1
|
Qin Y, Zhu Y, Lu L, Wu H, Hu J, Wang F, Zhang B, Wang J, Yang X, Luo R, Chen J, Jiang Q, Yang L, Wang Y, Zhang X. Tailored extracellular matrix-mimetic coating facilitates reendothelialization and tissue healing of cardiac occluders. Biomaterials 2025; 313:122769. [PMID: 39208698 DOI: 10.1016/j.biomaterials.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Minimally invasive transcatheter interventional therapy utilizing cardiac occluders represents the primary approach for addressing congenital heart defects and left atrial appendage (LAA) thrombosis. However, incomplete endothelialization and delayed tissue healing after occluder implantation collectively compromise clinical efficacy. In this study, we have customized a recombinant humanized collagen type I (rhCol I) and developed an rhCol I-based extracellular matrix (ECM)-mimetic coating. The innovative coating integrates metal-phenolic networks with anticoagulation and anti-inflammatory functions as a weak cross-linker, combining them with specifically engineered rhCol I that exhibits high cell adhesion activity and elicits a low inflammatory response. The amalgamation, driven by multiple forces, effectively serves to functionalize implantable materials, thereby responding positively to the microenvironment following occluder implantation. Experimental findings substantiate the coating's ability to sustain a prolonged anticoagulant effect, enhance the functionality of endothelial cells and cardiomyocyte, and modulate inflammatory responses by polarizing inflammatory cells into an anti-inflammatory phenotype. Notably, occluder implantation in a canine model confirms that the coating expedites reendothelialization process and promotes tissue healing. Collectively, this tailored ECM-mimetic coating presents a promising surface modification strategy for improving the clinical efficacy of cardiac occluders.
Collapse
Affiliation(s)
- Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai, 200302, China
| | - Haoshuang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jinpeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China; Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Fan Wang
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Jian Wang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Xia Yang
- Shanxi Provincial Key Laboratory for Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan, 030032, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juan Chen
- Shanghai Shape Memory Alloy Co., Ltd, Shanghai, 200940, China
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wang C, Lv J, Yang M, Fu Y, Wang W, Li X, Yang Z, Lu J. Recent advances in surface functionalization of cardiovascular stents. Bioact Mater 2025; 44:389-410. [PMID: 39539518 PMCID: PMC11558551 DOI: 10.1016/j.bioactmat.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading global threat to human health. The clinical application of vascular stents improved the survival rates and quality of life for patients with cardiovascular diseases. However, despite the benefits stents bring to patients, there are still notable complications such as thrombosis and in-stent restenosis (ISR). Surface modification techniques represent an effective strategy to enhance the clinical efficacy of vascular stents and reduce complications. This paper reviews the development strategies of vascular stents based on surface functional coating technologies aimed at addressing the limitations in clinical application, including the inhibition of intimal hyperplasia, promotion of re-endothelialization. These strategies have improved endothelial repair and inhibited vascular remodeling, thereby promoting vascular healing post-stent implantation. However, the pathological microenvironment of target vessels and the lipid plaques are key pathological factors in the development of atherosclerosis (AS) and impaired vascular repair after percutaneous coronary intervention (PCI). Therefore, restoring normal physiological environment and removing the plaques are also treatment focuses after PCI for promoting vascular repair. Unfortunately, research in this area is limited. This paper reviews the advancements in vascular stents based on surface engineering technologies over the past decade, providing guidance for the development of stents.
Collapse
Affiliation(s)
- Chuanzhe Wang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jie Lv
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Mengyi Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yan Fu
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Wenxuan Wang
- School of Materials Science and Engineering, Key Lab of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xin Li
- Department of Cardiology, Third People's Hospital of Chengdu Affiliated to Southwest Jiaotong University, 610072, Chengdu, Sichuan, China
| | - Zhilu Yang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, 523059, Dongguan, Guangdong, China
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Yang J, Liu W, Wang W. A supramolecular hydrogel leveraging hierarchical multi-strength hydrogen-bonds hinged strategy achieving a striking adhesive-mechanical balance. Bioact Mater 2025; 43:32-47. [PMID: 39318637 PMCID: PMC11421952 DOI: 10.1016/j.bioactmat.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
To obtain high-performance tissue-adhesive hydrogel embodying excellent mechanical integrity, a supramolecular hydrogel patch is fabricated through in situ copolymerization of a liquid-liquid phase separation precursor composed of self-complementary 2-2-ureido-4-pyrimidone-based monomer and acrylic acid coupled with subsequent corporation of bioactive epigallocatechin gallate. Remarkably, the prepared supramolecular hydrogel leverages hierarchical multi-strength hydrogen-bonds hinged strategy assisted by alkyl-based hydrophobic pockets, broadening the distribution of binding strength of physical junctions, striking a canonical balance between superb mechanical performance and robust adhesive capacity. Ultimately, the fabricated supramolecular hydrogel patch stands out as a high stretchability (1500 %), an excellent tensile strength (2.6 MPa), a superhigh toughness (12.6 MJ m-3), an instant and robust tissue adhesion strength (263.2 kPa for porcine skin), the considerable endurance under cyclic loading and reversible adhesion, a superior burst pressure tolerance (108 kPa) to those of commercially-available tissue sealants, and outstanding anti-swelling behavior. The resultant supramolecular hydrogel patch demonstrates the rapid hemorrhage control within 60 s in liver injury and efficient wound closure and healing effects with alleviated inflammation and reduced scarring in full-thickness skin incision, confirming its medical translation as a promising self-rescue tissue-adhesive patch for hemorrhage prevention and sutureless wound closure.
Collapse
Affiliation(s)
- Jumin Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
4
|
Wu Q, Guo S, Liang X, Sun W, Lei J, Pan L, Liu X, Chen H. Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity. Biomacromolecules 2024; 25:7202-7215. [PMID: 39190804 DOI: 10.1021/acs.biomac.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.
Collapse
Affiliation(s)
- Qiulian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lisha Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
5
|
Zhao L, Feng L, Shan R, Huang Y, Shen L, Fan M, Wang Y. Nanoparticle-based approaches for treating restenosis after vascular injury. Front Pharmacol 2024; 15:1427651. [PMID: 39512830 PMCID: PMC11540800 DOI: 10.3389/fphar.2024.1427651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Percutaneous coronary intervention (PCI) is currently the main method for treating coronary artery stenosis, but the incidence of restenosis after PCI is relatively high. Restenosis, the narrowing of blood vessels by more than 50% of the normal diameter after PCI, severely compromises the therapeutic efficacy. Therefore, preventing postinterventional restenosis is important. Vascular restenosis is mainly associated with endothelial injury, the inflammatory response, the proliferation and migration of vascular smooth muscle cells (VSMCs), excessive deposition of extracellular matrix (ECM) and intimal hyperplasia (IH) and is usually prevented by administering antiproliferative or anti-inflammatory drugs through drug-eluting stents (DESs); however, DESs can lead to uncontrolled drug release. In addition, as extracorporeal implants, they can cause inflammation and thrombosis, resulting in suboptimal treatment. Therefore, there is an urgent need for a drug carrier with controlled drug release and high biocompatibility for in vivo drug delivery to prevent restenosis. The development of nanotechnology has enabled the preparation of nanoparticle drug carriers with low toxicity, high drug loading, high biocompatibility, precise targeting, controlled drug release and excellent intracellular delivery ability. This review summarizes the advantages of nanoparticle drug carriers for treating vascular restenosis, as well as how nanoparticles have improved targeting, slowed the release of therapeutic agents, and prolonged circulation in vivo to prevent vascular restenosis more effectively. The overall purpose of this review is to present an overview of nanoparticle therapy for vascular restenosis. We expect these findings to provide insight into nanoparticle-based therapeutic approaches for vascular restenosis.
Collapse
Affiliation(s)
- Liangfeng Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liuliu Feng
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Rong Shan
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yu Wang
- Department of Cardiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
Hao X, Gai W, Zhang Y, Zhao D, Zhou W, Feng Y. Peptide functionalized biomimetic gene complexes enhance specificity for vascular endothelial regeneration. Colloids Surf B Biointerfaces 2024; 241:114020. [PMID: 38878659 DOI: 10.1016/j.colsurfb.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/29/2024]
Abstract
Gene delivery presents great potential in endothelium regeneration and prevention of vascular diseases, but its outcome is inevitably limited by high shear stress and instable microenvironment. Highly efficient nanosystems may alleviate the problem with strong dual-specificity for diseased site and targeted cells. Hence, biomimetic coatings incorporating EC-targeting peptides were constructed by platelets and endothelial cells (ECs) for surface modification. A series of biomimetic gene complexes were fabricated by the biomimetic coatings to deliver pcDNA3.1-VEGF165 plasmid (pVEGF) for rapid recovery of endothelium. The gene complexes possessed good biocompatibility with macrophages, stability with serum and showed no evident cytotoxicity for ECs even at very high concentrations. Furthermore, the peptide modified gene complexes achieved selective internalization in ECs and significant accumulation in endothelium-injured site, especially the REDV-modified and EC-derived gene complexes. They substantially enhanced VEGF expression at mRNA and protein levels, thereby enabling a wound to heal completely within 24 h according to wound healing assay. In an artery endothelium-injured mouse model, the REDV-modified and EC-derived gene complexes presented efficient re-endothelialization with the help of enhanced specificity. The biomimetic gene complexes offer an efficient dual-targeting strategy for rapid recovery of endothelium, and hold potential in vascular tissue regeneration.
Collapse
Affiliation(s)
- Xuefang Hao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| | - Weiwei Gai
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yanping Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dandan Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Weitong Zhou
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
9
|
Zhang S, Sun J, Guo S, Wang Y, Zhang Y, Lei J, Liu X, Chen H. Balancing functions of antifouling, nitric oxide release and vascular cell selectivity for enhanced endothelialization of assembled multilayers. Regen Biomater 2024; 11:rbae096. [PMID: 39323744 PMCID: PMC11422184 DOI: 10.1093/rb/rbae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024] Open
Abstract
Surface endothelialization is a promising way to improve the hemocompatibility of biomaterials. However, current surface endothelialization strategies have limitations. For example, various surface functions are not well balanced, leading to undesirable results, especially when multiple functional components are introduced. In this work, a multifunctional surface was constructed by balancing the functions of antifouling, nitric oxide (NO) release and endothelial cell promotion via layer-by-layer (LBL) self-assembly. Poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methacrylate) (negatively charged) and polyethyleneimine (positively charged) were deposited on silicon substrates to construct multilayers by LBL self-assembly. Then, organic selenium, which has a NO-releasing function, and the cell-adhesive peptide Gly-Arg-Glu-Asp-Val-Tyr, which selectively promotes endothelial cells, were introduced on the assembled multilayers. Poly(oligo(ethylene glycol) methacrylate) is a hydrophilic component for antifouling properties, and poly(sodium p-styrenesulfonate) is a heparin analog that provides negative charges. By modulating the contents of poly(oligo(ethylene glycol) methacrylate) and poly(sodium p-styrenesulfonate) in the copolymers, the NO release rates catalyzed by the modified surfaces were regulated. Moreover, the behaviors of endothelial cells and smooth muscle cells on modified surfaces were well controlled. The optimized surface strongly promoted endothelial cells and inhibited smooth muscle cells to achieve endothelialization effectively.
Collapse
Affiliation(s)
- Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jun Sun
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
10
|
Zhang J, Tang Y, Gao X, Pei X, Weng Y, Chen J. Preparation of Time-Sequential Functionalized ZnS-ZnO Film for Modulation of Interfacial Behavior of Metals in Biological Service Environments. Biomolecules 2024; 14:1041. [PMID: 39199426 PMCID: PMC11352253 DOI: 10.3390/biom14081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Blood-contact devices are prone to inflammation, endothelial dysfunction, coagulation, and the uncontrolled release of metal ions during implantation and service. Therefore, it is essential to make these multifunctional. Herein, a superhydrophobic DE@ZnS-ZnO@SA film (composed of dabigatran ester, zinc sulfite, zinc oxide, and stearic acid, respectively) is produced. The prepared film has non-adhesion and antibacterial properties, superior mechanical stability, durability, corrosion resistance, and is self-cleaning and blood-repellent. The results of the hemolysis, cytotoxicity, and other anticoagulant experiments revealed that the film had good blood compatibility, no cytotoxicity, and excellent anticoagulant properties. The film displays anticoagulant properties even after being immersed in Phosphate-Buffered Saline (PBS) for 7 days. Furthermore, the film can spontaneously release H2S gas for 90 h after soaking in an acidic environment (pH = 6) for 90 h. This property improves the acidic microenvironment of the lesion and promotes the proliferation of endothelial cells by using H2S gas. In addition, the film can inhibit the uncontrollable release of Zn2+ ions, avoiding its toxicity even when immersed in an acid environment for 35 days. This time-sequential functionalized surface has the potential to typify the future of blood-contacting scaffolds for long-lasting use.
Collapse
Affiliation(s)
- Jianwen Zhang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yujie Tang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Xinyu Pei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China;
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; (J.Z.); (Y.T.); (X.G.); (X.P.)
| |
Collapse
|
11
|
Wan H, Yang X, Zhang Y, Liu X, Li Y, Qin Y, Yan H, Gui L, Li K, Zhang L, Yang L, Zhang B, Wang Y. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS NANO 2024; 18:21512-21522. [PMID: 39096486 DOI: 10.1021/acsnano.4c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaohui Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yutong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Longjian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
12
|
Zhao K, Zeng Z, He Y, Zhao R, Niu J, Sun H, Li S, Dong J, Jing Z, Zhou J. Recent advances in targeted therapy for inflammatory vascular diseases. J Control Release 2024; 372:730-750. [PMID: 38945301 DOI: 10.1016/j.jconrel.2024.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Vascular diseases constitute a significant contributor to worldwide mortality rates, placing a substantial strain on healthcare systems and socio-economic aspects. They are closely associated with inflammatory responses, as sustained inflammation could impact endothelial function, the release of inflammatory mediators, and platelet activation, thus accelerating the progression of vascular diseases. Consequently, directing therapeutic efforts towards mitigating inflammation represents a crucial approach in the management of vascular diseases. Traditional anti-inflammatory medications may have extensive effects on multiple tissues and organs when absorbed through the bloodstream. Conversely, treatments targeting inflammatory vascular diseases, such as monoclonal antibodies, drug-eluting stents, and nano-drugs, can achieve more precise effects, including precise intervention, minimal non-specific effects, and prolonged efficacy. In addition, personalized therapy is an important development trend in targeted therapy for inflammatory vascular diseases. Leveraging advanced simulation algorithms and clinical trial data, treatment strategies are gradually being personalized based on patients' genetic, biomarker, and clinical profiles. It is expected that the application of precision medicine in the field of vascular diseases will have a broader future. In conclusion, targeting therapies offer enhanced safety and efficacy compared to conventional medications; investigating novel targeting therapies and promoting clinical transformation may be a promising direction in improving the prognosis of patients with inflammatory vascular diseases. This article reviews the pathogenesis of inflammatory vascular diseases and presents a comprehensive overview of the potential for targeted therapies in managing this condition.
Collapse
Affiliation(s)
- Kaiwen Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Zan Zeng
- Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuzhen He
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Rong Zhao
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jinzhu Niu
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Huiying Sun
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Shuangshuang Li
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Dong
- Department of Vascular Surgery, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zaiping Jing
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Jian Zhou
- Department of Vascular Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, China; Department of Vascular Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China.
| |
Collapse
|
13
|
Ma Q, Zhang W, Mou X, Huang N, Wang H, Zhang H, Yang Z. Bioinspired Zwitterionic Block Polymer-Armored Nitric Oxide-Generating Coating Combats Thrombosis and Biofouling. RESEARCH (WASHINGTON, D.C.) 2024; 7:0423. [PMID: 39091634 PMCID: PMC11290871 DOI: 10.34133/research.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
Thrombosis and infection are 2 major complications associated with central venous catheters (CVCs), resulting in substantial mortality and morbidity. The concurrent long-term administration of antibiotics and anticoagulants to address these complications have been demonstrated to cause severe side effects such as antibiotic resistance and bleeding. To mitigate these complications with minimal or no drug utilization, we developed a bioinspired zwitterionic block polymer-armored nitric oxide (NO)-generating functional coating for surface modification of CVCs. This armor was fabricated by precoating with a Cu-dopamine (DA)/selenocysteamine (SeCA) (Cu-DA/SeCA) network film capable of catalytically generating NO on the CVCs surface, followed by grafting of a zwitterionic p(DMA-b-MPC-b-DMA) polymer brush. The synergistic effects of active attack by NO and copper ions provided by Cu-DA/SeCA network and passive defense by zwitterionic polymer brush imparted the CVCs surface with durable antimicrobial properties and marked inhibition of platelets and fibrinogen. The in vivo studies confirmed that the surface-armored CVCs could effectively reduce inflammation and inhibit thrombosis, indicating a promising potential for clinical applications.
Collapse
Affiliation(s)
- Qing Ma
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry,
Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital,
Southern Medical University, Dongguan, 523059, China
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital,
Southern Medical University, Dongguan, 523059, China
| | - Xiaohui Mou
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry,
Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital,
Southern Medical University, Dongguan, 523059, China
| | - Nan Huang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital,
Southern Medical University, Dongguan, 523059, China
- GuangZhou Nanchuang Mount Everest Company for Medical Science and Technology, Guangzhou, 510670, China
| | - Haimang Wang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering,
Tsinghua University, Beijing, 100084, China
- Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, 352001 Zhejiang, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering,
Tsinghua University, Beijing, 100084, China
| | - Zhilu Yang
- School of Materials Science and Engineering, Key Lab of Advanced Technology of Materials of Education Ministry,
Southwest Jiaotong University, Chengdu, 610031, China
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital,
Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
14
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
15
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
16
|
Zan X, Yang D, Xiao Y, Zhu Y, Chen H, Ni S, Zheng S, Zhu L, Shen J, Zhang X. Facile General Injectable Gelatin/Metal/Tea Polyphenol Double Nanonetworks Remodel Wound Microenvironment and Accelerate Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305405. [PMID: 38124471 PMCID: PMC10916639 DOI: 10.1002/advs.202305405] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Treating the most widespread complication of diabetes: diabetic wounds poses a significant clinical obstacle due to the intricate nature of wound healing in individuals with diabetes. Here a novel approach is proposed using easily applicable injectable gelatin/metal/tea polyphenol double nanonetworks, which effectively remodel the wound microenvironment and accelerates the healing process. The gelatin(Gel) crosslink with metal ions (Zr4+ ) through the amino acids, imparting advantageous mechanical properties like self-healing, injectability, and adhesion. The nanonetwork's biological functions are further enhanced by incorporating the tea polyphenol metal nanonetwork through in situ doping of the epigallocatechin gallate (EGCG) with great antibacterial, self-healing, antioxidant, and anticancer capabilities. The in vitro and in vivo tests show that this double nanonetworks hydrogel exhibits faster cell migration and favorable anti-inflammatory and antioxidant properties and can greatly reshape the microenvironment of diabetic wounds and accelerate the wound healing rate. In addition, this hydrogel is completely degraded after subcutaneous injection for 7 days, with nondetectable cytotoxicity in H&E staining of major mice organs and the serum level of liver function indicators. Considering the above-mentioned merits of this hydrogel, it is believed that the injectable gelatin/metal/tea polyphenol double nanonetworks have broad biomedical potential, especially in diabetic wound repair and tissue engineering.
Collapse
Affiliation(s)
- Xingjie Zan
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325027China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Dong Yang
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325027China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yi Xiao
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Yaxin Zhu
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Hua Chen
- Department of Thoracic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325003China
| | - Shulan Ni
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325027China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co., LtdWenzhou325000China
| | - Limeng Zhu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325027China
- Wenzhou InstituteWenzhou Key Laboratory of Perioperative MedicineUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325027China
| | - Xingcai Zhang
- School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
17
|
Li S, Yang L, Zhao Z, Yang X, Lv H. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts. Acta Biomater 2024; 176:234-249. [PMID: 38218359 DOI: 10.1016/j.actbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are two major problems faced by the small-diameter vascular grafts. Mimicking the native endothelium and physiological elasticity of blood vessels is considered an ideal strategy. Polyurethane (PU) is suitable for vascular grafts in mechanics because of its molecular designability and elasticity; however, it generally lacks the endothelium-like biofunctions and hydrophilicity. To solve this contradiction, a hydrophilic PU elastomer is developed by crosslinking the hydrophobic hard-segment chains containing diselenide with diaminopyrimidine-capped polyethylene glycol (PEG). In this network, the hydrophobic aggregation occurs underwater due to the uninterrupted hard-segment chains, leading to a significant self-enhancement in mechanics, which can be tailored to the elasticity similar to natural vessels by adjusting the crosslinking density. A series of in vitro studies confirm that the hydrophilicity of PEG and biological activities of aminopyrimidine and diselenide give the PU multi-biological functions similar to the native endothelium, including stable catalytic release of nitric oxide (NO) in the physiological level; anti-adhesion and anti-activation of platelets; inhibition of migration, adhesion, and proliferation of smooth muscle cells (SMCs); and antibacterial effect. In vivo studies further prove the good histocompatibility with both significant reduction in immune response and calcium deposition. STATEMENT OF SIGNIFICANCE: Constructing small-diameter vascular grafts similar to the natural vessels is considered an ideal method to solve the restenosis caused by thrombosis and intimal hyperplasia (IH). Because of the long-term stability, bulk modification is more suitable for implanted materials, however, how to achieve the biofunctions, hydrophilicity, and elasticity simultaneously is still a big challenge. In this work, a kind of polyurethane-based elastomer has been designed and prepared by crosslinking the functional long hard-segment chains with PEG soft segments. The underwater elasticity based on hydration-induced stiffening and the multi-biological functions similar to the native endothelium are compatible with natural vessels. Both in vitro and in vivo experiments demonstrate the potential of this PU as small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| |
Collapse
|
18
|
Liu Y, Shi Y, Zhang M, Han F, Liao W, Duan X. Natural polyphenols for drug delivery and tissue engineering construction: A review. Eur J Med Chem 2024; 266:116141. [PMID: 38237341 DOI: 10.1016/j.ejmech.2024.116141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/05/2024]
Abstract
Polyphenols, natural compounds rich in phenolic structures, are gaining prominence due to their antioxidant, anti-inflammatory, antibacterial, and anticancer properties, making them valuable in biomedical applications. Through covalent and noncovalent interactions, polyphenols can bind to biomaterials, enhancing their performance and compensating for their shortcomings. Such polyphenol-based biomaterials not only increase the efficacy of polyphenols but also improve drug stability, control release kinetics, and boost the therapeutic effects of drugs. They offer the potential for targeted drug delivery, reducing off-target impacts and enhancing therapeutic outcomes. In tissue engineering, polyphenols promote cell adhesion, proliferation, and differentiation, thus aiding in the formation of functional tissues. Additionally, they offer excellent biocompatibility and mechanical strength, essential in designing scaffolds. This review explores the significant roles of polyphenols in tissue engineering and drug delivery, emphasizing their potential in advancing biomedical research and healthcare.
Collapse
Affiliation(s)
- Yu Liu
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Yuying Shi
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Mengqi Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiangxi, China; Medical College of Jiujiang University, Jiangxi, China.
| |
Collapse
|
19
|
Wu H, Yang L, Luo R, Li L, Zheng T, Huang K, Qin Y, Yang X, Zhang X, Wang Y. A drug-free cardiovascular stent functionalized with tailored collagen supports in-situ healing of vascular tissues. Nat Commun 2024; 15:735. [PMID: 38272886 PMCID: PMC10810808 DOI: 10.1038/s41467-024-44902-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Drug-eluting stent implantation suppresses the excessive proliferation of smooth muscle cells to reduce in-stent restenosis. However, the efficacy of drug-eluting stents remains limited due to delayed reendothelialization, impaired intimal remodeling, and potentially increased late restenosis. Here, we show that a drug-free coating formulation functionalized with tailored recombinant humanized type III collagen exerts one-produces-multi effects in response to injured tissue following stent implantation. We demonstrate that the one-produces-multi coating possesses anticoagulation, anti-inflammatory, and intimal hyperplasia suppression properties. We perform transcriptome analysis to indicate that the drug-free coating favors the endothelialization process and induces the conversion of smooth muscle cells to a contractile phenotype. We find that compared to drug-eluting stents, our drug-free stent reduces in-stent restenosis in rabbit and porcine models and improves vascular neointimal healing in a rabbit model. Collectively, the one-produces-multi drug-free system represents a promising strategy for the next-generation of stents.
Collapse
Affiliation(s)
- Haoshuang Wu
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Tiantian Zheng
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaiyang Huang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Xia Yang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan, 030032, Shanxi, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Tianfu Jincheng Laboratory (Frontier Medical Center), Chengdu, 610213, China.
| |
Collapse
|
20
|
Zhang B, Wan H, Liu X, Yu T, Yang Y, Dai Y, Han Y, Xu K, Yang L, Wang Y, Zhang X. Engineering Immunomodulatory Stents Using Zinc Ion-Lysozyme Nanoparticle Platform for Vascular Remodeling. ACS NANO 2023; 17:23498-23511. [PMID: 37971533 DOI: 10.1021/acsnano.3c06103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Rapid endothelialization of cardiovascular materials can enhance the vascular remodeling performance. In this work, we developed a strategy for amyloid-like protein-assembly-mediated interfacial engineering to functionalize a biomimetic nanoparticle coating (BMC). Various groups (e.g., hydroxyl and carboxyl) on the BMC are responsible for chelating Zn2+ ions at the stent interface, similar to the glutathione peroxidase-like enzymes found in vivo. This design could reproduce the release of therapeutic nitric oxide gas (NO) and an aligned microenvironment nearly identical with that of natural vessels. In a rabbit abdominal aorta model, BMC-coated stents promoted vascular healing through rapid endothelialization and the inhibition of intimal hyperplasia in the placement sites at 4, 12, and 24 weeks. Additionally, better anticoagulant activity and immunomodulation in the BMC stents were also confirmed, and vascular healing was mainly dependent on cell signaling through the cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) cascade. Overall, a metal-polypeptide-coated stent was developed on the basis of its detailed molecular mechanism of action in vascular remodeling.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Tao Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan 610045, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Kai Xu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Wenhua Road 83, Shenyang 110016, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
21
|
Chen X, Zhang L, Zeng H, Meng W, Liu G, Zhang W, Zhao P, Zhang Q, Chen M, Chen J. Manganese-Based Immunomodulatory Nanocomposite with Catalase-Like Activity and Microwave-Enhanced ROS Elimination Ability for Efficient Rheumatoid Arthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304610. [PMID: 37632302 DOI: 10.1002/smll.202304610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease commonly associated with the accumulation of hyperactive immune cells (HICs), particularly macrophages of pro-inflammatory (M1) phenotype, accompanied by the elevated level of reactive oxygen species (ROS), decreased pH and O2 content in joint synovium. In this work, an immunomodulatory nanosystem (IMN) is developed for RA therapy by modulating and restoring the function of HICs in inflamed tissues. Manganese tetraoxide nanoparticles (Mn3 O4 ) nanoparticles anchored on UiO-66-NH2 are designed, and then the hybrid is coated with Mn-EGCG film, further wrapped with HA to obtain the final nanocomposite of UiO-66-NH2 @Mn3 O4 /Mn-EGCG@HA (termed as UMnEH). When UMnEH diffuses to the inflammatory site of RA synovium, the stimulation of microwave (MW) irradiation and low pH trigger the slow dissociation of Mn-EGCG film. Then the endogenously overexpressed hydrogen peroxide (H2 O2 ) disintegrates the exposed Mn3 O4 NPs to promote ROS scavenging and O2 generation. Assisted by MW irradiation, the elevated O2 content in the RA microenvironment down-regulates the expression of hypoxia-inducible factor-1α (HIF-1α). Coupled with the clearance of ROS, it promotes the re-polarization of M1 phenotype macrophages into anti-inflammatory (M2) phenotype macrophages. Therefore, the multifunctional UMnEH nanoplatform, as the IMN, exhibits a promising potential to modulate and restore the function of HICs and has an exciting prospect in the treatment of RA.
Collapse
Affiliation(s)
- Xiaotong Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Haifeng Zeng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wei Meng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guijiang Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenhua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Zhao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Qun Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Office of Clinical Trial of Drug, Guangzhou, Guangdong, 510663, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming, Guangdong, 525200, China
| | - Jinxiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
22
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
23
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
24
|
Li Y, Zhang B, Liu X, Wan H, Qin Y, Yan H, Wang Y, An Y, Yang Y, Dai Y, Yang L, Wang Y. A bio-inspired nanoparticle coating for vascular healing and immunomodulatory by cGMP-PKG and NF-kappa B signaling pathways. Biomaterials 2023; 302:122288. [PMID: 37677917 DOI: 10.1016/j.biomaterials.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Drug-eluting stents (DESs) implantation is an effective method to tackle in-stent restenosis (ISR), which has been considered as an efficient treatment for coronary atherosclerosis. Although fruitful results have been achieved in treating coronary artery diseases (CAD), concern has arisen regarding the long-term safety and efficacy of DESs, primarily due to adverse events such as delayed re-endothelialization, persistent inflammatory response, and late stent thrombosis (LST). Taking inspiration from the immunomodulatory functions of camouflage strategies, this study designed a bio-inspired nanoparticle-coated stent. Briefly, the platelet membrane-coated poly (lactic-co-glycolic acid)/Rapamycin nanoparticles (PNP) were sprayed onto stents, forming a homogenous nanoparticle coating. The bilayer of poly (lactic-co-glycolic acid) (PLGA) and platelet membrane works synergistically to promote the sustained-release effect of rapamycin. In vitro studies revealed that the PNP-coated surfaces promoted the competitive adhesion of endothelia cells while inhibiting smooth muscle cells. Subsequent in vivo studies demonstrated that these surfaces expedite re-endothelialization and elicit immunomodulatory effects by regulating the cGMP-PKG and NF-kappa B signaling pathways, influencing the biosynthesis cofactors and immune system signaling. The study successfully deviced a novel and biomimetic drug-eluting stent system, unraveling its detailed functions and molecular mechanism of action for enhanced vascular healing.
Collapse
Affiliation(s)
- Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongqi An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
25
|
Zhang M, Jin H, Liu Y, Wan L, Liu S, Zhang H. L-Arginine self-delivery supramolecular nanodrug for NO gas therapy. Acta Biomater 2023; 169:517-529. [PMID: 37536496 DOI: 10.1016/j.actbio.2023.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
NO gas therapy is a supplementary approach for tumor treatment due to the advantages of minimal invasion, little drug resistance, low side effect and amplified efficacy. l-Arginine (L-Arg), a natural NO source with good biocompatibility, can release NO under the stimulation of H2O2 in tumor microenvironment. However, the conventional l-Arg delivery systems via noncovalent loading usually lead to inevitable premature leakage of nano-cargos during blood circulation. In this work, an efficient l-Arg self-delivery supramolecular nanodrug (SDSND) for tumor treatment is demonstrated by combining Mannich reaction and π-π stacking. l-Arg links to (-)-epigallocatechin gallate (EGCG) with the assistance of formaldehyde through Mannich reaction, and then assembles into nanometer-sized particles via π-π stacking. The guanidine group of l-Arg and the phenolic hydroxyl groups of EGCG are preserved in the SDSNDs, which allows for accomplishing gas therapy by provoking tumor cell apoptosis and combining with EGCG to amplify apoptosis, respectively. In addition, the SDSNDs exhibit high biocompatibility and avoid the premature leakage of l-Arg in blood circulation, providing an alternative l-Arg delivery system for NO gas therapy. STATEMENT OF SIGNIFICANCE: NO gas therapy has attracted emerging interest in tumor treatment. However, the controlled NO release and the avoidance of premature leakage of NO donors remain challenging. In this work, L-Arginine (L-Arg) self-delivery supramolecular nanodrug for efficient tumor therapy is demonstrated through the Mannich reaction of L-Arg, (-)-epigallocatechin gallate (EGCG) and formaldehyde. Stimulated by tumor microenvironment, the guanidine groups of L-Arg allow for accomplishing NO release and thus provoking tumor cell apoptosis. The nanodrug also avoids the premature leakage of L-Arg in blood circulation. Moreover, the preserved phenolic hydroxyl groups of EGCG combine with L-Arg to amplify apoptosis. The nanodrug exhibits high biocompatibility and good therapeutic effect, providing an alternative L-Arg delivery system for NO gas therapy.
Collapse
Affiliation(s)
- Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Jin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Joint Laboratory of Optical Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Lanlan Wan
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun 130041, PR China.
| | - Shuwei Liu
- Joint Laboratory of Optical Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China; Joint Laboratory of Optical Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
26
|
Zong Y, Zong B, Zha R, Zhang Y, Li X, Wang Y, Fang H, Wong WL, Li C. An Antibacterial and Anti-Oxidative Hydrogel Dressing for Promoting Diabetic Wound Healing and Real-Time Monitoring Wound pH Conditions with a NIR Fluorescent Imaging System. Adv Healthc Mater 2023; 12:e2300431. [PMID: 37102624 DOI: 10.1002/adhm.202300431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Indexed: 04/28/2023]
Abstract
The design and synthesis of multifunctional chitosan hydrogels based on polymerized ionic liquid and a near-infrared (NIR) fluorescent probe (PIL-CS) is a promising strategy, which not only prevents the transition from acute to chronic wounds, but also provides prompt measures regarding microenvironmental alterations in chronic wounds. PIL-CS hydrogel can real-time visualize wound pH through in vivo NIR fluorescent imaging and also feature the pH-responsive sustained drug release, such as antioxidant, to eliminate reactive oxygen species (ROS) and to boost diabetic wound healing. PIL-CS hydrogel is specific, sensitive, stable, and reversible in response to pH changes at the wound site. It, therefore, enables real-time monitoring for a dynamic pH change in the microenvironment of irregular wounds. PIL-CS hydrogel is also designed to possess many merits including high water containment and swelling rate, good biocompatibility, electrical conductivity, antifreeze, tissue adhesion, hemostatic performance, and efficient antibacterial activity against MRSA. In vivo studies showed that PIL-CS hydrogel provided fast diabetic wound healing support, promoted vascular endothelial growth factor (VEGF) production, and reduced ROS and tumor necrosis factor (TNF-α) generation. The results support that the hydrogels coupled with NIR fluorescent probes can be an excellent diabetic wound dressing for enhancing and real-time monitoring skin restoration and regeneration.
Collapse
Affiliation(s)
- Yuange Zong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Beige Zong
- Department of General surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chognqing School of Medicine, Chongqing University, Chongqing, 400000, China
| | - Ruyan Zha
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yi Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Xianghong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Huaifang Fang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
27
|
Li K, Peng J, Liu Y, Zhang F, Wu D, Luo R, Du Z, Yang L, Liu G, Wang Y. Surface Engineering of Central Venous Catheters via Combination of Antibacterial Endothelium-Mimicking Function and Fibrinolytic Activity for Combating Blood Stream Infection and Thrombosis. Adv Healthc Mater 2023; 12:e2300120. [PMID: 37166220 DOI: 10.1002/adhm.202300120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Indexed: 05/12/2023]
Abstract
Long-term blood-contacting devices (e.g., central venous catheters, CVCs) still face the highest incidence of blood stream infection and thrombosis in clinical application. To effectively address these complications, this work reports a dual-functional surface engineering strategy for CVCs by organic integration of endothelium-mimicking and fibrinolytic functions. In this proposal, a lysine (Lys)/Cu2+ -incorporated zwitterionic polymer coating (defined as PDA/Lys/Cu-SB) is designed and robustly fabricated onto commercial CVCs using a facile two-step process. Initially, adhesive ene-functionalized dopamine is covalently reacted with Lys and simultaneously coordinated with bactericidal Cu2+ ions, leading to the deposition of a PDA/Lys/Cu coating on CVCs through mussel foot protein inspired surface chemistry. Next, zwitterionic poly(sulfobetaine methacrylate) (pSB) brushes are grafted onto the PDA/Lys/Cu coating to endow lubricant and antifouling properties. In the final PDA/Lys/Cu-SB coating, endothelium-mimicking function is achieved by combining the catalytic generation of nitric oxide from the chelated Cu2+ with antifouling pSB brushes, which led to significant prevention of thrombosis, and bacterial infection in vivo. Furthermore, the immobilized Lys with fibrinolytic activity show remarkably enhanced long-term anti-thrombogenic properties as evidenced in vivo by demonstrating the capability to lyse nascent clots. Therefore, this developed strategy provides a promising solution for long-term blood-contacting devices to combat thrombosis and infection.
Collapse
Affiliation(s)
- Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuqi Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, 611135, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zongliang Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
28
|
Omidian H, Babanejad N, Cubeddu LX. Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1935. [PMID: 37514121 PMCID: PMC10386572 DOI: 10.3390/pharmaceutics15071935] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality globally. Despite significant advancements in the development of pharmacological therapies, the challenges of targeted drug delivery to the cardiovascular system persist. Innovative drug-delivery systems have been developed to address these challenges and improve therapeutic outcomes in CVDs. This comprehensive review examines various drug delivery strategies and their efficacy in addressing CVDs. Polymeric nanoparticles, liposomes, microparticles, and dendrimers are among the drug-delivery systems investigated in preclinical and clinical studies. Specific strategies for targeted drug delivery, such as magnetic nanoparticles and porous stent surfaces, are also discussed. This review highlights the potential of innovative drug-delivery systems as effective strategies for the treatment of CVDs.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Luigi X Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
29
|
Chen N, Li M, Wu H, Qin Y, Wang J, Xu K, Luo R, Yang L, Wang Y, Zhang X. An extracellular matrix-mimetic coating with dual bionics for cardiovascular stents. Regen Biomater 2023; 10:rbad055. [PMID: 37359731 PMCID: PMC10287914 DOI: 10.1093/rb/rbad055] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Anti-inflammation and anti-coagulation are the primary requirements for cardiovascular stents and also the widely accepted trajectory for multi-functional modification. In this work, we proposed an extracellular matrix (ECM)-mimetic coating for cardiovascular stents with the amplified functionalization of recombinant humanized collagen type III (rhCOL III), where the biomimetics were driven by structure mimicry and component/function mimicry. Briefly, the structure-mimic was constructed by the formation of a nanofiber (NF) structure via the polymerization of polysiloxane with a further introduction of amine groups as the nanofibrous layer. The fiber network could function as a three-dimensional reservoir to support the amplified immobilization of rhCoL III. The rhCOL III was tailored for anti-coagulant, anti-inflammatory and endothelialization promotion properties, which endows the ECM-mimetic coating with desired surface functionalities. Stent implantation in the abdominal aorta of rabbits was conducted to validate the in vivo re-endothelialization of the ECM-mimetic coating. The mild inflammatory responses, anti-thrombotic property, promotion of endothelialization and suppression of excessive neointimal hyperplasia confirmed that the ECM-mimetic coating provided a promising approach for the modification of vascular implants.
Collapse
Affiliation(s)
- Nuoya Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Mingyu Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Haoshaung Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Jian Wang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, Shanxi, China
| | - Kai Xu
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | | | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Liu W, Wang X, Feng Y. Restoring endothelial function: shedding light on cardiovascular stent development. Biomater Sci 2023. [PMID: 37161519 DOI: 10.1039/d3bm00390f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Complete endothelialization is highly important for maintaining long-term patency and avoiding subsequent complications in implanting cardiovascular stents. It not only refers to endothelial cells (ECs) fully covering the inserted stents, but also includes the newly formed endothelium, which could exert physiological functions, such as anti-thrombosis and anti-stenosis. Clinical outcomes have indicated that endothelial dysfunction, especially the insufficiency of antithrombotic and barrier functions, is responsible for stent failure. Learning from vascular pathophysiology, endothelial dysfunction on stents is closely linked to the microenvironment of ECs. Evidence points to inflammatory responses, oxidative stress, altered hemodynamic shear stress, and impaired endothelial barrier affecting the normal growth of ECs, which are the four major causes of endothelial dysfunction. The related molecular mechanisms and efforts dedicated to improving the endothelial function are emphasized in this review. From the perspective of endothelial function, the design principles, advantages, and disadvantages behind current stents are introduced to enlighten the development of new-generation stents, aiming to offer new alternatives for restoring endothelial function.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
31
|
Wang Y, Wu Y, Zhang B, Zheng C, Hu C, Guo C, Kong Q, Wang Y. Repair of degenerative nucleus pulposus by polyphenol nanosphere-encapsulated hydrogel gene delivery system. Biomaterials 2023; 298:122132. [PMID: 37156085 DOI: 10.1016/j.biomaterials.2023.122132] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/17/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Intervertebral disc degeneration (IDD) progresses due to local inflammatory response, gradually unbalanced anabolic/catabolic activity, and progressive functional impairment within the nucleus pulposus. Antagomir-21, a cholesterol-modified miRNA-21 inhibitor, has potential extracellular matrix (ECM) regenerative ability, but its application for IDD is limited by inadequate local delivery systems. An injectable hydrogel gene delivery system encapsulating a modified tannic acid nanoparticles (TA NPs) vector was engineered for on-demand and sustained delivery of antagomir-21 into the nucleus pulposus. After nucleus pulposus cell uptake, antagomir-21 was released from TA NPs and regulated the ECM metabolic balance by inhibiting the MAPK/ERK signaling pathway. TA NPs scavenged intracellular ROS and reduced inflammation by downregulating TNF-α expression. In vivo, synergistic anti-inflammatory effects and ECM regeneration effectively promoted therapeutic efficacy against IDD. This hydrogel gene delivery system represents a creative, promising strategy for IDD repair.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Adhami M, Martin NK, Maguire C, Courtenay AJ, Donnelly RF, Domínguez-Robles J, Larrañeta E. Drug loaded implantable devices to treat cardiovascular disease. Expert Opin Drug Deliv 2023; 20:507-522. [PMID: 36924328 DOI: 10.1080/17425247.2023.2190580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
INTRODUCTION It is widely acknowledged that cardiovascular diseases (CVDs) continue to be the leading cause of death globally. Furthermore, CVDs are the leading cause of diminished quality of life for patients, frequently as a result of their progressive deterioration. Medical implants that release drugs into the body are active implants that do more than just provide mechanical support; they also have a therapeutic role. Primarily, this is achieved through the controlled release of active pharmaceutical ingredients (API) at the implementation site. AREAS COVERED In this review, the authors discuss drug-eluting stents, drug-eluting vascular grafts, and drug-eluting cardiac patches with the aim of providing a broad overview of the three most common types of cardiac implant. EXPERT OPINION Drug eluting implants are an ideal alternative to traditional drug delivery because they allow for accurate drug release, local drug delivery to the target tissue, and minimise the adverse side effects associated with systemic administration. Despite the fact that there are still challenges that need to be addressed, the ever-evolving new technologies are making the fabrication of drug eluting implants a rewarding therapeutic endeavour with the possibility for even greater advances.
Collapse
Affiliation(s)
| | | | | | - Aaron J Courtenay
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, UK
| | | | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, UK.,Department of Pharmacy and Pharmaceutical Technology, University of Seville, Seville, Spain
| | | |
Collapse
|
33
|
Tang X, Chen L, Wu Z, Li Y, Zeng J, Jiang W, Lv W, Wan M, Mao C, Zhou M. Lipophilic NO-Driven Nanomotors as Drug Balloon Coating for the Treatment of Atherosclerosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203238. [PMID: 35961946 DOI: 10.1002/smll.202203238] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Drug-coated balloons (DCB) intervention is an important approach for the treatment of atherosclerosis (AS). However, this therapeutic approach has the drawbacks of poor drug retention and penetration at the lesion site. Here, a lipophilic drug-loaded nanomotor as a modified balloon coating for the treatment of AS is reported. First, a lipophilic nanomotor PMA-TPP/PTX loaded with drug PTX and lipophilic triphenylphosphine (TPP) compounds is synthesized. The PMA-TPP/PTX nanomotors use nitric oxide (NO) as the driving force, which is produced from the reaction between arginine on the motor substrate and excess reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in the AS microenvironment. The final in vitro and in vivo experimental results confirm that the introduction of the lipophilic drug-loaded nanomotor technology can greatly enhance the drug retention and permeability in atherosclerotic lesions. In particular, NO can also play an anti-AS role in improving endothelial cell function and reducing oxidative stress. The chemotherapeutic drug PTX loaded onto the nanomotors can inhibit cell division and proliferation, thereby exerting the effect of inhibiting vascular intimal hyperplasia, which is helpful for the multiple therapies of AS. Using nanomotor technology to solve cardiovascular diseases may be a promising research direction.
Collapse
Affiliation(s)
- Xueting Tang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ziyu Wu
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yazhou Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiaqi Zeng
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Wentao Jiang
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wenzhi Lv
- College of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Chun Mao
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210046, China
| |
Collapse
|
34
|
Guo J, Huang J, Lei S, Wan D, Liang B, Yan H, Liu Y, Feng Y, Yang S, He J, Kong D, Shi J, Wang S. Construction of Rapid Extracellular Matrix-Deposited Small-Diameter Vascular Grafts Induced by Hypoxia in a Bioreactor. ACS Biomater Sci Eng 2023; 9:844-855. [PMID: 36723920 DOI: 10.1021/acsbiomaterials.2c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular disease has become one of the most globally prevalent diseases, and autologous or vascular graft transplantation has been the main treatment for the end stage of the disease. However, there are no commercialized small-diameter vascular graft (SDVG) products available. The design of SDVGs is promising in the future, and SDVG preparation using an in vitro bioreactor is a favorable method, but it faces the problem of long-term culture of >8 weeks. Herein, we used different oxygen (O2) concentrations and mechanical stimulation to induce greater secretion of extracellular matrix (ECM) from cells in vitro to rapidly prepare SDVGs. Culturing with 2% O2 significantly increased the production of the ECM components and growth factors of human dermal fibroblasts (hDFs). To accelerate the formation of ECM, hDFs were seeded on a polycaprolactone (PCL) scaffold and cultured in a flow culture bioreactor with 2% O2 for only 3 weeks. After orthotopic transplantation in rat abdominal aorta, the cultured SDVGs (PCL-decellularized ECM) showed excellent endothelialization and smooth muscle regeneration. The vascular grafts cultured with hypoxia and mechanical stimulation could accelerate the reconstruction speed and obtain an improved therapeutic effect and thereby provide a new research direction for improving the production and supply of SDVGs.
Collapse
Affiliation(s)
- Jingyue Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jiaxing Huang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Shaojin Lei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Dongdong Wan
- Department of Orthopedic Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Boyuan Liang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yufei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yuming Feng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Sen Yang
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Ju He
- Department of Vascular Surgery, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
35
|
Hu J, Xue S, Xu Z, Wu Z, Xu X, Wang X, Liu G, Lu X, Li B, Liu X. Identification of core cuprotosis-correlated biomarkers in abdominal aortic aneurysm immune microenvironment based on bioinformatics. Front Immunol 2023; 14:1138126. [PMID: 37138870 PMCID: PMC10150024 DOI: 10.3389/fimmu.2023.1138126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background The occurrence of abdominal aortic aneurysms (AAAs) is related to the disorder of immune microenvironment. Cuprotosis was reported to influence the immune microenvironment. The objective of this study is to identify cuprotosis-related genes involved in the pathogenesis and progression of AAA. Methods Differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in mouse were identified following AAA through high-throughput RNA sequencing. The enrichment analyses of pathway were selected through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG). The validation of cuprotosis-related genes was conducted through immunofluorescence and western blot analyses. Results Totally, 27616 lncRNAs and 2189 mRNAs were observed to be differentially expressed (|Fold Change| ≥ 2 and q< 0.05) after AAA, including 10424 up-regulated and 17192 down-regulated lncRNAs, 1904 up-regulated and 285 down-regulated mRNAs. Gene ontology and KEGG pathway analysis showed that the DElncRNAs and DEmRNAs were implicated in many different biological processes and pathways. Furthermore, Cuprotosis-related genes (NLRP3, FDX1) were upregulated in the AAA samples compared with the normal one. Conclusion Cuprotosis-related genes (NLRP3,FDX1) involved in AAA immune environment might be critical for providing new insight into identification of potential targets for AAA therapy.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xintong Xu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Guang Liu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinwu Lu, ; Bo Li, ; Xiaobing Liu,
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinwu Lu, ; Bo Li, ; Xiaobing Liu,
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xinwu Lu, ; Bo Li, ; Xiaobing Liu,
| |
Collapse
|
36
|
Lu B, Han X, Zou D, Luo X, Liu L, Wang J, Maitz MF, Yang P, Huang N, Zhao A. Catechol-chitosan/polyacrylamide hydrogel wound dressing for regulating local inflammation. Mater Today Bio 2022; 16:100392. [PMID: 36033376 PMCID: PMC9403564 DOI: 10.1016/j.mtbio.2022.100392] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Chronic wounds and the accompanying inflammation are ongoing challenges in clinical treatment. They are usually accompanied by low pH and high oxidative stress environments, limiting cell growth and proliferation. Ordinary medical gauze has limited therapeutic effects on chronic wounds, and there is active research to develop new wound dressings. The chitosan hydrogel could be widely used in biomedical science with great biocompatibility, but the low mechanical properties limit its development. This work uses polyacrylamide to prepare double-network (DN) hydrogels based on bioadhesive catechol-chitosan hydrogels. Cystamine and N, N′-Bis(acryloyl)cystamine, which can be cross-linking agents with disulfide bonds to prepare redox-responsive DN hydrogels and pH-responsive nanoparticles (NPs) prepared by acetalized cyclodextrin (ACD) are used to intelligently release drugs against chronic inflammation microenvironments. The addition of catechol groups and ACD-NPs loaded with the Resolvin E1 (RvE1), promotes cell adhesion and regulates the inflammatory response at the wound site. The preparation of the DN hydrogel in this study can be used to treat and regulate the inflammatory microenvironment of chronic wounds accurately. It provides new ideas for using inflammation resolving factor loaded in DN hydrogel of good biocompatibility with enhanced mechanical properties to intelligent regulate the wound inflammation and promote the wound repaired. Dual-response hydrogel drug delivery system was used to intelligently release drugs at inflammation area of chronic wound. DN hydrogel was designed to enhance the properties of chitosan-based hydrogel with two cross-linking agents. Resolvin E1 loaded into wound dressing can help to regulate wound inflammation by regulating macrophage behavior.
Collapse
Affiliation(s)
- Bingyang Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiao Han
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Dan Zou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiao Luo
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jingyue Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Manfred F Maitz
- Leibniz-Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069, Dresden, Germany
| | - Ping Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ansha Zhao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, 610031, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
37
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
38
|
He Z, Liu Y, Wang H, Wang J, Pei X, Chen J, Zhang X, Zhu Z, Wan Q. Logic-Based Diagnostic and Therapeutic Nanoplatform with Infection and Inflammation Monitoring and Microenvironmental Regulation Accelerating Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39172-39187. [PMID: 35977147 DOI: 10.1021/acsami.2c07732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infectious cutaneous wounds are a thorny clinical problem. The microenvironment of the infectious wound is complicated and changes at different healing stages. Traditional treatments either have a single effect such as anti-inflammation, antibacteria, or angiogenesis or a simple mixture of several functions. They fail to deal with the change of the physiological healing process, leading to unsatisfactory outcomes. Herein, we have designed a logic-based smart nanoplatform (named as ZEM), aiming to self-monitor the wound microenvironment and accordingly react to the changes of the healing process, fitting multiple needs of physiological repair at different stages. ZEM was synthesized using zeolitic imidazolate framework-8 (ZIF-8) coated with an epigallocatechin gallate (EGCG)/Mg2+ complex. We characterized ZEM in the aspects of morphology, physical and chemical properties, and ion release pattern. At the initial stage, ZEM sensed the weakly acidic environment and responsively released a large number of zinc ions to eliminate bacterial infection. Then came the second inflammation stage, where ZEM responded to the oxidative stress of the local wound area with EGCG absorbing excessive reactive oxygen species (ROS), contributing to the downregulation of intracellular ROS. Meanwhile, local inflammation was alleviated by reducing the expression of proinflammatory M1 phenotype factors (IL-6, TNF-α, and IL-1β). Since the balance of local ROS had been achieved, the resulting disintegration of the EGCG/Mg2+ complex gave rise to the sustainable release of Mg2+ at the proliferation stage, promoting vascularized healing. In vivo animal experiments further proved the diagnostic and therapeutic functions of ZEM. All these results demonstrated that ZEM was a promising treatment strategy in soft tissue engineering.
Collapse
Affiliation(s)
- Zihan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hengfei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
39
|
Zhang B, Qin Y, Yang L, Wan H, Yuan L, Wang Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022; 287:121654. [PMID: 35842980 DOI: 10.1016/j.biomaterials.2022.121654] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The introduction of drug-eluting stents (DESs) have yield a significant reduction in the incidence of re-stenosis, however, challenges remain including incomplete healing of the endothelium, inflammatory response and thrombogenesis at the site of vascular wall injury. Here, we developed a novel stent with polyphenol-polyamine surface combining the biological functions of nitric oxide gas and VEGF, selectively promoting the proliferation and migration of endothelial cells while suppressing smooth muscle cells. Compared with bare PLLA stents and traditional DESs, the functionalized stents enhanced vascular healing through remarkable inhibiting intimal hyperplasia and occurrence of thrombosis, accelerating the in-situ endothelium repair. Moreover, it showed a down-regulation of injury vascular inflammation response and reduction of the vessel wall injury in New Zealand Rabbits after 1- and 3-month implantation.
Collapse
Affiliation(s)
- Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China
| | - Lu Yuan
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Oncode Institute, Utrecht, Netherlands
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu, 610065, China.
| |
Collapse
|
40
|
Sheng F, Zhang B, Zhang Y, Li Y, Cheng R, Wei C, Ning C, Dong K, Wang ZL. Ultrastretchable Organogel/Silicone Fiber-Helical Sensors for Self-Powered Implantable Ligament Strain Monitoring. ACS NANO 2022; 16:10958-10967. [PMID: 35775629 DOI: 10.1021/acsnano.2c03365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Implantable sensors with the abilities of real-time healthcare monitoring and auxiliary training are important for exercise-induced or disease-induced muscle and ligament injuries. However, some of these implantable sensors have some shortcomings, such as requiring an external power supply or poor flexibility and stability. Herein, an organogel/silicone fiber-helical sensor based on a triboelectric nanogenerator (OFS-TENG) is developed for power-free and sutureable implantation ligament strain monitoring. The OFS-TENG with high stability and ultrastretchability is composed of an organogel fiber and a silicone fiber intertwined with a double helix structure. The organogel fiber possesses the merits of rapid preparation (15 s), good transparency (>95%), high stretchability (600%), and favorable stability (over 6 months). The OFS-TENG is successfully implanted on the patellar ligament of the rabbit knee for the real-time monitoring of knee ligament stretch and muscle stress, which is expected to provide a solution for real-time diagnosis of muscle and ligament injuries. The prepared self-powered OFS-TENG can monitor data on human muscles and ligaments in real-time.
Collapse
Affiliation(s)
- Feifan Sheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Chemistry and Chemical Engineering, Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuanhui Wei
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences Beijing, 100049, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology Atlanta, Georgia 30332, United States
| |
Collapse
|
41
|
Yi B, Zhou B, Song Z, Yu L, Wang W, Liu W. Step-wise CAG@PLys@PDA-Cu2+ modification on micropatterned nanofibers for programmed endothelial healing. Bioact Mater 2022; 25:657-676. [PMID: 37056258 PMCID: PMC10086768 DOI: 10.1016/j.bioactmat.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Native-like endothelium regeneration is a prerequisite for material-guided small-diameter vascular regeneration. In this study, a novel strategy is proposed to achieve phase-adjusted endothelial healing by step-wise modification of parallel-microgroove-patterned (i.e., micropatterned) nanofibers with polydopamine-copper ion (PDA-Cu2+) complexes, polylysine (PLys) molecules, and Cys-Ala-Gly (CAG) peptides (CAG@PLys@PDA-Cu2+). Using electrospun poly(l-lactide-co-caprolactone) random nanofibers as the demonstrating biomaterial, step-wise modification of CAG@PLys@PDA-Cu2+ significantly enhanced substrate wettability and protein adsorption, exhibited an excellent antithrombotic surface and outstanding phase-adjusted capacity of endothelium regeneration involving cell adhesion, endothelial monolayer formation, and the regenerated endothelium maturation. Upon in vivo implantation for segmental replacement of rabbit carotid arteries, CAG@PLys@PDA-Cu2+ modified grafts (2 mm inner diameter) with micropatterns on inner surface effectively accelerated native-like endothelium regeneration within 1 week, with less platelet aggregates and inflammatory response compared to those on non-modified grafts. Prolonged observations at 6- and 12-weeks post-implantation demonstrated a positive vascular remodeling with almost fully covered endothelium and mature smooth muscle layer in the modified vascular grafts, accompanied with well-organized extracellular matrix. By contrast, non-modified vascular grafts induced a disorganized tissue formation with a high risk of thrombogenesis. In summary, step-wise modification of CAG@PLys@PDA-Cu2+ on micropatterned nanofibers can significantly promote endothelial healing without inflicting thrombosis, thus confirming a novel strategy for developing functional vascular grafts or other blood-contacting materials/devices.
Collapse
|