD: 2.80-9.10%) can also be obtained. The prepared SSS-Au-PDA-4armPEG10K-SA-3D4 is expected to provide a powerful tool for the rapid and highly sensitive determination of multiple targets by MS.
Collapse
Affiliation(s)
- Jiawei Liu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Fengming Chen
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Xiuli Xu
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection & Quarantine, Beijing 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing 100176, China
| |
Collapse
|
14
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
15
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-Throughput Single-Cell, Single-Mitochondrial DNA Assay Using Hydrogel Droplet Microfluidics. Angew Chem Int Ed Engl 2024; 63:e202401544. [PMID: 38470412 DOI: 10.1002/anie.202401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and heteroplasmy of mitochondrial DNA (mtDNA), but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95 % mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single-mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Parnika S Kadam
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Yasemin Atiyas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Bonirath Chhay
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - James H Eberwine
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
16
|
Koo D, Mao Z, Dimatteo R, Noguchi M, Tsubamoto N, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Burton Sojo G, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based binding and functional screening. Proc Natl Acad Sci U S A 2024; 121:e2320442121. [PMID: 38536748 PMCID: PMC10998554 DOI: 10.1073/pnas.2320442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, Los Angeles, CA90095
| |
Collapse
|
17
|
Li X, Zhao D, Wang Y, Huang H. Droplet-based cell-laden microgels for high-throughput analysis. Trends Biotechnol 2024; 42:397-401. [PMID: 37953082 DOI: 10.1016/j.tibtech.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
Cell-laden droplet microfluidics has revolutionized bulk biochemical analysis by offering compartmentalized microreactors for individual cells, but downstream operations of regular aqueous droplets are limited. Hydrogel matrix can provide a rigid scaffold for long-term culture of eukaryotic and prokaryotic cells, and can support several manipulations, facilitating subsequent high-throughput analysis of cellular heterogeneity.
Collapse
Affiliation(s)
- Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
18
|
Zhang T, Di Carlo D, Lim CT, Zhou T, Tian G, Tang T, Shen AQ, Li W, Li M, Yang Y, Goda K, Yan R, Lei C, Hosokawa Y, Yalikun Y. Passive microfluidic devices for cell separation. Biotechnol Adv 2024; 71:108317. [PMID: 38220118 DOI: 10.1016/j.biotechadv.2024.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.
Collapse
Affiliation(s)
- Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Tianyuan Zhou
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guizhong Tian
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Tao Tang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ming Li
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Yang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Ruopeng Yan
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Cheng Lei
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| |
Collapse
|
19
|
Schlotheuber LJ, Lüchtefeld I, Eyer K. Antibodies, repertoires and microdevices in antibody discovery and characterization. LAB ON A CHIP 2024; 24:1207-1225. [PMID: 38165819 PMCID: PMC10898418 DOI: 10.1039/d3lc00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/01/2023] [Indexed: 01/04/2024]
Abstract
Therapeutic antibodies are paramount in treating a wide range of diseases, particularly in auto-immunity, inflammation and cancer, and novel antibody candidates recognizing a vast array of novel antigens are needed to expand the usefulness and applications of these powerful molecules. Microdevices play an essential role in this challenging endeavor at various stages since many general requirements of the overall process overlap nicely with the general advantages of microfluidics. Therefore, microfluidic devices are rapidly taking over various steps in the process of new candidate isolation, such as antibody characterization and discovery workflows. Such technologies can allow for vast improvements in time-lines and incorporate conservative antibody stability and characterization assays, but most prominently screenings and functional characterization within integrated workflows due to high throughput and standardized workflows. First, we aim to provide an overview of the challenges of developing new therapeutic candidates, their repertoires and requirements. Afterward, this review focuses on the discovery of antibodies using microfluidic systems, technological aspects of micro devices and small-scale antibody protein characterization and selection, as well as their integration and implementation into antibody discovery workflows. We close with future developments in microfluidic detection and antibody isolation principles and the field in general.
Collapse
Affiliation(s)
- Luca Johannes Schlotheuber
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| | - Ines Lüchtefeld
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
- ETH Laboratory for Tumor and Stem Cell Dynamics, Institute of Molecular Health Sciences, D-BIOL, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
20
|
Feng X, Qi F, Wang H, Li W, Gan Y, Qi C, Lin Z, Chen L, Wang P, Hu Z, Miao Y. Sorting Technology for Mesenchymal Stem Cells from a Single Tissue Source. Stem Cell Rev Rep 2024; 20:524-537. [PMID: 38112926 DOI: 10.1007/s12015-023-10635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2023] [Indexed: 12/21/2023]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be obtained, enriched and proliferated in vitro. They owned enormous potential in fields like regenerative medicine, tissue engineering and immunomodulation. However, though isolated from the same origin, MSCs are still essentially heterogeneous cell populations with different phenotypes and functions. This heterogeneity of MSCs significantly affects their therapeutic efficacy and brings obstacles to scientific research. Thus, reliable sorting technology which can isolate or purify MSC subpopulations with various potential and differentiation pathways is urgently needed. This review summarized principles, application status and clinical implications for these sorting methods, aiming at improving the understanding of MSC heterogeneity as well as providing fresh perspectives for subsequent clinical applications.
Collapse
Affiliation(s)
- Xinyi Feng
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Fangfang Qi
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenzhen Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yuyang Gan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Caiyu Qi
- The First Clinical School of Southern Medical University, Guangzhou, China
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Piao Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Li Y, Li W, Chen J, Qiu S, Liu Y, Xu L, Tian T, Li JP. Deciphering single-cell protein secretion and gene expressions by constructing cell-antibody conjugates. Bioorg Chem 2024; 143:106987. [PMID: 38039927 DOI: 10.1016/j.bioorg.2023.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023]
Abstract
Secreted proteins play critical roles in regulating immune responses, exerting cytotoxic effects on tumor cells, promoting inflammatory processes, and influencing cellular metabolism. Deciphering the intricate relationship between the heterogeneity of secreted proteins and their transcriptional states is pivotal in the study of cellular heterogeneity. Here we proposed a cell-antibody conjugate-based sequencing methodology (Cellab-seq) for joint characterization of secreted proteins and transcriptome. Cellab-seq utilizes a chemoenzymatic strategy to construct cell-antibody conjugates, which enables the capture of secreted proteins and their signal transduction with the incorporation of barcode detection antibodies. We applied Cellab-seq to investigate how gene expression influences the activity of secreted proteins in NK cells. Altogether, this strategy facilitates a nuanced understanding of cellular dynamics under diverse physiological conditions, ultimately contributing to the prevention, diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yachao Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Wannan Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Jiashang Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Shuang Qiu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Yilong Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Lingjie Xu
- Vazyme Biotech, Red Maple Hi-tech Industry Park, Kechuang Road, Qixia District, Nanjing, Jiangsu 210023, China
| | - Tian Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| | - Jie P Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
22
|
Park J, Kadam PS, Atiyas Y, Chhay B, Tsourkas A, Eberwine JH, Issadore DA. High-throughput single-cell, single-mitochondrial DNA assay using hydrogel droplet microfluidics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577854. [PMID: 38352577 PMCID: PMC10862758 DOI: 10.1101/2024.01.29.577854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
There is growing interest in understanding the biological implications of single cell heterogeneity and intracellular heteroplasmy of mtDNA, but current methodologies for single-cell mtDNA analysis limit the scale of analysis to small cell populations. Although droplet microfluidics have increased the throughput of single-cell genomic, RNA, and protein analysis, their application to sub-cellular organelle analysis has remained a largely unsolved challenge. Here, we introduce an agarose-based droplet microfluidic approach for single-cell, single-mtDNA analysis, which allows simultaneous processing of hundreds of individual mtDNA molecules within >10,000 individual cells. Our microfluidic chip encapsulates individual cells in agarose beads, designed to have a sufficiently dense hydrogel network to retain mtDNA after lysis and provide a robust scaffold for subsequent multi-step processing and analysis. To mitigate the impact of the high viscosity of agarose required for mtDNA retention on the throughput of microfluidics, we developed a parallelized device, successfully achieving ~95% mtDNA retention from single cells within our microbeads at >700,000 drops/minute. To demonstrate utility, we analyzed specific regions of the single mtDNA using a multiplexed rolling circle amplification (RCA) assay. We demonstrated compatibility with both microscopy, for digital counting of individual RCA products, and flow cytometry for higher throughput analysis.
Collapse
|
23
|
Wulandari DA, Tsuru K, Minamihata K, Wakabayashi R, Goto M, Kamiya N. A Functional Hydrogel Bead-Based High-Throughput Screening System for Mammalian Cells with Enhanced Secretion of Therapeutic Antibodies. ACS Biomater Sci Eng 2024; 10:628-636. [PMID: 38048166 DOI: 10.1021/acsbiomaterials.3c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Droplet-based high-throughput screening systems are an emerging technology that provides a quick test to screen millions of cells with distinctive characteristics. Biopharmaceuticals, specifically therapeutic proteins, are produced by culturing cells that secrete heterologous recombinant proteins with different populations and expression levels; therefore, a technology to discriminate cells that produce more target proteins is needed. Here, we present a droplet-based microfluidic strategy for encapsulating, screening, and selecting target cells with redox-responsive hydrogel beads (HBs). As a proof-of-concept study, we demonstrate the enrichment of hybridoma cells with enhanced capability of antibody secretion using horseradish peroxidase (HRP)-catalyzed hydrogelation of tetra-thiolate poly(ethylene glycol); hybridoma cells were encapsulated in disulfide-bonded HBs. Recombinant protein G or protein M with a C-terminal cysteine residue was installed in the HBs via disulfide bonding to capture antibodies secreted from the cells. HBs were fluorescently stained by adding the protein L-HRP conjugate using a tyramide signal amplification system. HBs were then separated by fluorescence-activated droplet sorting and degraded by reducing the disulfide bonds to recover the target cells. Finally, we succeeded in the selection of hybridoma cells with enhanced antibody secretion, indicating the potential of this system in the therapeutic protein production.
Collapse
Affiliation(s)
- Diah Anggraini Wulandari
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyosuke Tsuru
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Centre for Future Chemistry, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
24
|
Li F, Wei H, Jin Y, Xue T, Xu Y, Wang H, Ju E, Tao Y, Li M. Microfluidic Fabrication of MicroRNA-Induced Hepatocyte-Like Cells/Human Umbilical Vein Endothelial Cells-Laden Microgels for Acute Liver Failure Treatment. ACS NANO 2023; 17:25243-25256. [PMID: 38063365 DOI: 10.1021/acsnano.3c08495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.
Collapse
Affiliation(s)
- Fenfang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Hongyan Wei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tiantian Xue
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
25
|
Hester EW, Carney S, Shah V, Arnheim A, Patel B, Di Carlo D, Bertozzi AL. Fluid dynamics alters liquid-liquid phase separation in confined aqueous two-phase systems. Proc Natl Acad Sci U S A 2023; 120:e2306467120. [PMID: 38039270 PMCID: PMC10710025 DOI: 10.1073/pnas.2306467120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/28/2023] [Indexed: 12/03/2023] Open
Abstract
Liquid-liquid phase separation is key to understanding aqueous two-phase systems (ATPS) arising throughout cell biology, medical science, and the pharmaceutical industry. Controlling the detailed morphology of phase-separating compound droplets leads to new technologies for efficient single-cell analysis, targeted drug delivery, and effective cell scaffolds for wound healing. We present a computational model of liquid-liquid phase separation relevant to recent laboratory experiments with gelatin-polyethylene glycol mixtures. We include buoyancy and surface-tension-driven finite viscosity fluid dynamics with thermally induced phase separation. We show that the fluid dynamics greatly alters the evolution and equilibria of the phase separation problem. Notably, buoyancy plays a critical role in driving the ATPS to energy-minimizing crescent-shaped morphologies, and shear flows can generate a tenfold speedup in particle formation. Neglecting fluid dynamics produces incorrect minimum-energy droplet shapes. The model allows for optimization of current manufacturing procedures for structured microparticles and improves understanding of ATPS evolution in confined and flowing settings important in biology and biotechnology.
Collapse
Affiliation(s)
- Eric W. Hester
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
| | - Sean Carney
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
| | - Vishwesh Shah
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Alyssa Arnheim
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Bena Patel
- Department of Bioengineering, University of California, Los Angeles90095, CA
| | - Dino Di Carlo
- California NanoSystems Institute, University of California, Los Angeles90095, CA
- Department of Bioengineering, University of California, Los Angeles90095, CA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles90095, CA
| | - Andrea L. Bertozzi
- Department of Mathematics, University of California, Los Angeles90095, CA
- California NanoSystems Institute, University of California, Los Angeles90095, CA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles90095, CA
| |
Collapse
|
26
|
Gupta P, Alheib O, Shin JW. Towards single cell encapsulation for precision biology and medicine. Adv Drug Deliv Rev 2023; 201:115010. [PMID: 37454931 PMCID: PMC10798218 DOI: 10.1016/j.addr.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
27
|
Cheng RYH, de Rutte J, Ito CEK, Ott AR, Bosler L, Kuo WY, Liang J, Hall BE, Rawlings DJ, Di Carlo D, James RG. SEC-seq: association of molecular signatures with antibody secretion in thousands of single human plasma cells. Nat Commun 2023; 14:3567. [PMID: 37322036 PMCID: PMC10272111 DOI: 10.1038/s41467-023-39367-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
The secreted products of cells drive many functions in vivo; however, methods to link this functional information to surface markers and transcriptomes have been lacking. By accumulating secretions close to secreting cells held within cavity-containing hydrogel nanovials, we demonstrate workflows to analyze the amount of IgG secreted from single human B cells and link this information to surface markers and transcriptomes from the same cells. Measurements using flow cytometry and imaging flow cytometry corroborate the association between IgG secretion and CD38/CD138. By using oligonucleotide-labeled antibodies we find that upregulation of pathways for protein localization to the endoplasmic reticulum and mitochondrial oxidative phosphorylation are most associated with high IgG secretion, and uncover surrogate plasma cell surface markers (e.g., CD59) defined by the ability to secrete IgG. Altogether, this method links quantity of secretion with single-cell sequencing (SEC-seq) and enables researchers to fully explore the links between genome and function, laying the foundation for discoveries in immunology, stem cell biology, and beyond.
Collapse
Affiliation(s)
- Rene Yu-Hong Cheng
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98195, USA
| | | | - Cade Ellis K Ito
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Andee R Ott
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
| | - Lucie Bosler
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | - Wei-Ying Kuo
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | - Jesse Liang
- Partillion Bioscience, Los Angeles, CA, 90095, USA
| | | | - David J Rawlings
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
- Departments of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Dino Di Carlo
- Partillion Bioscience, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Mechanical and Aerospace Engineering, Los Angeles, CA, 90095, USA.
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA.
| | - Richard G James
- Center of Immunotherapy and Immunity, Seattle Children Research Institute, Seattle, WA, 98101, USA.
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98195, USA.
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Departments of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
- Brotman-Baty Institute for Precision Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
28
|
Zhong J, Liang M, Tang Q, Ai Y. Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting. Mater Today Bio 2023; 19:100594. [PMID: 36910274 PMCID: PMC9999206 DOI: 10.1016/j.mtbio.2023.100594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Single-cell encapsulation in droplets has become a powerful tool in immunotherapy, medicine discovery, and single-cell analysis, thanks to its capability for cell confinement in picoliter volumes. However, the purity and throughput of single-cell droplets are limited by random encapsulation process, which resuts in a majority of empty and multi-cells droplets. Herein we introduce the first label-free selectable cell quantity encapsulation in droplets sorting system to overcome this problem. The system utilizes a simple and reliable electrical impedance based screening (98.9% of accuracy) integrated with biocompatible acoustic sorting to select single-cell droplets, achieving 90.3% of efficiency and up to 200 Hz of throughput, by removing multi-cells (∼60% of rejection) and empty droplets (∼90% of rejection). We demonstrate the use of the droplet sorting to improve the throughput of single-cell encapsulation by ∼9-fold compared to the conventional random encapsulation process.
Collapse
Affiliation(s)
- Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Minhui Liang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Qiang Tang
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
29
|
Gong Y, Zeng M, Zhu Y, Li S, Zhao W, Zhang C, Zhao T, Wang K, Yang J, Bai J. Flow Cytometry with Anti-Diffraction Light Sheet (ADLS) by Spatial Light Modulation. MICROMACHINES 2023; 14:679. [PMID: 36985086 PMCID: PMC10054044 DOI: 10.3390/mi14030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Flow cytometry is a widespread and powerful technique whose resolution is determined by its capacity to accurately distinguish fluorescently positive populations from negative ones. However, most informative results are discarded while performing the measurements of conventional flow cytometry, e.g., the cell size, shape, morphology, and distribution or location of labeled exosomes within the unpurified biological samples. Herein, we propose a novel approach using an anti-diffraction light sheet with anisotroic feature to excite fluorescent tags. Constituted by an anti-diffraction Bessel-Gaussian beam array, the light sheet is 12 μm wide, 12 μm high, and has a thickness of ~0.8 μm. The intensity profile of the excited fluorescent signal can, therefore, reflect the size and allow samples in the range from O (100 nm) to 10 μm (e.g., blood cells) to be transported via hydrodynamic focusing in a microfluidic chip. The sampling rate is 500 kHz, which provides a capability of high throughput without sacrificing the spatial resolution. Consequently, the proposed anti-diffraction light sheet flow cytometry (ADLSFC) can obtain more informative results than the conventional methodologies, and is able to provide multiple characteristics (e.g., the size and distribution of fluorescent signal) helping to distinguish the target samples from the complex backgrounds.
Collapse
Affiliation(s)
- Yanyan Gong
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Ming Zeng
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Yueqiang Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Shangyu Li
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Tianyun Zhao
- School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kaige Wang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| | - Jiangcun Yang
- Department of Transfusion Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China
| |
Collapse
|
30
|
Cao Y, Tian J, Lin H, Li Q, Xiao Y, Cui H, Shum HC. Partitioning-Induced Isolation of Analyte and Analysis via Multiscaled Aqueous Two-Phase System. Anal Chem 2023; 95:4644-4652. [PMID: 36855862 DOI: 10.1021/acs.analchem.2c04861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Most fluorescence-based bioanalytical applications need labeling of analytes. Conventional labeling requires washing to remove the excess fluorescent labels and reduce the noise signals. These pretreatments are labor intensive and need specialized equipment, hindering portable applications in resource-limited areas. Herein, we use the aqueous two-phase system (ATPS) to realize the partitioning-induced isolation of labeled analytes from background signals without extra processing steps. ATPS is formed by mixing two polymers at sufficiently high concentrations. ATPS-based isolation is driven by intrinsic affinity differences between analytes and excess labels. To demonstrate the partitioning-induced isolation and analysis, fluorescein isothiocyanate (FITC) is selected as the interfering fluorophore, and a monoclonal antibody (IgG) is used as the analyte. To optimize ATPS compositions, different molecular weights and mass fractions of polyethylene glycol (PEG) and dextran and different phosphate-buffered saline (PBS) concentrations are investigated. Various operational scales of our approach are demonstrated, suggesting its compatibility with various bioanalytical applications. In centimeter-scale ATPS, the optimized distribution ratios of IgG and FITC are 91.682 and 0.998 using PEG 6000 Da and dextran 10,000 Da in 10 mM PBS. In millimeter-scale ATPS, the analyte is enriched to 6.067 fold using 15 wt % PEG 35,000 Da and 5 wt % dextran 500,000 Da in 10 mM PBS. In microscale ATPS, analyte dilutions are isolated into picoliter droplets, and the measured fluorescence intensities linearly correlated with the analyte concentrations (R2 = 0.982).
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Jingxuan Tian
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Haisong Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Qingchuan Li
- School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Yang Xiao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China.,Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
31
|
Koo D, Mao Z, Dimatteo R, Tsubamoto N, Noguchi M, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Sojo GB, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based affinity and functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524440. [PMID: 36711524 PMCID: PMC9882161 DOI: 10.1101/2023.01.17.524440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to selectively bind to antigenic peptides and secrete cytokines can define populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with millions of peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs and secrete cytokines on nanovials, allowing sorting based on both affinity and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes we could link TCR sequence to targets with 100% accuracy. We identified with high specificity an expanded repertoire of functional TCRs targeting viral antigens compared to standard techniques.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- California NanoSystems Institute; Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Khariton M, McClune CJ, Brower KK, Klemm S, Sattely ES, Fordyce PM, Wang B. Alleviating Cell Lysate-Induced Inhibition to Enable RT-PCR from Single Cells in Picoliter-Volume Double Emulsion Droplets. Anal Chem 2023; 95:935-945. [PMID: 36598332 DOI: 10.1021/acs.analchem.2c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microfluidic droplet assays enable single-cell polymerase chain reaction (PCR) and sequencing analyses at unprecedented scales, with most methods encapsulating cells within nanoliter-sized single emulsion droplets (water-in-oil). Encapsulating cells within picoliter double emulsion (DE) (water-in-oil-in-water) allows sorting droplets with commercially available fluorescence-activated cell sorter (FACS) machines, making it possible to isolate single cells based on phenotypes of interest for downstream analyses. However, sorting DE droplets with standard cytometers requires small droplets that can pass FACS nozzles. This poses challenges for molecular biology, as prior reports suggest that reverse transcription (RT) and PCR amplification cannot proceed efficiently at volumes below 1 nL due to cell lysate-induced inhibition. To overcome this limitation, we used a plate-based RT-PCR assay designed to mimic reactions in picoliter droplets to systematically quantify and ameliorate the inhibition. We find that RT-PCR is blocked by lysate-induced cleavage of nucleic acid probes and primers, which can be efficiently alleviated through heat lysis. We further show that the magnitude of inhibition depends on the cell type, but that RT-PCR can proceed in low-picoscale reaction volumes for most mouse and human cell lines tested. Finally, we demonstrate one-step RT-PCR from single cells in 20 pL DE droplets with fluorescence quantifiable via FACS. These results open up new avenues for improving picoscale droplet RT-PCR reactions and expanding microfluidic droplet-based single-cell analysis technologies.
Collapse
Affiliation(s)
- Margarita Khariton
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Conor J McClune
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Kara K Brower
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, California94305, United States
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, California94305, United States
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, California94305, United States.,Department of Genetics, Stanford University, Stanford, California94305, United States.,ChEM-H Institute, Stanford University, Stanford, California94305, United States.,Chan Zuckerberg Biohub, San Francisco, California94110, United States
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
33
|
Udani S, Langerman J, Koo D, Baghdasarian S, Cheng B, Kang S, Soemardy C, de Rutte J, Plath K, Carlo DD. Secretion encoded single-cell sequencing (SEC-seq) uncovers gene expression signatures associated with high VEGF-A secretion in mesenchymal stromal cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523110. [PMID: 36711480 PMCID: PMC9881958 DOI: 10.1101/2023.01.07.523110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cells secrete numerous bioactive molecules essential for the function of healthy organisms. However, there are no scalable methods to link individual cell secretions to their transcriptional state. By developing and using secretion encoded single-cell sequencing (SEC-seq), which exploits hydrogel nanovials to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells (MSCs). We found that VEGF-A secretion is heterogeneous across the cell population and lowly correlated with the VEGFA transcript level. While there is a modest population-wide increase in VEGF-A secretion by hypoxic induction, highest VEGF-A secretion across normoxic and hypoxic culture conditions occurs in a subpopulation of MSCs characterized by a unique gene expression signature. Taken together, SEC-seq enables the identification of specific genes involved in the control of secretory states, which may be exploited for developing means to modulate cellular secretion for disease treatment.
Collapse
Affiliation(s)
- Shreya Udani
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Justin Langerman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Doyeon Koo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Brian Cheng
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Simran Kang
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Citradewi Soemardy
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | | | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Stem Cell Research Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Partillion Bioscience, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Sahin MA, Werner H, Udani S, Di Carlo D, Destgeer G. Flow lithography for structured microparticles: fundamentals, methods and applications. LAB ON A CHIP 2022; 22:4007-4042. [PMID: 35920614 DOI: 10.1039/d2lc00421f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structured microparticles, with unique shapes, customizable sizes, multiple materials, and spatially-defined chemistries, are leading the way for emerging 'lab on a particle' technologies. These microparticles with engineered designs find applications in multiplexed diagnostics, drug delivery, single-cell secretion assays, single-molecule detection assays, high throughput cytometry, micro-robotics, self-assembly, and tissue engineering. In this article we review state-of-the-art particle manufacturing technologies based on flow-assisted photolithography performed inside microfluidic channels. Important physicochemical concepts are discussed to provide a basis for understanding the fabrication technologies. These photolithography technologies are compared based on the structural as well as compositional complexity of the fabricated particles. Particles are categorized, from 1D to 3D particles, based on the number of dimensions that can be independently controlled during the fabrication process. After discussing the advantages of the individual techniques, important applications of the fabricated particles are reviewed. Lastly, a future perspective is provided with potential directions to improve the throughput of particle fabrication, realize new particle shapes, measure particles in an automated manner, and adopt the 'lab on a particle' technologies to other areas of research.
Collapse
Affiliation(s)
- Mehmet Akif Sahin
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Helen Werner
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| | - Shreya Udani
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
- Department of Mechanical and Aerospace Engineering, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | - Ghulam Destgeer
- Control and Manipulation of Microscale Living Objects, Central Institute for Translational Cancer Research (TranslaTUM), Department of Electrical and Computer Engineering, Technical University of Munich, Einsteinstraße 25, Munich 81675, Germany.
| |
Collapse
|
35
|
Morales RTT, Ko J. Future of Digital Assays to Resolve Clinical Heterogeneity of Single Extracellular Vesicles. ACS NANO 2022; 16:11619-11645. [PMID: 35904433 PMCID: PMC10174080 DOI: 10.1021/acsnano.2c04337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Extracellular vesicles (EVs) are complex lipid membrane vehicles with variable expressions of molecular cargo, composed of diverse subpopulations that participate in the intercellular signaling of biological responses in disease. EV-based liquid biopsies demonstrate invaluable clinical potential for overhauling current practices of disease management. Yet, EV heterogeneity is a major needle-in-a-haystack challenge to translate their use into clinical practice. In this review, existing digital assays will be discussed to analyze EVs at a single vesicle resolution, and future opportunities to optimize the throughput, multiplexing, and sensitivity of current digital EV assays will be highlighted. Furthermore, this review will outline the challenges and opportunities that impact the clinical translation of single EV technologies for disease diagnostics and treatment monitoring.
Collapse
Affiliation(s)
- Renee-Tyler T Morales
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
36
|
Ng S, Williamson C, van Zee M, Di Carlo D, Santa Maria SR. Enabling Clonal Analyses of Yeast in Outer Space by Encapsulation and Desiccation in Hollow Microparticles. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081168. [PMID: 36013347 PMCID: PMC9410522 DOI: 10.3390/life12081168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Studying microbes at the single-cell level in space can accelerate human space exploration both via the development of novel biotechnologies and via the understanding of cellular responses to space stressors and countermeasures. High-throughput technologies for screening natural and engineered cell populations can reveal cellular heterogeneity and identify high-performance cells. Here, we present a method to desiccate and preserve microbes in nanoliter-scale compartments, termed PicoShells, which are microparticles with a hollow inner cavity. In PicoShells, single cells are confined in an inner aqueous core by a porous hydrogel shell, allowing the diffusion of nutrients, wastes, and assay reagents for uninhibited cell growth and flexible assay protocols. Desiccated PicoShells offer analysis capabilities for single-cell derived colonies with a simple, low resource workflow, requiring only the addition of water to rehydrate hundreds of thousands of PicoShells and the single microbes encapsulated inside. Our desiccation method results in the recovery of desiccated microparticle morphology and porosity after a multi-week storage period and rehydration, with particle diameter and porosity metrics changing by less than 18% and 7%, respectively, compared to fresh microparticles. We also recorded the high viability of Saccharomyces cerevisiae yeast desiccated and rehydrated inside PicoShells, with only a 14% decrease in viability compared to non-desiccated yeast over 8.5 weeks, although we observed an 85% decrease in initial growth potential over the same duration. We show a proof-of-concept for a growth rate-based analysis of single-cell derived colonies in rehydrated PicoShells, where we identified 11% of the population that grows at an accelerated rate. Desiccated PicoShells thus provide a robust method for cell preservation before and during launch, promising a simple single-cell analysis method for studying heterogeneity in microbial populations in space.
Collapse
Affiliation(s)
- Simon Ng
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
- Space Life Sciences Training Program, NASA Ames Research Center, Mountain View, CA 94035, USA
| | - Cayden Williamson
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
| | - Mark van Zee
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
| | - Dino Di Carlo
- Department of Bioengineering, University of California—Los Angeles, Los Angeles, CA 90095, USA; (S.N.); (C.W.); (M.v.Z.)
- Department of Mechanical and Aerospace Engineering, University of California—Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California—Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (D.D.C.); (S.R.S.M.)
| | - Sergio R. Santa Maria
- Space Biosciences, NASA Ames Research Center, Mountain View, CA 94035, USA
- KBR, Fully Integrated Lifecycle Mission Support Services, Mountain View, CA 94035, USA
- Correspondence: (D.D.C.); (S.R.S.M.)
| |
Collapse
|
37
|
Miwa H, Dimatteo R, de Rutte J, Ghosh R, Di Carlo D. Single-cell sorting based on secreted products for functionally defined cell therapies. MICROSYSTEMS & NANOENGINEERING 2022; 8:84. [PMID: 35874174 PMCID: PMC9303846 DOI: 10.1038/s41378-022-00422-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 05/13/2023]
Abstract
Cell therapies have emerged as a promising new class of "living" therapeutics over the last decade and have been particularly successful for treating hematological malignancies. Increasingly, cellular therapeutics are being developed with the aim of treating almost any disease, from solid tumors and autoimmune disorders to fibrosis, neurodegenerative disorders and even aging itself. However, their therapeutic potential has remained limited due to the fundamental differences in how molecular and cellular therapies function. While the structure of a molecular therapeutic is directly linked to biological function, cells with the same genetic blueprint can have vastly different functional properties (e.g., secretion, proliferation, cell killing, migration). Although there exists a vast array of analytical and preparative separation approaches for molecules, the functional differences among cells are exacerbated by a lack of functional potency-based sorting approaches. In this context, we describe the need for next-generation single-cell profiling microtechnologies that allow the direct evaluation and sorting of single cells based on functional properties, with a focus on secreted molecules, which are critical for the in vivo efficacy of current cell therapies. We first define three critical processes for single-cell secretion-based profiling technology: (1) partitioning individual cells into uniform compartments; (2) accumulating secretions and labeling via reporter molecules; and (3) measuring the signal associated with the reporter and, if sorting, triggering a sorting event based on these reporter signals. We summarize recent academic and commercial technologies for functional single-cell analysis in addition to sorting and industrial applications of these technologies. These approaches fall into three categories: microchamber, microfluidic droplet, and lab-on-a-particle technologies. Finally, we outline a number of unmet needs in terms of the discovery, design and manufacturing of cellular therapeutics and how the next generation of single-cell functional screening technologies could allow the realization of robust cellular therapeutics for all patients.
Collapse
Affiliation(s)
- Hiromi Miwa
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Partillion Bioscience, Los Angeles, CA 90095 USA
| | - Rajesh Ghosh
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- Department of Mechanical and Aerospace Engineering, University of California - Los Angeles, Los Angeles, CA 90095 USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|