1
|
Wang Y, Chen C, He C, Dong W, Yang X, Kong Q, Yan B, He J. Quaternized chitosan-based biomimetic nanozyme hydrogels with ROS scavenging, oxygen generating, and antibacterial capabilities for diabetic wound repair. Carbohydr Polym 2025; 348:122865. [PMID: 39567115 DOI: 10.1016/j.carbpol.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Management of chronic diabetic wounds is challenging due to excess reactive oxygen species (ROS), hypoxia, persistent inflammation, and bacterial infection within the wound microenvironment. For addressing the aforementioned concern, we have developed a multifunctional hydrogel dressing (PMT-C@PhM) based on chitosan with self-healing, adhesive, antibacterial, and antioxidant capacities for therapeutic diabetic wounds. The hydrogel dressing consisted of quaternary ammonium salt- and catechol- modified chitosan (CQCS), thioctic acid-functionalized poly(ethylene glycol)s (PEGs), and polydopamine-coated honeycomb manganese dioxide nanoparticles (hMnO2@PDA NPs). The nanozyme-modified hydrogel exhibits superoxide dismutase (SOD) and catalase (CAT) activities to scavenge ROS while generating oxygen to alleviate oxidative stress and hypoxic environment in wounds, and to attenuate the inflammatory response through modulating macrophage polarization. The PMT-C@PhM hydrogel is effective in the treatment of diabetic wound infections caused by Staphylococcus aureus, and relieves oxidative stress, inhibits inflammation, and promotes neovascularization and dermal collagen synthesis thus providing favorable conditions for accelerated wound healing. In conclusion, the aforementioned approach offers a biosafe, straightforward, and efficient strategy for the management of diabetic wounds.
Collapse
Affiliation(s)
- Ye Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Chong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changyuan He
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wentao Dong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuekun Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Kong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jin He
- Department of Pediatric Orthopaedics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
2
|
Back F, Barras A, Nyam-Erdene A, Yang JC, Melinte S, Rumipamba J, Burnouf T, Boukherroub R, Szunerits S, Chuang EY. Platelet Extracellular Vesicles Loaded Gelatine Hydrogels for Wound Care. Adv Healthc Mater 2025; 14:e2401914. [PMID: 39449544 DOI: 10.1002/adhm.202401914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Platelet extracellular vesicles (pEVs) isolated from clinical-grade human platelet concentrates are attracting attention as a promising agent for wound healing therapies. Although pEVs have shown potential for skin regeneration, their incorporation into wound bandages has remained limitedly explored. Herein, gelatine-based hydrogel (PAH-G) foams for pEVs loading and release are formulated by crosslinking gelatine with poly(allylamine) hydrochloride (PAH) in the presence of glutaraldehyde and sodium bicarbonate. The optimized PAH-G hydrogel foam, PAH0.24G37, displayed an elastic modulus G' = 8.5 kPa at 37 °C and retained a rubbery state at elevated temperatures. The excellent swelling properties of PAH0.24G37 allowed to easily absorb pEVs at high concentration (1 × 1011 particles mL-1). The therapeutic effect of pEVs was evaluated in vivo on a chronic wound rat model. These studies demonstrated full wound closure after 14 days upon treatment with PAH0.24G37@pEVs. The maintenance of a reduced-inflammatory environment from the onset of treatment promoted a quicker transition to skin remodeling. Promotion of follicle activation and angiogenesis as well as M1-M2 macrophage modulation are evidenced. Altogether, the multifunctional properties of PAH0.24G37@pEVs addressed the complex challenges associated with chronic diabetic wounds, representing a significant advance toward personalized treatment regimens for these conditions.
Collapse
Affiliation(s)
- Florence Back
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Ariunjargal Nyam-Erdene
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Jen-Chang Yang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Sorin Melinte
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - José Rumipamba
- Université catholique de Louvain, ICTEAM, Louvain-la-Neuve, 1348, Belgium
| | - Thierry Burnouf
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN, Lille, F-59000, France
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, Krems, 3500, Austria
| | - Er-Yuan Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, 23561, Taiwan
| |
Collapse
|
3
|
Qiao Y, Zhao X, Wang S, Wang H, Zhou P, Wang X, Ding W, Li X, Wu Y, Zhang L, Chen C, Sun D. Enhanced adhesive hydrogel for emergency hemostasis by balancing adhesion and cohesion. Int J Biol Macromol 2025; 284:138075. [PMID: 39603295 DOI: 10.1016/j.ijbiomac.2024.138075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Hydrogel adhesives have broad application prospects in biomedical fields such as tissue engineering and emergency rescue. However, due to the high water content and defective network structure, their inherent mechanical strength is low, which seriously hinders their application. In the present work, enhanced adhesive hydrogels could be synthesized by balancing cohesion and adhesion forces. The adhesive hydrogel composed of acryloyl aspartic acid and glycine shows a more dense mesh structure through intermolecular hydrogen bond interactions. As a result, the adhesive hydrogel exhibits enhanced tissue adhesion strength, which benefit from the balance between cohesion and adhesion.
Collapse
Affiliation(s)
- Yalei Qiao
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiang Zhao
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210094, China
| | - Shunjun Wang
- Jinling Hospital, Medical School of Nanjing University, Nanjing 210094, China
| | - Hongyan Wang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Zhou
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiangmei Wang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinmeng Li
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yixuan Wu
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Li M, Tang H, Geng X, Zhou J, Mou S, Li C, Chang J, Xu M, Wang C, Fu R, Wang Y. All-natural hydrogel composed of carboxymethyl chitosan and oxidized dextran for promoting wound healing by immune-microenvironment regulation. Carbohydr Polym 2025; 347:122731. [PMID: 39486961 DOI: 10.1016/j.carbpol.2024.122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 11/04/2024]
Abstract
Chronic wound treatment has always been a major clinical challenge owing to complex and dynamic wound microenvironment. The design and development of effective management with antimicrobial activity, ROS-scavenging and regulation immune response is vital for tissue repair. Herein, we developed puerarin (PUE) loaded a double network hydrogel consisting of methacrylated carboxymethyl chitosan and oxidized dextran with Schiff base and photo-crosslinking reaction. The composite hydrogel presented fast self-healing and outstanding compressive performance to bear deformation. The hydrogel exhibits a cumulative drug release pattern with biphasic release, which offers great potential for accelerating tissue healing at all stages of wounding. In addition, the hydrogel has good biocompatibility, antimicrobial ability and tube-forming ability in vitro. The full-thickness skin wound model of Staphylococcus aureus infection showed that the hydrogel dressing can accelerate tissue repair. This study demonstrated that the design of combing natural biomacromolecules with traditional Chinese medicine could be severed as a promising candidate biomaterial for skin tissue recovery.
Collapse
Affiliation(s)
- Ming Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China
| | - Huamin Tang
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi, China
| | - Xiaoyuan Geng
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China
| | - Jiahua Zhou
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China; Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China
| | - Sitong Mou
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi, China
| | - Chang Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China
| | - Jing Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China
| | - Minhui Xu
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China
| | - Chuanlin Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China; Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China.
| | - Runjia Fu
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Yanhua Wang
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China; National Center for Trauma Medicine, Beijing, China; Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
5
|
Cheng Y, Lu Y. Physical stimuli-responsive polymeric patches for healthcare. Bioact Mater 2025; 43:342-375. [PMID: 39399837 PMCID: PMC11470481 DOI: 10.1016/j.bioactmat.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024] Open
Abstract
Many chronic diseases have become severe public health problems with the development of society. A safe and efficient healthcare method is to utilize physical stimulus-responsive polymer patches, which may respond to physical stimuli, including light, electric current, temperature, magnetic field, mechanical force, and ultrasound. Under certain physical stimuli, these patches have been widely used in therapy for diabetes, cancer, wounds, hair loss, obesity, and heart diseases since they could realize controllable treatment and reduce the risks of side effects. This review sketches the design principles of polymer patches, including composition, properties, and performances. Besides, control methods of using different kinds of physical stimuli were introduced. Then, the fabrication methods and characterization of patches were explored. Furthermore, recent applications of these patches in the biomedical field were demonstrated. Finally, we discussed the challenges and prospects for its clinical translation. We anticipate that physical stimulus-responsive polymer patches will open up new avenues for healthcare by acting as a platform with multiple functions.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Zhang W, He Q, Jin Z, Jiang Y, Hu Z, Wei Q. Adhesive and antibacterial guar gum-based nanocomposite hydrogel for remodeling wound healing microenvironment. Int J Biol Macromol 2024; 291:139054. [PMID: 39708863 DOI: 10.1016/j.ijbiomac.2024.139054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/17/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator. This hydrogel exhibited stable and tunable mechanical property as well as excellent biocompatibility. Borate crosslinking and physical interactions of the hydrogel produced a certain degree of self-healing ability, good tissue adhesive and hemostatic capacity. MF endowed the hydrogel with good antioxidant ability and excellent synergistic antibacterial ability with CATC. In vivo experiments indicated that the hydrogel significantly accelerated wound healing with a narrower wound edge, thicker granulation tissue, maturer epidermis and dermis tissue, higher collagen deposition level, milder inflammatory response, and enhanced angiogenesis. The hydrogel without adding antibiotics and other exogenous active ingredients showed great application potential as a versatile wound dressing material.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qin He
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Ziming Jin
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Jiang C, Fu J, Zhang H, Hua Y, Cao L, Ren J, Zhou M, Jiang F, Jiang X, Ling S. Self-Reinforcing Ionogel Bioadhesive Interface for Robust Integration and Monitoring of Bioelectronic Devices with Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413028. [PMID: 39632650 DOI: 10.1002/adma.202413028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Integrating bioelectronic devices with hard tissues, such as bones and teeth, is essential for advancing diagnostic and therapeutic technologies. However, stable and durable adhesion in dynamic, moist environments remains challenging. Traditional bioadhesives often fail to maintain strong bonds, especially when interfacing with metal electrodes and hard tissues. This study introduces a self-reinforcing ionogel bioadhesive interface (IGBI) combining silk fibroin and calcium ions, designed to provide robust and conductive integration of bioelectronic devices with hard tissues. The IGBI exhibits strong adhesion (up to 186 J m-2) and undergoes mechanical self-reinforcement through a structural transition in silk fibroin under physiological conditions. In vivo experiments demonstrate the IGBI's effectiveness in repairing bone defects and reimplanting teeth, with the added capability of wireless, real-time monitoring of bone healing. This approach allows for continuous tracking of tissue regeneration without a second invasive surgery for device removal. The IGBI represents a significant advancement in bioelectronic integration, offering a durable and versatile solution for challenging environments. Such unique self-reinforcing properties make the IGBI a promising material for biomedical applications where traditional adhesives are insufficient.
Collapse
Affiliation(s)
- Chenghao Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Junhao Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Hao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yingjie Hua
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Leitao Cao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Mingliang Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Fei Jiang
- Stomatological College of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of General Dentistry Affiliated Hospital of Stomatology Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
| | - Xinquan Jiang
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
8
|
Zhao Q, Zhang W, Xu Z, Liu L, Jiang J, Duan J. Rapid preparation of bioadhesive hydrogels containing catechol moieties at room temperature with reproducible adhesion to wet tissues, antimicrobial, antioxidant capacity for noncompressive hemostasis. Int J Biol Macromol 2024; 283:137570. [PMID: 39542320 DOI: 10.1016/j.ijbiomac.2024.137570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
In order to cope with the massive tissue bleeding caused by sudden trauma and the demand for bioengineering materials with adjustable wet adhesion properties, this study formed the first layer of network by adding galactomannan (GG) and collagen (Col) structure, and then use the Fe3+-urushiol (UH) redox system to activate free radicals to initiate the polymerization of acrylic acid (AA) to quickly form an interpenetrating double network hydrogel. The cis hydroxyl group in GG and the hydroxyl group of UH form dynamic covalent borate ester bonds with borate ions in the borax solution, and use their responsiveness to pH to control the catechol group to achieve controllable adhesion. UH and Fe3+ endowed the hydrogel with excellent antibacterial ability, while adding Col enhanced the mechanical properties of the hydrogel. The elastic modulus and toughness increased from 4.32 kPa and 92.9 kJ/m3 to 18.90 kPa and 264.54 kJ/m3. In addition, due to the joint action of UH and Col, the hydrogel dressing can achieve rapid hemostasis within 20 s. In short, this hydrogel dressing has good biocompatibility, inherent antibacterial ability, adjustable moist tissue adhesion properties and rapid hemostatic ability, and is expected to become a candidate for wound hemostasis dressing.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Wenliang Zhang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Zhiyong Xu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Liujun Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
| | - Jiufang Duan
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Zhou L, Zhang Y, Yi X, Chen Y, Li Y. Advances in proteins, polysaccharides, and composite biomaterials for enhanced wound healing via microenvironment management: A review. Int J Biol Macromol 2024; 282:136788. [PMID: 39490870 DOI: 10.1016/j.ijbiomac.2024.136788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Wound management is crucial yet imposes substantial social and economic burdens on patients and healthcare systems. The recent rapid advancements in biomaterials and manufacturing technology have created favorable conditions for expediting wound healing. This review examines the latest developments in biomacromolecule-based wound dressings, with a particular focus on proteins and polysaccharides, and their role in modulating the wound microenvironment. The importance of extracellular matrix (ECM)-inspired materials, such as hydrogels and biomimetic dressings, is emphasized. Additionally, this review explores the functionalization of wound dressings, emphasizing properties such as hemostatic capabilities, pain relief, antimicrobial activity, and innovative smart functions like electroceuticals and wound condition monitoring. The study integrates discussions on both the macroscopic healing outcomes and the microscopic pathophysiological mechanisms, highlighting recent advances in managing wound environments to expedite healing. Finally, the review critically assesses the challenges associated with the clinical translation of these wound-healing materials in the future.
Collapse
Affiliation(s)
- Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Wang X, Zeng J, Gan D, Ling K, He M, Li J, Lu Y. Recent Strategies and Advances in Hydrogel-Based Delivery Platforms for Bone Regeneration. NANO-MICRO LETTERS 2024; 17:73. [PMID: 39601916 PMCID: PMC11602938 DOI: 10.1007/s40820-024-01557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/01/2024] [Indexed: 11/29/2024]
Abstract
Bioactive molecules have shown great promise for effectively regulating various bone formation processes, rendering them attractive therapeutics for bone regeneration. However, the widespread application of bioactive molecules is limited by their low accumulation and short half-lives in vivo. Hydrogels have emerged as ideal carriers to address these challenges, offering the potential to prolong retention times at lesion sites, extend half-lives in vivo and mitigate side effects, avoid burst release, and promote adsorption under physiological conditions. This review systematically summarizes the recent advances in the development of bioactive molecule-loaded hydrogels for bone regeneration, encompassing applications in cranial defect repair, femoral defect repair, periodontal bone regeneration, and bone regeneration with underlying diseases. Additionally, this review discusses the current strategies aimed at improving the release profiles of bioactive molecules through stimuli-responsive delivery, carrier-assisted delivery, and sequential delivery. Finally, this review elucidates the existing challenges and future directions of hydrogel encapsulated bioactive molecules in the field of bone regeneration.
Collapse
Affiliation(s)
- Xiao Wang
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Jia Zeng
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Donglin Gan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Kun Ling
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China
| | - Mingfang He
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yongping Lu
- Scientific and Technological Innovation Center for Biomedical Materials and Clinical Research, Guangyuan Key Laboratory of Multifunctional Medical Hydrogel, Guangyuan Central Hospital, Guangyuan, 628000, People's Republic of China.
| |
Collapse
|
11
|
Xv D, Cao Y, Hou Y, Hu Y, Li M, Xie C, Lu X. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Macromol Rapid Commun 2024:e2400653. [PMID: 39588839 DOI: 10.1002/marc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuming Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250000, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, 250000, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
12
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2024:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
13
|
Tang C, Li Y, Fei X, Zhao W, Tian J, Xu L, Wang Y. An integrally formed Janus supramolecular bio-gel with intelligent adhesion for multifunctional healthcare. J Colloid Interface Sci 2024; 680:1030-1041. [PMID: 39549347 DOI: 10.1016/j.jcis.2024.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Despite the rapid development of Janus adhesive hydrogels, most of them still entail complex fabrication processes and have the inherent flaws, such as fragility and instability, thereby restricting their biomedical applications. In this study, a novel Janus bio-gel with strong mechanical and intelligent adhesion functions is facilely fabricated through a gravity-driven settlement strategy, employing poly-cyclodextrin microspheres (PCDMs). This strategy takes advantage of the sedimentation behavior of PCDMs with various diameters to establish structural disparities on both sides of the Janus bio-gel, thereby resolving multiple predicaments including the tedious synthesis steps and poor bonding of multilayer hydrogels. Owing to the multiple dynamic interactions between polymers and PCDMs, the Janus supramolecular bio-gel demonstrates outstanding mechanical toughness (1.97 MJ/m3) and elongation rate (≈800 %). More attractively, the resulting Janus bio-gel exhibits remarkable adhesiveness (316.4 J/m2 for interfacial toughness) and adhesive differences that are exceed 50 times between the two surfaces. Furthermore, the Janus supramolecular bio-gel also has excellent antibacterial properties, biocompatibility, environmental stability, and multiple monitoring functions, accelerating wound stably healing and monitoring physiologic parameters on the skin. This strategy provides a straightforward and promising approach to directly achieve multifunctional integration for smart health management.
Collapse
Affiliation(s)
- Chenyang Tang
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Wenhui Zhao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Khattak S, Ullah I, Sohail M, Akbar MU, Rauf MA, Ullah S, Shen J, Xu H. Endogenous/exogenous stimuli‐responsive smart hydrogels for diabetic wound healing. AGGREGATE 2024. [DOI: 10.1002/agt2.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes significantly impairs the body's wound‐healing capabilities, leading to chronic, infection‐prone wounds. These wounds are characterized by hyperglycemia, inflammation, hypoxia, variable pH levels, increased matrix metalloproteinase activity, oxidative stress, and bacterial colonization. These complex conditions complicate effective wound management, prompting the development of advanced diabetic wound care strategies that exploit specific wound characteristics such as acidic pH, high glucose levels, and oxidative stress to trigger controlled drug release, thereby enhancing the therapeutic effects of the dressings. Among the solutions, hydrogels emerge as promising due to their stimuli‐responsive nature, making them highly effective for managing these wounds. The latest advancements in mono/multi‐stimuli‐responsive smart hydrogels showcase their superiority and potential as healthcare materials, as highlighted by relevant case studies. However, traditional wound dressings fall short of meeting the nuanced needs of these wounds, such as adjustable adhesion, easy removal, real‐time wound status monitoring, and dynamic drug release adjustment according to the wound's specific conditions. Responsive hydrogels represent a significant leap forward as advanced dressings proficient in sensing and responding to the wound environment, offering a more targeted approach to diabetic wound treatment. This review highlights recent advancements in smart hydrogels for wound dressing, monitoring, and drug delivery, emphasizing their role in improving diabetic wound healing. It addresses ongoing challenges and future directions, aiming to guide their clinical adoption.
Collapse
Affiliation(s)
- Saadullah Khattak
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Ihsan Ullah
- Zhejiang Engineering Research Center for Tissue Repair Materials Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Mohammad Sohail
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Muhammad Usman Akbar
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou China
| | - Mohd Ahmar Rauf
- Department of Internal Medicine, Heme Oncology Unit, University of Michigan Ann Arbor Michigan USA
| | - Salim Ullah
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou China
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China
| | - Hong‐Tao Xu
- The Fifth Affiliated Hospital of Wenzhou Medical University Lishui China
| |
Collapse
|
15
|
Ran J, Xie Z, Yan L, Ye C, Hou Y, Hu Y, Lu X, Xie C. Oxygen-Propelled Dual-Modular Microneedles with Dopamine-Enhanced RNA Delivery for Regulating Each Stage of Diabetic Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404538. [PMID: 39105463 DOI: 10.1002/smll.202404538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Indexed: 08/07/2024]
Abstract
Diabetic wounds are characterized by the disruption and cessation of essential healing stages, which include hemostasis, inflammation, proliferation, and remodeling. However, traditional treatments for diabetic wounds concentrate on individual stages of the healing process. Herein, this study utilizes mask-mediated sequential polymerization and varied cross-linking techniques to develop dual-modular microneedles (MNs) with fast- and slow-module, exhibiting varying degradation rates tailored for the full spectrum of diabetic wound healing. First, MNs incorporating calcium ions and dopamine synergistically promote rapid hemostasis. Second, fast-module physically cross-linked MNs rapidly D-mannose/dopamine-enhanced tripolyphosphate-quaternized chitosan (mDTC) nanoparticles (NPs) loaded with microRNA-147 (miRNA-147) to manage inflammation and oxidative stress in diabetic wounds. Additionally, dopamine in these NPs enhances their internalization and safeguards miRNA-147 from oxidative stress and RNase degradation. Finally, slow-module chemically cross-linked MNs facilitate the continuous release of deferoxamine (DFO) and dopamine, accelerating angiogenesis and tissue regeneration during the proliferation and remodeling stages. Manganese/dopamine-enhanced calcium peroxide NPs within the MNs initiate a blast-like generation of oxygen bubbles, not only enhancing the delivery of miRNA-mDTC NPs and DFO but also alleviating tissue hypoxia. Consequently, dual-modular MNs are instrumental in promoting rapid and complete healing of diabetic wounds through all stages of healing.
Collapse
Affiliation(s)
- Jinhui Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhiping Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Liwei Yan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chengxinyue Ye
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
16
|
An R, Shi C, Tang Y, Cui Z, Li Y, Chen Z, Xiao M, Xu L. Chitosan/rutin multifunctional hydrogel with tunable adhesion, anti-inflammatory and antibacterial properties for skin wound healing. Carbohydr Polym 2024; 343:122492. [PMID: 39174142 DOI: 10.1016/j.carbpol.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024]
Abstract
Effective wound care remains a significant challenge due to the need for infection prevention, inflammation reduction, and minimal tissue damage during dressing changes. To tackle these issues, we have developed a multifunctional hydrogel (CHI/CPBA/RU), composed of chitosan (CHI) modified with 4-carboxyphenylboronic acid (CPBA) and the natural flavonoid, rutin (RU). This design endows the hydrogel with body temperature-responsive adhesion and low temperature-triggered detachment, thus enabling painless removal during dressing changes. The CHI/CPBA/RU hydrogels exhibit excellent biocompatibility, maintaining over 97 % viability of L929 cells. They also demonstrate potent intracellular free radical scavenging activity, with scavenging ratios ranging from 53 % to 70 %. Additionally, these hydrogels show anti-inflammatory effects by inhibiting pro-inflammatory cytokines (TNF-α, IL-6, and iNOS) and increasing anti-inflammatory markers (Arg1 and CD206) in RAW 264.7 macrophages. Notably, they possess robust antimicrobial properties, inhibiting over 99.9 % of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus growth. In vivo testing on a murine full-thickness skin defect model shows that the hydrogel significantly accelerates wound healing by reducing inflammation, increasing collagen deposition, and promoting angiogenesis, achieving 98 % healing by day 10 compared to 78 % in the control group. These attributes make the polysaccharide-based hydrogel a promising material for advanced wound care.
Collapse
Affiliation(s)
- Ran An
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Chenyu Shi
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yan Tang
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Zan Cui
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Yinping Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Zhiyong Chen
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Min Xiao
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Li Xu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
17
|
Zhao G, Zhang A, Chen X, Xiang G, Jiang T, Zhao X. Barnacle inspired strategy combined with solvent exchange for enhancing wet adhesion of hydrogels to promote seawater-immersed wound healing. Bioact Mater 2024; 41:46-60. [PMID: 39101027 PMCID: PMC11296073 DOI: 10.1016/j.bioactmat.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Hydrogels are promising materials for wound protection, but in wet, or underwater environments, the hydration layer and swelling of hydrogels can seriously reduce adhesion and limit their application. In this study, inspired by the structural characteristics of strong barnacle wet adhesion and combined with solvent exchange, a robust wet adhesive hydrogel (CP-Gel) based on chitosan and 2-phenoxyethyl acrylate was obtained by breaking the hydration layer and resisting swelling. As a result, CP-Gel exhibited strong wet adhesion to various interfaces even underwater, adapted to joint movement and skin twisting, resisted sustained rushing water, and sealed damaged organs. More importantly, on-demand detachment and controllable adhesion were achieved by promoting swelling. In addition, CP-Gel with good biosafety significantly promotes seawater-immersed wound healing and is promising for use in water-contact wound care, organ sealing, and marine emergency rescue.
Collapse
Affiliation(s)
- Guiyuan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Aijia Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiangyan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Guangli Xiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
18
|
Jiang Y, Feng X, Qiao X, Li Y, Li X, Yang J, Han L. Plant-inspired visible-light-driven bioenergetic hydrogels for chronic wound healing. Bioact Mater 2024; 41:523-536. [PMID: 39210966 PMCID: PMC11359762 DOI: 10.1016/j.bioactmat.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.
Collapse
Affiliation(s)
- Yuping Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaomin Feng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yufeng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaozhuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
19
|
Fan Y, Wang H, Wang C, Xing Y, Liu S, Feng L, Zhang X, Chen J. Advances in Smart-Response Hydrogels for Skin Wound Repair. Polymers (Basel) 2024; 16:2818. [PMID: 39408528 PMCID: PMC11479249 DOI: 10.3390/polym16192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Hydrogels have emerged as promising candidates for biomedical applications, especially in the treatment of skin wounds, as a result of their unique structural properties, highly tunable physicochemical properties, and excellent biocompatibility. The integration of smart-response features into hydrogels allows for dynamic responses to different external or internal stimuli. Therefore, this paper reviews the design of different smart-responsive hydrogels for different microenvironments in the field of skin wound therapy. First, the unique microenvironments of three typical chronic difficult-to-heal wounds and the key mechanisms affecting wound healing therapeutic measures are outlined. Strategies for the construction of internal stimulus-responsive hydrogels (e.g., pH, ROS, enzymes, and glucose) and external stimulus-responsive hydrogels (e.g., temperature, light, electricity, and magnetic fields) are highlighted from the perspective of the wound microenvironment and the in vitro environment, and the constitutive relationships between material design, intelligent response, and wound healing are revealed. Finally, this paper discusses the severe challenges faced by smart-responsive hydrogels during skin wound repair and provides an outlook on the combination of smart-responsive hydrogels and artificial intelligence to give scientific direction for creating and using hydrogel dressings that respond to stimuli in the clinic.
Collapse
Affiliation(s)
- Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Han Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Yuanhao Xing
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Shuying Liu
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (Y.F.); (H.W.); (C.W.); (Y.X.); (S.L.); (L.F.); (X.Z.)
- State Key Laboratory of Mineral Processing, Beijing 100160, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China
| |
Collapse
|
20
|
Fu YJ, Wang RK, Ma CY, Wang LY, Long SY, Li K, Zhao X, Yang W. Injectable Oxygen-Carrying Microsphere Hydrogel for Dynamic Regulation of Redox Microenvironment of Wounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403781. [PMID: 38850188 DOI: 10.1002/smll.202403781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Indexed: 06/10/2024]
Abstract
The delayed healing of infected wounds can be attributed to the increased production of reactive oxygen species (ROS) and consequent damages to vascellum and tissue, resulting in a hypoxic wound environment that further exacerbates inflammation. Current clinical treatments including hyperbaric oxygen therapy and antibiotic treatment fail to provide sustained oxygenation and drug-free resistance to infection. To propose a dynamic oxygen regulation strategy, this study develops a composite hydrogel with ROS-scavenging system and oxygen-releasing microspheres in the wound dressing. The hydrogel itself reduces cellular damage by removing ROS derived from immune cells. Simultaneously, the sustained release of oxygen from microspheres improves cell survival and migration in hypoxic environments, promoting angiogenesis and collagen regeneration. The combination of ROS scavenging and oxygenation enables the wound dressing to achieve drug-free anti-infection through activating immune modulation, inhibiting the secretion of pro-inflammatory cytokines interleukin-6, and promoting tissue regeneration in both acute and infected wounds of rat skins. Thus, the composite hydrogel dressing proposed in this work shows great potential for dynamic redox regulation of infected wounds and accelerates wound healing without drugs.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng-Ye Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li-Ya Wang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Si-Yu Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
22
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
23
|
Park S, Kang DK, Lee D, Choi G, Kim J, Lee C, Seong M, Bartlett MD, Jeong HE. Multiscale crack trapping for programmable adhesives. SCIENCE ADVANCES 2024; 10:eadq3438. [PMID: 39259793 PMCID: PMC11389778 DOI: 10.1126/sciadv.adq3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
The precise control of crack propagation at bonded interfaces is crucial for smart adhesives with advanced performance. However, previous studies have primarily concentrated on either microscale or macroscale crack propagation. Here, we present a hybrid adhesive that integrates microarchitectures and macroscopic nonlinear cut architectures for unparalleled adhesion control. The integration of these architectural elements enables conformal attachment and simultaneous crack trapping across multiple scales for high capacity, enhancing adhesion by more than 70×, while facilitating crack propagation at the macroscale in specific directions for programmable release and reusability. As adhesion strength and directionality can be independently controlled at any location, skin adhesive patches are created that are breathable, nondamaging, and exceptionally strong and secure yet remove easily. These capabilities are demonstrated with a skin-mounted adhesive patch with integrated electronics that accurately detects human motion and wirelessly transmits signals, enabling real-time control of avatars in virtual reality applications.
Collapse
Affiliation(s)
- Seongjin Park
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Kwan Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyuk Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chanhong Lee
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, USA
| | - Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Michael D Bartlett
- Department of Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, VA, USA
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, USA
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
24
|
Tan YL, Wong YJ, Ong NWX, Leow Y, Wong JHM, Boo YJ, Goh R, Loh XJ. Adhesion Evolution: Designing Smart Polymeric Adhesive Systems with On-Demand Reversible Switchability. ACS NANO 2024; 18:24682-24704. [PMID: 39185924 DOI: 10.1021/acsnano.4c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Smart polymeric switchable adhesives represent a rapidly emerging class of advanced materials, exhibiting the ability to undergo on-demand transitioning between "On" and "Off" adhesion states. By selectively tuning external stimuli triggers (including temperature, light, electricity, magnetism, and chemical agents), we can engineer these materials to undergo reversible changes in their bonding capabilities. The strategic design selection of stimuli is a pivotal factor in the design of switchable adhesive systems. This review outlines recent advancements in the field of smart switchable polymeric adhesives over the past decade with a focus on the selection of stimulus triggers. These systems are further categorized into one of four adhesion switching mechanisms upon initiation by a specific stimuli-trigger: (i) interfacial adhesion, (ii) stiffness, (iii) contact area, or (iv) suction-based switching. Evaluation of adhesion switching performance across systems is primarily made based on three key metrics: (i) maximum adhesion strength, (ii) switch ratio, and (iii) switch time. Different stimuli and mechanisms offer distinct advantages and limitations, influencing the performance characteristics and applicability of these materials across domains such as detachable biomedical devices, robotic grippers, and climbing robots. This review thus offers a perspective on the present advancements and challenges in this emerging field, along with insights into future directions.
Collapse
Affiliation(s)
- Yee Lin Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jing Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Nicholas Wei Xun Ong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Yihao Leow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| | - Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Rubayn Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Republic of Singapore
| |
Collapse
|
25
|
Xiang Y, Pan Z, Qi X, Ge X, Xiang J, Xu H, Cai E, Lan Y, Chen X, Li Y, Shi Y, Shen J, Liu J. A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes. Bioact Mater 2024; 39:562-581. [PMID: 38883310 PMCID: PMC11179175 DOI: 10.1016/j.bioactmat.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines. However, many patients experience minimal benefits from certain medical treatments because of poor compliance, short retention times in the oral cavity, and inadequate drug efficacy. Herein, we present a novel hydrogel patch (SCE2) composed of a biopolymer matrix (featuring ultraviolet-triggered adhesion properties) loaded with cuttlefish ink nanoparticles (possessing pro-healing functions). Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light. SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species. These properties contribute to the elimination of bacteria and the management of the oxidation process, thus accelerating the healing phase's progression from inflammation to proliferation. In studies involving diabetic rats with oral ulcers, the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area, facilitating rapid re-epithelialization, and fostering angiogenesis. In conclusion, this light-sensitive hydrogel patch offers a promising path to expedited wound healing, potentially transforming treatment strategies for clinical oral ulcers.
Collapse
Affiliation(s)
- Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhuge Pan
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Junbo Xiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaojing Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jinsong Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
26
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
27
|
Huang Z, Wang M, Chai L, Chen H, Chen D, Li Y, Liu H, Wu Y, Yang X, He L, Xue L, Lei Y, Guo L. Glucose-responsive, self-healing, wet adhesive and multi-biofunctional hydrogels for diabetic wound healing. Mater Today Bio 2024; 27:101159. [PMID: 39149409 PMCID: PMC11325802 DOI: 10.1016/j.mtbio.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Diabetic wounds are serious clinical complications which manifest wet condition due to the mass exudate, along with disturbed regulation of inflammation, severe oxidative stress and repetitive bacterial infection. Existing treatments for diabetic wounds remain unsatisfactory due to the lack of ideal dressings that encompass mechanical performance, adherence to moist tissue surfaces, quick repair, and diverse therapeutic benefits. Herein, we fabricated a wet adhesive, self-healing, glucose-responsive drug releasing hydrogel with efficient antimicrobial and pro-healing properties for diabetic wound treatment. PAE hydrogel was constructed with poly(acrylic acid-co-acrylamide) (AA-Am) integrated with a dynamic E-F crosslinker, which consisted of epigallocatechin gallate (EGCG) and 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA). Due to the dynamic crosslinking nature of boronate esters, abundant catechol groups and hydrogen bonding, PAE hydrogel demonstrated excellent mechanical properties with about 1000 % elongation, robust adhesion to moist tissues, fast self-healing, and absorption of biofluids of 10 times of its own weight. Importantly, PAE hydrogel exhibited sustained and glucose-responsive release of EGCG. Together, the bioactive PAE hydrogel had effective antibacterial, antioxidative, and anti-inflammatory properties in vitro, and accelerated diabetic wound healing in rats via reducing tissue-inflammatory response, enhancing angiogenesis, and reprogramming of macrophages. Overall, this versatile hydrogel provides a straightforward solution for the treatment of diabetic wound, and shows potential for other wound-related application scenarios.
Collapse
Affiliation(s)
- Zhuo Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Langjie Chai
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yulin Li
- The Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hongtao Liu
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - You Wu
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Xuxia Yang
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Lu He
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Longjian Xue
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
28
|
Yuan L, Wei H, Pan Z, Deng X, Yang L, Wang Y, Lu D, Li Z, Luo F, Li J, Tan H. A bioinspired injectable antioxidant hydrogel for prevention of postoperative adhesion. J Mater Chem B 2024; 12:6968-6980. [PMID: 38915270 DOI: 10.1039/d4tb00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Postoperative adhesions, a prevalent complication following abdominal surgery, affect 90% of patients undergoing abdominal surgical procedures. Currently, the primary approach to prevent postoperative adhesions involves physical isolation of the surgical site and surrounding tissues using a hydrogel; however, this method represents a rudimentary strategy. Herein, considering the impact of oxidative stress and free radicals on postoperative adhesion during wound healing, an injectable antioxidant hydrogel, named PU-OHA-D, was successfully synthesized, which is formed by the crosslinking of dopamine-modified oxidized hyaluronic acid (OHA-D) and dihydrazide-terminated polyurethane (PU-ADH) through hydrazone bonding. PU-OHA-D hydrogel possesses versatile characteristics such as rapid gel formation, injectability, self-repair capability and biodegradability. Additionally, they exhibit an excellent ability to clear free radicals and superior tissue adhesion. PU-OHA-D can be injected in situ to form a hydrogel to prevent abdominal wall-cecum adhesion. Importantly, it can effectively eliminate free radicals and inhibit oxidative stress at the wound site. Thereby, it leads to collagen physiological degradation and prevents the occurrence of postoperative adhesions. The bioinspired hydrogel demonstrates its great potential in preventing postoperative adhesion and promoting wound healing.
Collapse
Affiliation(s)
- Lei Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hongxiu Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - ZhongJing Pan
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Lin Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Lu
- Department of Otorhinolaryngology, Head & Neck Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
29
|
Luo W, Li Z, Che J, Li X, Zhang H, Tian J, Wang C, Li G, Jin L. Near-Infrared Responsive Nanocomposite Hydrogel Dressing with Anti-Inflammation and Pro-Angiogenesis for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34720-34731. [PMID: 38934381 DOI: 10.1021/acsami.4c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Zhenzhen Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Junjie Che
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Xinyao Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Jinxiu Tian
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Chunyang Wang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - GuiYing Li
- The Key Laboratory of Basic Research on Blood Purification Application in Hebei Province, Affiliated Hospital of Hebei Engineering University, Handan 056002, P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| |
Collapse
|
30
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
31
|
Zhu R, Wang R, Li J, Chen M, Qiu L, Bai S. An artificial liquid-liquid phase separation-driven silk fibroin-based adhesive for rapid hemostasis and wound sealing. Acta Biomater 2024; 182:14-27. [PMID: 38750918 DOI: 10.1016/j.actbio.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
The powerful adhesion systems of marine organisms have inspired the development of artificial protein-based bioadhesives. However, achieving robust wet adhesion using artificial bioadhesives remains technically challenging because the key element of liquid-liquid phase separation (LLPS)-driven complex coacervation in natural adhesion systems is often ignored. In this study, mimicking the complex coacervation phenomenon of marine organisms, an artificial protein-based adhesive hydrogel (SFG hydrogel) was developed by adopting the LLPS-mediated coacervation of the natural protein silk fibroin (SF) and the anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SF/SDBS complex coacervate enabled precise spatial positioning and easy self-adjustable deposition on irregular substrate surfaces, allowing for tight contact. Spontaneous liquid-to-solid maturation promoted the phase transition of the SF/SDBS complex coacervate to form the SFG hydrogel in situ, enhancing its bulk cohesiveness and interfacial adhesion. The formed SFG hydrogel exhibited intrinsic advantages as a new type of artificial protein-based adhesive, including good biocompatibility, robust wet adhesion, rapid blood-clotting capacity, and easy operation. In vitro and in vivo experiments demonstrated that the SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, thus advancing its clinical applications. STATEMENT OF SIGNIFICANCE: Marine mussels utilize the liquid-liquid phase separation (LLPS) strategy to induce the supramolecular assembly of mussel foot proteins, which plays a critical role in strong underwater adhesion of mussel foot proteins. Herein, an artificial protein-based adhesive hydrogel (named SFG hydrogel) was reported by adopting the LLPS-mediated coacervation of natural protein silk fibroin (SF) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SFG hydrogel enabled the precise spatial positioning and easy self-adjustable deposition on substrate surfaces with irregularities, allowing tight interfacial adhesion and cohesiveness. The SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, exhibiting intrinsic advantages as a new type of artificial protein-based bioadhesives.
Collapse
Affiliation(s)
- Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ruiheng Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jie Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Minghui Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingyu Qiu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
32
|
Chen M, Wang F, Yan Q, Da M, Wang F. Photothermally responsive graphene hybrid dry powders for diabetic wound healing. Biomed Phys Eng Express 2024; 10:045055. [PMID: 38821043 DOI: 10.1088/2057-1976/ad5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
The treatment of diabetic wounds remains a significant challenge in the medical field. In this study, we present a novel approach using photothermally responsive graphene hybrid dry powders for the treatment of diabetic wounds. These powders, derived from polyacrylic acid (PAA) and polyethyleneimine (PEI), exhibit rapid water absorption at the interface, leading to thein situformation of physically crosslinked hydrogels due to interactions between polymers. Furthermore, by incorporating graphene into the PAA/PEI powder mixture, we establish a multifunctional platform with capabilities such as photothermal antibacterial effects and drug release. Given the outstanding performance of this hybrid material, we demonstrate its potential in wound healing by incorporating the tumor necrosis factor-alpha (TNF-α) inhibitor Etanercept into the PAA/PEI powder. This intervention resulted in a significant improvement in the wound healing process in diabetic rats, as evidenced by the downregulation of inflammatory factors, promotion of collagen deposition, and enhanced vascularization. These remarkable attributes underscore the enormous potential value of the presented hydrogel patches in the field of biomedicine.
Collapse
Affiliation(s)
- Mei Chen
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fengyuan Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Qiao Yan
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Meihong Da
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Fei Wang
- Department of Dermatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Xie H, Shi G, Wang R, Jiang X, Chen Q, Yu A, Lu A. Bioinspired wet adhesive carboxymethyl cellulose-based hydrogel with rapid shape adaptability and antioxidant activity for diabetic wound repair. Carbohydr Polym 2024; 334:122014. [PMID: 38553214 DOI: 10.1016/j.carbpol.2024.122014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/02/2024]
Abstract
Currently, adhesive hydrogels have shown promising effect in chronic diabetic wound repair. However, there are issues and challenges in treating diabetic wounds due to inadequate wet adhesion, unable to fill irregular and deep wounds, and oxidative stress. Herein, a mussel-inspired naturally hydrogel dressing with rapid shape adaptability, wet adhesion and antioxidant abilities for irregular, deep and frequently movement diabetic wounds repair was constructed by comprising catechol modified carboxymethyl cellulose (CMC-DA) and tannic acid. Benefiting from the reversible hydrogen bonding, the resulting hydrogels exhibited injectability, remarkable self-healing ability, rapid shape adaptability and strong tissue adhesion (45.9 kPa), thereby contributing to self-adaptive irregular-shaped wounds or moving joint parts. Especially, the adhesion strength of the hydrogel on wet tissue still remained at 14.9 kPa. Besides, the hydrogels could be easily detached from the skin by ice-cooling that avoided secondary damage caused by dressing change. Remarkably, the hydrogels possessed excellent antioxidant, satisfactory biocompatibility, efficient hemostasis and antibacterial properties. The in vivo evaluation further demonstrated that the hydrogel possessed considerable wound-healing promotion effect by regulating diabetic microenvironment, attributed to that the hydrogel could significantly reduce inflammatory response, alleviate oxidative stress and regulate neovascularization. Overall, this biosafe adhesive hydrogel had great potentials for diabetic wound management.
Collapse
Affiliation(s)
- Hongxia Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Ge Shi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ruizi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xueyu Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qianqian Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
34
|
Wang L, Liu K, Cui S, Qiu L, Yang D, Nie J, Ma G. Dehydration-Toughing Dual-Solvent Gels with Viscoelastic Transition for Infectious Wound Treatment. Adv Healthc Mater 2024; 13:e2303655. [PMID: 38265971 DOI: 10.1002/adhm.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The modulus of traditional biomedical hydrogels increases exponentially meditated by dehydration-stiffing mechanism, which leads to the failure of interface matching between hydrogels and soft tissue wounds. It is found in the study that the dual-solvent gels exhibit dehydration-toughening mechanism with the slowly increasing modulus that are always match the soft tissue wounds. Therefore, dual-solvent glycerol hydrogels (GCFen-gly DGHs) are prepared with hydrophobically modified catechol chitosan (hmCSC) and gelatin based on the supramolecular interactions. GCFen-gly DGHs exhibit excellent water retention capacity with a total solvent content exceeding 80%, permanent skin-like modulus within a range of 0.45 to 4.13 kPa, and stable photothermal antibacterial abilities against S, aureus, E. coli, as well as MRSA. Infectious full-thickness rat skin defect model and tissue section analysis indicate that GCFen-gly DGHs are able to accelerate infectious wound healing by alleviating the inflammatory response, promoting granulation tissue growth, re-epithelialization, collagen deposition, and vascular regeneration. As a result, GCFen-gly DGHs is expected to become the next-generation biological gel materials for infectious wound treatment.
Collapse
Affiliation(s)
- Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kuilong Liu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
35
|
Zhang X, Ning F, Chen Y, Dong CM. All-in-one polysaccharide hydrogel with resistant vascular burst pressure and cooperative wound microenvironment regulation for fatal arterial hemorrhage and diabetic wound healing. Int J Biol Macromol 2024; 272:132736. [PMID: 38830494 DOI: 10.1016/j.ijbiomac.2024.132736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Fatal massive hemorrhage and diabetic wound healing are world widely challenging in surgical managements, and uncontrolled bleeding, chronic inflammation and damaged remodeling heavily hinder the whole healing processes. Considering hemostasis, inflammation and wound microenvironment cooperatively affect the healing progression, we design all-in-one beta-glucan (BG) hybrid hydrogels reinforced with laponite nanoclay that demonstrate tunable tissue adhesion, resistant vascular burst pressure and cooperative wound microenvironment regulation for arterial hemostasis and diabetic wound prohealing. Those hydrogels had honeycomb-like porous microstructure with average pore size of 7-19 μm, tissue adhesion strength of 18-46 kPa, and vascular burst pressure of 58-174 mmHg to achieve superior hemostasis in rat liver and femoral artery models. They could effectively scavenge reactive oxygen species, transform macrophages from proinflammatory M1 into prohealing M2, and shorten the inflammation duration via synergistic actions of BG and nitric oxide (NO). Single treatment of NO-releasing BG hybrid hydrogels attained complete closure of diabetic wounds within 14 days, orchestrated to accelerate the epithelization and dermis growth, and restored normal vascularization, achieving high performance healing with optimal collagen deposition and hair follicle regeneration. Consequently, this work opens up a new avenue to design all-in-one polysaccharide hydrogels for applications in massive bleeding hemostats and diabetic wound dressings.
Collapse
Affiliation(s)
- Xueliang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Fangrui Ning
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanzheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
36
|
Cao Y, Jiang Y, Bai R, Wu J, Dai L, Wan S, Zhu H, Su J, Liu M, Sun H. A multifunctional protein-based hydrogel with Au nanozyme-mediated self generation of H 2S for diabetic wound healing. Int J Biol Macromol 2024; 271:132560. [PMID: 38782332 DOI: 10.1016/j.ijbiomac.2024.132560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/01/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Diabetics usually suffer from chronic impaired wound healing due to facile infection, excessive inflammation, diabetic neuropathy, and peripheral vascular disease. Hence, the development of effective diabetic wound therapy remains a critical clinical challenge. Hydrogen sulfide (H2S) regulates inflammation, oxidative stress, and angiogenesis, suggesting a potential role in promoting diabetic wound healing. Herein, we propose a first example of fabricating an antibiotic-free antibacterial protein hydrogel with self-generation of H2S gas (H2S-Hydrogel) for diabetic wound healing by simply mixing bovine serum albumin‑gold nanoclusters (BSA-AuNCs) with Bis[tetrakis(hydroxymethyl)phosphonium] sulfate (THPS) at room temperature within a few minutes. In this process, the amino group in BAS and the aldehyde group in THPS are crossed together by Mannich reaction. At the same time, tris(hydroxymethyl) phosphorus (trivalent phosphorus) from THPS hydrolysis could reduce disulfide bonds in BSA to sulfhydryl groups, and then the sulfhydryl group generates H2S gas under the catalysis of BSA-AuNCs. THPS in H2S-Hydrogel can destroy bacterial biofilms, while H2S can inhibit oxidative stress, promote proliferation and migration of epidermal/endothelial cells, increase angiogenesis, and thus significantly increase wound closure. It would open a new perspective on the development of effective diabetic wound dressing.
Collapse
Affiliation(s)
- Yuyu Cao
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yunjing Jiang
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Rongxian Bai
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jie Wu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Lei Dai
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Shufan Wan
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Hongda Zhu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Jiangtao Su
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Mingxing Liu
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Hongmei Sun
- School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
37
|
Jiang H, Huang X, Yang J, Yu X, Yang W, Song Y, Wen N, Wang Y, Long J, Lu S, Zheng X, Lin Z. Dual network composite hydrogels with robust antibacterial and antifouling capabilities for efficient wound healing. J Mater Chem B 2024; 12:4909-4921. [PMID: 38682601 DOI: 10.1039/d3tb03061j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Wound dressings play a critical role in the wound healing process; however, conventional dressings often address singular functions, lacking versatility in meeting diverse wound healing requirements. Herein, dual-network, multifunctional hydrogels (PSA/CS-GA) have been designed and synthesized through a one-pot approach. The in vitro and in vivo experiments demonstrate that the optimized hydrogels have exceptional antifouling properties, potent antibacterial effects and rapid hemostatic capabilities. Notably, in a full-thickness rat wound model, the hydrogel group displays a remarkable wound healing rate exceeding 95% on day 10, surpassing both the control group and the commercial 3M group. Furthermore, the hydrogels exert an anti-inflammatory effect by reducing inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α), enhance the release of the vascular endothelial growth factor (VEGF) to promote blood vessel proliferation, and augment collagen deposition in the wound, thus effectively accelerating wound healing in vivo. These innovative hydrogels present a novel and highly effective approach to wound healing.
Collapse
Affiliation(s)
- Hongzhi Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Xueping Huang
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jiachao Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Xunbin Yu
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Weibo Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Yunhao Song
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Na Wen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Ying Wang
- State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Shiyun Lu
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiaoling Zheng
- Department of Digestive Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhihui Lin
- Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
38
|
Sun J, Jia W, Qi H, Huo J, Liao X, Xu Y, Wang J, Sun Z, Liu Y, Liu J, Zhen M, Wang C, Bai C. An Antioxidative and Active Shrinkage Hydrogel Integratedly Promotes Re-Epithelization and Skin Constriction for Enhancing Wound Closure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312440. [PMID: 38332741 DOI: 10.1002/adma.202312440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Delayed re-epithelization and weakened skin contractions are the two primary factors that hinder wound closure in large-scale acute or chronic wounds. However, effective strategies for targeting these two aspects concurrently are still lacking. Herein, an antioxidative active-shrinkage hydrogel (AHF@AS Gel) is constructed that can integratedly promote re-epithelization and skin constriction to accelerate large-scale acute and diabetic chronic wound closure. The AHF@AS Gel is encapsulated by antioxidative amino- and hydroxyl-modified C70 fullerene (AHF) and a thermosensitive active shrinkage hydrogel (AS Gel). Specifically, AHF relieves overactivated inflammation, prevents cellular apoptosis, and promotes fibroblast migration in vitro by reducing excessive reactive oxygen species (ROS). Notably, the AHF@AS Gel achieved ≈2.7-fold and ≈1.7-fold better re-epithelization in acute wounds and chronic diabetic wounds, respectively, significantly contributing to the promotion of wound closure. Using proteomic profiling and mechanistic studies, it is identified that the AHF@AS Gel efficiently promoted the transition of the inflammatory and proliferative phases to the remodeling phase. Notably, it is demonstrated that AS Gel alone activates the mechanosensitive epidermal growth factor receptor/Akt (EGFR/Akt) pathway and promotes cell proliferation. The antioxidative active shrinkage hydrogel offers a comprehensive strategy for acute wound and diabetic chronic wound closure via biochemistry regulation integrating with mechanical forces stimulation.
Collapse
Affiliation(s)
- Jiacheng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hedong Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiawei Huo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Liao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingchao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunli Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Zhang H, Feng Y, Wang T, Zhang J, Song Y, Zhang J, Li Y, Zhou D, Gu Z. Natural polyphenolic antibacterial bio-adhesives for infected wound healing. Biomater Sci 2024; 12:2282-2291. [PMID: 38415775 DOI: 10.1039/d3bm02122j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Bio-adhesives used clinically, commonly have the ability to fill surgical voids and support wound healing, but which are devoid of antibacterial activity, and thus, could not meet the particular needs of the infected wound site. Herein, a series of natural polyphenolic antibacterial bio-adhesives were prepared via simple mixing and heating of polyphenols and acid anhydrides without any solvent or catalyst. Upon the acid anhydride ring opening and acylation reactions, various natural polyphenolic bio-adhesives could adhere to various substrates (i.e., tissue, wood, glass, rubber, paper, plastic, and metal) based on multi-interactions. Moreover, these bio-adhesives showed excellent antibacterial and anti-infection activity, rapid hemostatic performance and appropriate biodegradability, which could be widely used in promoting bacterial infection wound healing and hot burn infection wound repair. This work could provide a new strategy for strong adhesives using naturally occurring molecules, and provide a method for the preparation of novel multifunctional wound dressings for infected wound healing.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuqi Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuxian Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dingzi Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Li J, Mu X, Zhou J, Zhu S, Gao Y, Wang X, Chen JL, Miao L. Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18898-18907. [PMID: 38588524 DOI: 10.1021/acsami.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding. The hydrogel demonstrated strong adhesion to various material surfaces, including plastic, ceramic, glass, and metal. Even under high-speed rotation, it still maintains robust adhesion. The adhesion strength of the Li-AA-TA-PAM hydrogel to aluminum foil reached an impressive value of 296.875 kPa. Interestingly, the excellent contact caused by robust adhesion accelerates heat transfer, resulting in a rapid cooling performance, which mimics the perspiration of mammals. Lithium bromide (LiBr) with hydroactively sorptive sites is introduced to enhance sorption kinetics, thereby extending the effective cooling period. Consequently, the operation temperature of commercial polycrystalline silicon solar cells was reduced by 16 °C under an illumination of 1 kW m-2, and the corresponding efficiency of energy conversion was increased by 1.14%, thereby enhancing the output properties and life span of solar cells. The strategy demonstrates the potential for refrigeration applications using viscous gels.
Collapse
Affiliation(s)
- Jialing Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaojiang Mu
- Guangxi Key Laboratory for Relativity Astrophysics, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianhua Zhou
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Sijing Zhu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yangfan Gao
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoyang Wang
- Guangxi Key Laboratory for Relativity Astrophysics, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jun-Liang Chen
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lei Miao
- Guangxi Key Laboratory for Relativity Astrophysics, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
41
|
Liu L, Zheng J, Li S, Deng Y, Zhao S, Tao N, Chen W, Li J, Liu YN. Nitric oxide-releasing multifunctional catechol-modified chitosan/oxidized dextran hydrogel with antibacterial, antioxidant, and pro-angiogenic properties for MRSA-infected diabetic wound healing. Int J Biol Macromol 2024; 263:130225. [PMID: 38368973 DOI: 10.1016/j.ijbiomac.2024.130225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The study presents a multifunctional catechol-modified chitosan (Chi-Ca)/oxidized dextran (Dex-CHO) hydrogel (CDP-PB) that possesses antibacterial, antioxidant, and pro-angiogenic properties, aimed at improving the healing of diabetic wounds. The achievement of the as-prepared CDP-PB hydrogel with superb antibacterial property (99.9 %) can be realized through the synergistic effect of phenylboronic acid-modified polyethyleneimine (PEI-PBA) and photothermal therapy (PTT) of polydopamine nanoparticles loaded with the nitric oxide (NO) donor BNN6 (PDA@BNN6). Notably, CDP-PB hydrogel achieves ∼3.6 log10 CFU/mL MRSA of inactivation efficiency under 808 nm NIR laser irradiation. In order to mitigate oxidative stress, the Chi-Ca was synthesized and afterward subjected to a reaction with Dex-CHO via a Schiff-base reaction. The catechol-containing hydrogel demonstrated its effectiveness in scavenging DPPH, •OH, and ABTS radicals (> 85 %). In addition, the cellular experiment illustrates the increased migration and proliferation of cells by the treatment of CDP-PB hydrogel in the presence of oxidative stress conditions. Moreover, the findings from the animal model experiments provide evidence that the CDP-PB hydrogel exhibited efficacy in the eradication of wound infection, facilitation of angiogenesis, stimulation of granulation, and augmentation of collagen deposition. These results indicate the potential of the CDP-PB hydrogel for use in clinical applications.
Collapse
Affiliation(s)
- Longhai Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jia Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Shaohua Li
- Institute of Environment Protection, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, PR China.
| | - Yuanyuan Deng
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, Hunan 410083, China
| | - Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Na Tao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianghua Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
42
|
Zhang Y, Pan Y, Chang R, Chen K, Wang K, Tan H, Yin M, Liu C, Qu X. Advancing homogeneous networking principles for the development of fatigue-resistant, low-swelling and sprayable hydrogels for sealing wet, dynamic and concealed wounds in vivo. Bioact Mater 2024; 34:150-163. [PMID: 38225944 PMCID: PMC10788230 DOI: 10.1016/j.bioactmat.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024] Open
Abstract
Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Ronghang Chang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kangli Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kun Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haoqi Tan
- Suzhou Innovation Center of Shanghai University, Shanghai University, Suzhou 215000, Jiangsu, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism Shanghai, 200237, China
| |
Collapse
|
43
|
Jiang F, Li L, Tian Y, Su Y, Zhao T, Ren R, Chi Z, Liu C. Enteromorpha Prolifera Polysaccharide-Derived Injectable Hydrogel for Fast Intraoperative Hemostasis and Accelerated Postsurgical Wound Healing Following Tumor Resection. Adv Healthc Mater 2024; 13:e2303456. [PMID: 38142288 DOI: 10.1002/adhm.202303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Intraoperative bleeding and delayed postsurgical wound healing caused by persistent inflammation can increase the risk of tumor recurrence after surgical resection. To address these issues, Enteromorpha prolifera polysaccharide (PEP) with intrinsic potentials for hemostasis and wound healing, is chemically modified into aldehyde-PEP and hydrazine-PEP. Thereby, an injectable double-network hydrogel (OPAB) is developed via forming dual dynamic bonding of acylhydrazone bonds between the decorated aldehyde and hydrazine groups and hydrogen bonds between hydroxyl groups between boric acid and PEP skeletons. The OPAB exhibits controllable shape-adaptive gelation (35.0 s), suitable mechanical properties, nonstimulating self-healing (60 s), good wet tissue adhesion (30.9 kPa), and pH-responsive biodegradability. For in vivo models, owing to these properties, OPAB can achieve rapid hemostasis within 30 s for the liver hemorrhage, and readily loading of curcumin nanoparticles to remarkably accelerate surgical wound closure by alleviating inflammation, re-epithelialization, granulation tissue formation, and collagen deposition. Overall, this multifunctional injectable hydrogel is a promising material that facilitates simultaneous intraoperative hemorrhage and postsurgical wound repair, holding significant potential in the clinical managements of bleeding and surgical wounds for tumor resection.
Collapse
Affiliation(s)
- Fei Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Luxi Li
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yu Tian
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Yun Su
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Tiange Zhao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Ruyi Ren
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
44
|
Jiang Y, Cao Y, Wu J, Bai R, Wan S, Dai L, Su J, Sun H. Au nanozyme-based multifunctional hydrogel for inflammation visible monitoring and treatment. Mater Today Bio 2024; 25:100960. [PMID: 38322658 PMCID: PMC10844747 DOI: 10.1016/j.mtbio.2024.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Chronic inflammation can delay wound healing, eventually leading to tissue necrosis and even cancer. Developing real-time intelligent inflammation monitoring and treatment to achieve effective wound management is important to promote wound healing. In this study, a smart multifunctional hydrogel (Hydrogel@Au NCs&DG) was proposed to monitor and treat the wound inflammation. It was prepared by mixing 3-carboxy-phenylboronic acid modified chitosan (CS-cPBA), β-glycerophosphate (β-GP), albumin-protected gold nanoclusters (BSA-Au NCs), and dipotassium glycyrrhizinate (DG) about 10 s. In this hydrogel, CS-cPBA and β-GP are crosslinked together by boric acid ester bond and hydrogen bond to form the main hydrogel network, endowing the hydrogel with self-healing and injectable properties to adapt irregular wounds. Importantly, the as-prepared hydrogel with good biocompatibility and excellent adhesion property could directly determine the H2O2 to monitor the wound microenvironment by visible fluorescence change of BSA-Au NCs and then guide the frequency of dressing change to eliminate inflammation. The results demonstrated that the as-prepared smart hydrogel could be expected to serve as an intelligent wound dressing to promote inflammation-infected wound healing.
Collapse
Affiliation(s)
- Yunjing Jiang
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Yuyu Cao
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Jie Wu
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Rongxian Bai
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Shufan Wan
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Lei Dai
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Jiangtao Su
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Hongmei Sun
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
45
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
46
|
Yang D, Shou Z, Xie X, Tang Y, Li Z, Chen H, Tang S, Zan X. Gelatin-based dynamic response antioxidant, anti-inflammatory multifunctional hydrogel for enhanced diabetic wound repair. Int J Biol Macromol 2024; 260:129453. [PMID: 38253143 DOI: 10.1016/j.ijbiomac.2024.129453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Diabetic wound therapy presents significant challenges in the clinical environment, where persistent bleeding, disturbed inflammatory regulation, impaired cellular proliferation, and impaired tissue remodeling are major features of diabetic wound healing. However, current treatment strategies need to be considered in the context of the dynamic and complex needs of chronic wound healing. Here, multifunctional dynamic boronic acid cross-linked hydrogels were prepared by the reaction of gelatin (Gel) inoculated with 5-carboxy 3-nitrophenylboronic acid (NPBA) and Epigallocatechin gallate (EGCG) to achieve rapid gelation at pH = 7.4, EGCG could interact electrostatically with cationic antimicrobial peptides (AMP) to achieve the effective loading of AMP in the hydrogels. This hydrogel can be injected and adhered to skin defects in diabetic patients to provide a barrier and rapid hemostasis. In a high glucose microenvironment, the rapid release of AMP effectively kills bacteria, while the responsive release of EGCG eliminates reactive oxygen species (ROS) and promotes macrophage M2 polarization. In addition, the hydrogel had excellent biocompatibility and degradability properties, degraded completely after 3 days of subcutaneous injection, and was non-toxic in H&E staining of major organs and serum liver function indices in mice. This multifunctional injectable hydrogel accelerates diabetic skin wound repair and is a promising dressing for the precise treatment of diabetic wounds.
Collapse
Affiliation(s)
- Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, China; Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China
| | - Zeyu Shou
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, Zhejiang Province 325000, China
| | - Xiaoling Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Yi Tang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Zhiyun Li
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Hao Chen
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, Zhejiang Province 325027, China.
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China.
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province 317000, China; Wenzhou Key Laboratory of Perioperative Medicine Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, China.
| |
Collapse
|
47
|
Xu C, Huang R, Yu M, Zhang S, Wang Y, Chen X, Hu Z, Wang Y, Xing X. Facile Bond Exchanging Strategy for Engineering Wet Adhesion and Antioxidant/Antibacterial Thin Layer over a Dynamic Hydrogel via the Carbon Dots Derived from Tannic Acid/ε-Polylysine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7790-7805. [PMID: 38301153 DOI: 10.1021/acsami.3c17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Adhesive hydrogels, playing an essential role in stretchable electronics, soft robotics, tissue engineering, and so forth, upon functioning often need to adhere to various substrates in wet conditions and simultaneously exhibit antibacterial/antioxidant properties while possessing the intrinsic stretchability and elasticity of the hydrogel network intact. Therefore, simple approaches to conveniently access adhesive hydrogels with multifunctional surfaces are being pursued. Herein, a facile strategy has been proposed to construct multifunctional adhesive hydrogels via surface engineering of a multifunctional carbon dot (CD)-decorated polymeric thin layer by dynamic bond exchange. By this strategy, a double cross-linked network hydrogel of polyacrylamide (PAM) and oxidized dextran (ODA) was engineered with a unique dense layer over the Schiff base hydrogel matrix by aqueous solution immersion of PA-120, versatile CDs derived from tannic acid (TA) and ε-polylysine (PL). Without any additional agents, the PA-120 CDs with residual polyphenolic/catechol and amine moieties were incorporated into the surface structure of the hydrogel network by the combined action of the Schiff base and hydrogen bonds to form a dense surface layer that can exhibit high wet adhesive performance via the amine-polyphenol/catechol pair. The armor-like dense architecture also endowed hydrogels with considerably enhanced tensile/compression properties and excellent antioxidant/antibacterial abilities. Besides, the single-sided modified Janus hydrogel and completely surface-modified hydrogel can be flexibly developed through this approach. This strategy will provide new insights into the preparation and application of surface-modified hydrogels featuring multiple functions and tunable interfacial properties.
Collapse
Affiliation(s)
- Chunning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruobing Huang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiyin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanglei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhimin Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
48
|
Yang M, Huang C, Yu HY, Dong Y, Abdalkarim SYH, Qin CC, Wu M, Shen Y. Next-generation self-adhesive dressings: Highly stretchable, antibacterial, and UV-shielding properties enabled by tannic acid-coated cellulose nanocrystals. Int J Biol Macromol 2024; 257:128715. [PMID: 38081484 DOI: 10.1016/j.ijbiomac.2023.128715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/05/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Hydrogels with excellent high-water uptake and flexibility have great potential for wound dressing. However, pure hydrogels without fiber skeleton faced poor water retention, weak fatigue resistance, and mechanical strength to hinder the development of the dressing as next-generation functional dressings. We prepared an ultrafast gelation (6 s) Fe3+/TA-CNC hydrogel (CTFG hydrogel) based on a self-catalytic system and bilayer self-assembled composites. The CTFG hydrogel has excellent flexibility (800% of strain), fatigue resistance (support 60% compression cycles), antibacterial, and self-adhesive properties (no residue or allergy after peeling off the skin). CTFG@S bilayer composites were formed after electrospun silk fibroin (SF) membranes were prepared and adhesive with CTFG hydrogels. The CTFG@S bilayer composites had significant UV-shielding (99.95%), tensile strain (210.9 KPa), and sensitive humidity-sensing properties. Moreover, the integrated structure improved the mechanical properties of electrospun SF membranes. This study would provide a promising strategy for rapidly preparing multifunctional hydrogels for wound dressing.
Collapse
Affiliation(s)
- Mingchen Yang
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Chengling Huang
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Yanjuan Dong
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Cong Cong Qin
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Meiqin Wu
- Key Labeoratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yunfei Shen
- Huzhou City Linghu Xinwang Chemical Co., Ltd, Huzhou 313018, China
| |
Collapse
|
49
|
Kim H, Cha H, Kim M, Lee YJ, Yi H, Lee SH, Ira S, Kim H, Im C, Yeo W. AR-Enabled Persistent Human-Machine Interfaces via a Scalable Soft Electrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305871. [PMID: 38087936 PMCID: PMC10870043 DOI: 10.1002/advs.202305871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/15/2023] [Indexed: 02/17/2024]
Abstract
Augmented reality (AR) is a computer graphics technique that creates a seamless interface between the real and virtual worlds. AR usage rapidly spreads across diverse areas, such as healthcare, education, and entertainment. Despite its immense potential, AR interface controls rely on an external joystick, a smartphone, or a fixed camera system susceptible to lighting. Here, an AR-integrated soft wearable electronic system that detects the gestures of a subject for more intuitive, accurate, and direct control of external systems is introduced. Specifically, a soft, all-in-one wearable device includes a scalable electrode array and integrated wireless system to measure electromyograms for real-time continuous recognition of hand gestures. An advanced machine learning algorithm embedded in the system enables the classification of ten different classes with an accuracy of 96.08%. Compared to the conventional rigid wearables, the multi-channel soft wearable system offers an enhanced signal-to-noise ratio and consistency over multiple uses due to skin conformality. The demonstration of the AR-integrated soft wearable system for drone control captures the potential of the platform technology to offer numerous human-machine interface opportunities for users to interact remotely with external hardware and software.
Collapse
Affiliation(s)
- Hodam Kim
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Ho‐Seung Cha
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Department of Biomedical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Minseon Kim
- School of Mechanical EngineeringSoongsil University369 Sangdo‐ro, Dongjak‐guSeoul06978Republic of Korea
| | - Yoon Jae Lee
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Electrical and Computer EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hoon Yi
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Sung Hoon Lee
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- School of Electrical and Computer EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Soltis Ira
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hojoong Kim
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Chang‐Hwan Im
- Department of Biomedical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Woon‐Hong Yeo
- IEN Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Wallace H. Coulter Department of Biomedical EngineeringCollege of EngineeringGeoriga Tech and Emory University School of MedicineAtlantaGA30332USA
- Parker H. Petit Institute for Bioengineering and BiosciencesInstitute for MaterialsInstitute for Robotics and Intelligent MachinesNeural Engineering CenterGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
50
|
Wang L, Luo Y, Song Y, He X, Xu T, Zhang X. Hydrogel-Functionalized Bandages with Janus Wettability for Efficient Unidirectional Drug Delivery and Wound Care. ACS NANO 2024; 18:3468-3479. [PMID: 38227490 DOI: 10.1021/acsnano.3c10766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Chronic wounds have imposed a severe physical and economic burden on the global healthcare system, which are usually treated by the delivery of drugs or bioactive molecules to the wound bed through wound dressings. In this work, we have demonstrated a hydrogel-functionalized bandage with Janus wettability in a bilayer structure to achieve unidirectional drug delivery and multifunctional wound care. The Janus patterned bandage with porous gradient wetting channels on the upper layer is responsible for the unidirectional transport of the drug from the outside to the wound bed (up to 90% drug transport efficiency) while preventing drug diffusion in unwanted directions (<8%). The hydrogel composed of chitosan quaternary ammonium salt (HACC), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) at the bottom layer further functionalized such a bandage with biocompatibility, excellent antibacterial properties, and hemostatic ability to promote wound healing. Especially, the hydrogel-functionalized bandage with Janus wettability exhibits excellent mechanical flexibility (∼198% strain), which can comply well with skin deformation (stretching, bending, or twisting) and maintain unidirectional drug delivery behavior without any leakage. The in vivo full-thickness skin wound model confirms that the hydrogel-functionalized bandage can significantly facilitate epithelialization and collagen deposition and improve drug delivery efficiency, thus promoting wound closure and healing (the wound healing ratio was 98.10% at day 15). Such a synergistic strategy of unidirectional drug delivery and multifunctional wound care provides a more efficient, economical, and direct method to promote wound healing, which could be used as a potential high-performance wound dressing for clinical application.
Collapse
Affiliation(s)
- Lirong Wang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, People's Republic of China
| | - Yong Luo
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yongchao Song
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xuecheng He
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xueji Zhang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|