1
|
Jiao L, Cao X, Wang C, Li X, Xiao Z, Yue L, Wang Z. Deciphering the Dynamic Interplay between Rhizobacteria and Root Exudates via Cerium Oxide Nanomaterials Modulation for Promoting Soybean Yield and Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3413-3426. [PMID: 39881521 DOI: 10.1021/acs.jafc.4c11178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The interplay between root exudates and rhizobacteria is essential for enhancing agricultural productivity. Herein, the impacts of cerium dioxide nanomaterials (CeO2 NMs) on these interactions in soybean plants were investigated. Following 3-5 weeks of exposure to 5 mg·kg-1 CeO2 NMs, the composition of root exudates changed over time, with isoflavone levels increasing by 6.3-21.7 folds, potentially manipulating the rhizobacteria. Correspondingly, rhizobacteria such as Ensifer, Allorhizobium, Nitrospira, and Bradyrhizobium were enriched by 40.7-367.3% at three time points. CeO2 NMs stimulated isoflavone biosynthesis in soybean plants and their excretion into the rhizosphere via upregulating the expressions of MYB transcription factors, biosynthesis, and transporter genes. The interactions of root exudates and rhizobacteria mediated by CeO2 NMs enhanced plant biomass (45.5-75.9%), nodulation (85.7%), nitrogen fixation, nutrient acquisition, and soil health, improving soybean quality (34.4-223.9%) and yield (16.2%). This study provides insights into root exudate-rhizobacteria interactions in leguminous plants facilitated by NMs for sustainable agriculture.
Collapse
Affiliation(s)
- Liya Jiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang Y, Deng C, Zhao L, Dimkpa CO, Elmer WH, Wang B, Sharma S, Wang Z, Dhankher OP, Xing B, White JC. Reply to the Letter to the Editor: Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial or Poor Understanding of Basic Plant and Soil Science─A Critical Comment to Recent Papers in ACS Nano. ACS NANO 2024; 18:33771-33774. [PMID: 39686797 DOI: 10.1021/acsnano.4c14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Bofei Wang
- Computational Sciences, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, Texas 79968, United States
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| |
Collapse
|
3
|
Husted S, Cakmak I, Schjoerring JK, Lambers H, Kopittke PM, McLaughlin MJ. Nanotechnology Papers with an Agricultural Focus Are Too Frequently Published with a Superficial Understanding of Basic Plant and Soil Science. ACS NANO 2024; 18:33767-33770. [PMID: 39686798 DOI: 10.1021/acsnano.4c07684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Affiliation(s)
- Søren Husted
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ismail Cakmak
- Sabanci University, Faculty of Engineering & Natural Sciences, 34956 Tuzla, Istanbul, Turkey
| | - Jan Kofod Schjoerring
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sustainability, St Lucia, Queensland 4072, Australia
| | - Michael J McLaughlin
- Fertiliser Technology Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
4
|
Hafeez R, Guo J, Ahmed T, Jiang H, Raza M, Shahid M, Ibrahim E, Wang Y, Wang J, Yan C, An Q, White JC, Li B. Bio-formulated chitosan nanoparticles enhance disease resistance against rice blast by physiomorphic, transcriptional, and microbiome modulation of rice (Oryza sativa L.). Carbohydr Polym 2024; 334:122023. [PMID: 38553222 DOI: 10.1016/j.carbpol.2024.122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Rice blast disease (RBD) caused by Magnaporthe oryzae, threaten food security by cutting agricultural output. Nano agrochemicals are now perceived as sustainable, cost-effective alternatives to traditional pesticides. This study investigated bioformulation of moringa chitosan nanoparticles (M-CsNPs) and their mechanisms for suppressing RBD while minimizing toxic effects on the microenvironment. M-CsNPs, sized 46 nm with semi-spherical morphology, significantly suppressed pathogen growth, integrity, and colonization at 200 mg L-1in vitro. Greenhouse tests with foliar exposure to the same concentration resulted in a substantial 77.7 % reduction in RBD, enhancing antioxidant enzyme activity and plant health. Furthermore, M-CsNPs improved photosynthesis, gas exchange, and the nutritional profile of diseased rice plants. RNA-seq analysis highlighted upregulated defense-related genes in treated rice plants. Metagenomic study showcased reshaping of the rice microbiome, reducing Magnaporthe abundance by 93.5 %. Both healthy and diseased rice plants showed increased microbial diversity, particularly favoring specific beneficial species Thiobacillus, Nitrospira, Nocardioides, and Sphingomicrobium in the rhizosphere and Azonexus, Agarivorans, and Bradyrhizobium in the phyllosphere. This comprehensive study unravels the diverse mechanisms by which M-CsNPs interact with plants and pathogens, curbing M. oryzae damage, promoting plant growth, and modulating the rice microbiome. It underscores the significant potential for effective plant disease management.
Collapse
Affiliation(s)
- Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Junning Guo
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China; MEU Research Unit, Middle East University, Amman, Jordan
| | - Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Chengqi Yan
- Crop Institute, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wang Y, Deng C, Zhao L, Dimkpa CO, Elmer WH, Wang B, Sharma S, Wang Z, Dhankher OP, Xing B, White JC. Time-Dependent and Coating Modulation of Tomato Response upon Sulfur Nanoparticle Internalization and Assimilation: An Orthogonal Mechanistic Investigation. ACS NANO 2024; 18:11813-11827. [PMID: 38657165 DOI: 10.1021/acsnano.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Nanoenabled strategies have recently attracted attention as a sustainable platform for agricultural applications. Here, we present a mechanistic understanding of nanobiointeraction through an orthogonal investigation. Pristine (nS) and stearic acid surface-modified (cS) sulfur nanoparticles (NPs) as a multifunctional nanofertilizer were applied to tomato (Solanum lycopersicumL.) through soil. Both nS and cS increased root mass by 73% and 81% and increased shoot weight by 35% and 50%, respectively, compared to the untreated controls. Bulk sulfur (bS) and ionic sulfate (iS) had no such stimulatory effect. Notably, surface modification of S NPs had a positive impact, as cS yielded 38% and 51% greater shoot weight compared to nS at 100 and 200 mg/L, respectively. Moreover, nS and cS significantly improved leaf photosynthesis by promoting the linear electron flow, quantum yield of photosystem II, and relative chlorophyll content. The time-dependent gene expression related to two S bioassimilation and signaling pathways showed a specific role of NP surface physicochemical properties. Additionally, a time-dependent Global Test and machine learning strategy applied to understand the NP surface modification domain metabolomic profiling showed that cS increased the contents of IA, tryptophan, tomatidine, and scopoletin in plant leaves compared to the other treatments. These findings provide critical mechanistic insights into the use of nanoscale sulfur as a multifunctional soil amendment to enhance plant performance as part of nanoenabled agriculture.
Collapse
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Bofei Wang
- Computational Sciences, The University of Texas at El Paso, 500 West Univ. Ave., El Paso, Texas 79968, United States
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| |
Collapse
|
6
|
Zhuang Q, Zhang Y, Liu Q, Sun Y, Sharma S, Tang S, Dhankher OP, Yuan H. Effects of sulfur nanoparticles on rhizosphere microbial community changes in oilseed rape plantation soil under mercury stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1545-1555. [PMID: 38597454 DOI: 10.1080/15226514.2024.2335207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In the present study, experiments were conducted to assess the influence of nanoscale sulfur in the microbial community structure of metallophytes in Hg-contaminated rhizosphere soil for planting rapeseed. The results showed that the richness and diversity of the rhizobacteria community decreased significantly under Hg stress, but increased slightly after SNPs addition, with a reduction in the loss of Hg-sensitive microorganisms. Moreover, all changes in the relative abundances of the top ten phyla influenced by Hg treatment were reverted when subjected to Hg + SNPs treatment, except for Myxococcota and Bacteroidota. Similarly, the top five genera, whose relative abundance decreased the most under Hg alone compared to CK, increased by 19.05%-54.66% under Hg + SNPs treatment compared with Hg alone. Furthermore, the relative abundance of Sphingomonas, as one of the dominant genera for both CK and Hg + SNPs treatment, was actively correlated with plant growth. Rhizobacteria, like Pedobacter and Massilia, were significantly decreased under Hg + SNPs and were positively linked to Hg accumulation in plants. This study suggested that SNPs could create a healthier soil microecological environment by reversing the effect of Hg on the relative abundance of microorganisms, thereby assisting microorganisms to remediate heavy metal-contaminated soil and reduce the stress of heavy metals on plants.
Collapse
Affiliation(s)
- Qiurong Zhuang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yongxia Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Qingquan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Yuming Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Sudhir Sharma
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Shijie Tang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of MA Amherst, Amherst, MA, USA
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
7
|
Vaidya S, Deng C, Wang Y, Zuverza-Mena N, Dimkpa C, White JC. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate? NANOIMPACT 2024; 34:100502. [PMID: 38508516 DOI: 10.1016/j.impact.2024.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Although the Green Revolution dramatically increased food production, it led to non- sustainable conventional agricultural practices, with productivity in general declining over the last few decades. Maintaining food security with a world population exceeding 9 billion in 2050, a changing climate, and declining arable land will be exceptionally challenging. In fact, nothing short of a revolution in how we grow, distribute, store, and consume food is needed. In the last ten years, the field of nanotoxicology in plant systems has largely transitioned to one of sustainable nano-enabled applications, with recent discoveries on the use of this advanced technology in agriculture showing tremendous promise. The range of applications is quite extensive, including direct application of nanoscale nutrients for improved plant health, nutrient biofortification, increased photosynthetic output, and greater rates of nitrogen fixation. Other applications include nano-facilitated delivery of both fertilizers and pesticides; nano-enabled delivery of genetic material for gene silencing against viral pathogens and insect pests; and nanoscale sensors to support precision agriculture. Recent efforts have demonstrated that nanoscale strategies increase tolerance to both abiotic and biotic stressors, offering realistic potential to generate climate resilient crops. Considering the efficiency of nanoscale materials, there is a need to make their production more economical, alongside efficient use of incumbent resources such as water and energy. The hallmark of many of these approaches involves much greater impact with far less input of material. However, demonstrations of efficacy at field scale are still insufficient in the literature, and a thorough understanding of mechanisms of action is both necessary and often not evident. Although nanotechnology holds great promise for combating global food insecurity, there are far more ways to do this poorly than safely and effectively. This review summarizes recent work in this space, calling out existing knowledge gaps and suggesting strategies to alleviate those concerns to advance the field of sustainable nano-enabled agriculture.
Collapse
Affiliation(s)
- Shital Vaidya
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Chaoyi Deng
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Yi Wang
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Nubia Zuverza-Mena
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Christian Dimkpa
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States
| | - Jason C White
- Connecticut Agricultural Experiment Station (CAES), New Haven, CT 06511, United States.
| |
Collapse
|
8
|
Kumar D, Singh R, Upadhyay SK, Verma KK, Tripathi RM, Liu H, Dhankher OP, Tripathi RD, Sahi SV, Seth CS. Review on interactions between nanomaterials and phytohormones: Novel perspectives and opportunities for mitigating environmental challenges. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111964. [PMID: 38159611 DOI: 10.1016/j.plantsci.2023.111964] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nanotechnology offers the potential to provide innovative solutions for sustainable crop production as plants are exposed to a combination of climate change factors (CO2, temperature, UV radiation, ozone), abiotic (heavy metals, salinity, drought), and biotic (virus, bacteria, fungi, nematode, and insects) stresses. The application of particular sizes, shapes, and concentration of nanomaterials (NMs) potentially mitigate the negative impacts in plants by modulation of photosynthetic rate, redox homeostasis, hormonal balance, and nutrient assimilation through upregulation of anti-stress metabolites, antioxidant defense pathways, and genes and genes network. The present review inculcates recent advances in uptake, translocation, and accumulation mechanisms of NMs in plants. The critical theme of this review provides detailed insights into different physiological, biochemical, molecular, and stress tolerance mechanism(s) of NMs action and their cross-talk with different phytohormones. The role of NMs as a double-edged sword for climate change factors, abiotic, and biotic stresses for nutrients uptake, hormones synthesis, cytotoxic, and genotoxic effects including chromosomal aberration, and micronuclei synthesis have been extensively studied. Importantly, this review aims to provide an in-depth understanding of the hormesis effect at low and toxicity at higher doses of NMs under different stressors to develop innovative approaches and design smart NMs for sustainable crop production.
Collapse
Affiliation(s)
| | - Ritu Singh
- Departmental of Environmental Science, Central University of Rajasthan, Ajmer 305817, Rajsthan, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Shivendra V Sahi
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19104, USA
| | | |
Collapse
|
9
|
Li M, Zhang P, Guo Z, Zhao W, Li Y, Yi T, Cao W, Gao L, Tian CF, Chen Q, Ren F, Rui Y, White JC, Lynch I. Dynamic Transformation of Nano-MoS 2 in a Soil-Plant System Empowers Its Multifunctionality on Soybean Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1211-1222. [PMID: 38173352 PMCID: PMC10795185 DOI: 10.1021/acs.est.3c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.
Collapse
Affiliation(s)
- Mingshu Li
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China
CDC Key Laboratory of Environment and Population Health, National
Institute of Environmental Health, Chinese
Center for Disease Control and Prevention, Beijing 100021, China
| | - Peng Zhang
- Department
of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Zhiling Guo
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Weichen Zhao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yuanbo Li
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tianjing Yi
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weidong Cao
- Institute
of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Gao
- State
Key Laboratory for Biology of Plant Disease and Insect Pests, Institute
of Plant Protection, Chinese Academy of
Agricultural Sciences, Beijing 100193, China
| | - Chang Fu Tian
- State
Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Chen
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Key
Laboratory of Precision Nutrition and Food Quality, China Agricultural University, Beijing 100083, China
| | - Yukui Rui
- College
of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jason C. White
- The
Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Iseult Lynch
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
10
|
Steven B, Hassani MA, LaReau JC, Wang Y, White JC. Nanoscale sulfur alters the bacterial and eukaryotic communities of the tomato rhizosphere and their interactions with a fungal pathogen. NANOIMPACT 2024; 33:100495. [PMID: 38246247 DOI: 10.1016/j.impact.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Nanoformulations of sulfur have demonstrated the potential to enhance plant growth and reduce disease incidence when plants are confronted with pathogens. However, the impact of nanoscale sulfur on microbial communities in close contact with the plant root, known as the rhizosphere, remain poorly characterized. In this study, we investigate the impact of three formulations of sulfur; bulk sulfur, uncoated (pristine) sulfur nanoparticles, and stearic acid coated sulfur nanoparticles, on the rhizosphere of tomato plants. Tomato plants were additionally challenged by the pathogenic fungus Fusarium oxysporum f. sp. Lycopersici. Employing bacterial 16S rRNA gene sequencing, along with recently in-house designed peptide nucleic acid clamps to facilitate the recovery of microeukaryote sequences, we performed a comprehensive survey of rhizosphere microbial populations. We found the largest influence on the composition of the rhizosphere microbiome was the presence of the fungal pathogen. However, sulfur amendments also drove state changes in the rhizosphere populations; for example, enriching the relative abundance of the plant-beneficial sulfur-oxidizing bacterium Thiobacillus. Notably, when investigating the response of the rhizosphere community to the different sulfur amendments, there was a strong interaction between the fungal pathogen and sulfur treatments. This resulted in different bacterial and eukaryotic taxa being enriched in association with the different forms of sulfur, which was dependent on the presence of the pathogen. These data point to nano formulations of sulfur exerting unique shifts in the rhizosphere community compared to bulk sulfur, particularly in association with a plant pathogen, and have implications for the sustainable use of nanoscale strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| | - M Amine Hassani
- Department of Plant Pathology and Ecology, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jacquelyn C LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA
| |
Collapse
|
11
|
Deng C, Protter CR, Wang Y, Borgatta J, Zhou J, Wang P, Goyal V, Brown HJ, Rodriguez-Otero K, Dimkpa CO, Hernandez R, Hamers RJ, White JC, Elmer WH. Nanoscale CuO charge and morphology control Fusarium suppression and nutrient biofortification in field-grown tomato and watermelon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167799. [PMID: 37838047 DOI: 10.1016/j.scitotenv.2023.167799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Limited data exist on how surface charge and morphology impact the effectiveness of nanoscale copper oxide (CuO) as an agricultural amendment under field conditions. This study investigated the impact of these factors on tomatoes and watermelons following foliar treatment with CuO nanosheets (NS-) or nanospikes (NP+ and NP-) exhibiting positive or negative surface charge. Results showed plant species-dependent benefits. Notably, tomatoes infected with Fusarium oxysporum had significantly reduced disease progression when treated with NS-. Watermelons benefited similarly from NP+. Although disease suppression was significant and trends indicated increased yield, the yield effects weren't statistically significant. However, several nanoscale treatments significantly enhanced the fruit's nutritional value, and this nano-enabled biofortification was a function of particle charge and morphology. Negatively charged nanospikes significantly increased the Fe content of healthy watermelon and tomato (20-28 %) and Ca in healthy tomato (66 %), compared to their positively charged counterpart. Negatively charged nanospikes also outperformed negatively charged nanosheets, leading to significant increases in the content of S and Mg in infected watermelon (37-38 %), Fe in healthy watermelon (58 %), and Ca (42 %) in healthy tomato. These findings highlight the potential of tuning nanoscale CuO chemistry for disease suppression and enhanced food quality under field conditions.
Collapse
Affiliation(s)
- Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Connor R Protter
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Jingyi Zhou
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Peiying Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Vinod Goyal
- Department of Botany & Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Hannah J Brown
- Agronomy Department, University of Florida, Gainesville, FL 32603, United States
| | | | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| |
Collapse
|
12
|
Ahmed T, Noman M, Gardea-Torresdey JL, White JC, Li B. Dynamic interplay between nano-enabled agrochemicals and the plant-associated microbiome. TRENDS IN PLANT SCIENCE 2023; 28:1310-1325. [PMID: 37453924 DOI: 10.1016/j.tplants.2023.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
The plant-associated microbiome is known to be a critical component for crop growth, nutrient acquisition, resistance to pathogens, and abiotic stress tolerance. Conventional approaches have been attempted to manipulate the plant-soil microbiome to improve plant performance; however, several issues have arisen, such as collateral negative impacts on microbiota composition. The lack of reliability and robustness of conventional techniques warrants efforts to develop novel alternative strategies. Nano-enabled approaches have emerged as promising platforms for enhancing agricultural sustainability and global food security. Specifically, the use of engineered nanomaterials (ENMs) as nanoscale agrochemicals has great potential to modulate the plant-associated microbiome. We review the dynamic interplay between nano-agrochemicals and the plant-associated microbiome for the safe development and use of nano-enabled microbiome engineering.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China; Xianghu Laboratory, Hangzhou 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jorge L Gardea-Torresdey
- Environmental Science and Engineering PhD Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA.
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Sharma S, Singh G, Wang Y, White JC, Xing B, Dhankher OP. Nanoscale sulfur alleviates silver nanoparticle toxicity and improves seed and oil yield in Soybean (Glycine max). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122423. [PMID: 37604392 DOI: 10.1016/j.envpol.2023.122423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Silver nanoparticles (AgNPs) are commonly used in many commercial products due to their antimicrobial properties, and their significant exposure in agricultural systems is anticipated. AgNPs accumulation in soil and subsequent uptake by plants can be harmful to plant growth and exposure to animals and humans through the food chain is a major concern. This study evaluated the potential protective role of nanosulfur (NS) and bulk sulfur (BS) at 200 and 400 mg/kg soil application in alleviating silver nanoparticle (AgNPs; 32 and 64 mg/kg) phytotoxicity to soybean [Glycine max (L) Merr.]. The treatments were added in the soil before soybean transplantation; growth, yield, nutrient, and silver accumulation were measured in the shoot, root, and seeds. Exposure to AgNPs significantly affected plant growth and yield, reducing nodule weight by 40%, fresh shoot weight by 66%, and seed yield by 68% when compared to controls. However, nanosulfur application in soil alleviated AgNPs toxicity, and importantly, this impact was nanoscale specific at the higher concentration because the benefits of corresponding bulk sulfur (BS) treatments were marginal. Specifically, nanosulfur at 400 mg/kg significantly increased seed yield (∼3-fold more than AgNP at 64 mg/kg) and shoot biomass (2.6-fold more than AgNP at 64 mg/kg) upon co-exposure with AgNPs, essentially alleviating AgNPs toxicity. Moreover, NS increased nodule mass by 3.5 times compared to AgNPs-treated plants, which was 170% greater than the Ag- and NS-free controls. Plants treated with NS with AgNPs co-exposure accumulated significantly less Ag in the shoots (∼80% reduction) and roots (∼95% reduction); no Ag contents were detected in seeds. These findings demonstrate the potential of sulfur, especially NS, as a sustainable soil amendment to reduce the accumulation and toxicity of AgNPs and as a valuable nano-enabled strategy to promote food safety and security.
Collapse
Affiliation(s)
- Sudhir Sharma
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Gurpal Singh
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Yi Wang
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Goyal V, Rani D, Ritika, Mehrotra S, Deng C, Wang Y. Unlocking the Potential of Nano-Enabled Precision Agriculture for Efficient and Sustainable Farming. PLANTS (BASEL, SWITZERLAND) 2023; 12:3744. [PMID: 37960100 PMCID: PMC10649170 DOI: 10.3390/plants12213744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Nanotechnology has attracted remarkable attention due to its unique features and potential uses in multiple domains. Nanotechnology is a novel strategy to boost production from agriculture along with superior efficiency, ecological security, biological safety, and monetary security. Modern farming processes increasingly rely on environmentally sustainable techniques, providing substitutes for conventional fertilizers and pesticides. The drawbacks inherent in traditional agriculture can be addressed with the implementation of nanotechnology. Nanotechnology can uplift the global economy, so it becomes essential to explore the application of nanoparticles in agriculture. In-depth descriptions of the microbial synthesis of nanoparticles, the site and mode of action of nanoparticles in living cells and plants, the synthesis of nano-fertilizers and their effects on nutrient enhancement, the alleviation of abiotic stresses and plant diseases, and the interplay of nanoparticles with the metabolic processes of both plants and microbes are featured in this review. The antimicrobial activity, ROS-induced toxicity to cells, genetic damage, and growth promotion of plants are among the most often described mechanisms of operation of nanoparticles. The size, shape, and dosage of nanoparticles determine their ability to respond. Nevertheless, the mode of action of nano-enabled agri-chemicals has not been fully elucidated. The information provided in our review paper serves as an essential viewpoint when assessing the constraints and potential applications of employing nanomaterials in place of traditional fertilizers.
Collapse
Affiliation(s)
- Vinod Goyal
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Dolly Rani
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Ritika
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Shweta Mehrotra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Chaoyi Deng
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| | - Yi Wang
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA; (C.D.); (Y.W.)
| |
Collapse
|
15
|
Li X, Wang Z, Ge Y, Sun H, Zhang L. Comparative stress response assessment of PFOS and its alternatives, F-53B and OBS, in wheat: An insight of toxic mechanisms and relative magnitudes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115333. [PMID: 37586196 DOI: 10.1016/j.ecoenv.2023.115333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
Emerging alternatives to perfluorooctane sulfonate (PFOS), including 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) and p-perfluorous nonenoxybenzene sulfonate (OBS), have been widely detected in the real environment as PFOS restriction. However, the toxicity in plants and the underlying mechanism of F-53B and OBS remain scarce, especially compared to PFOS. PFOS and their emerging alternatives pose significant potential risks to food, especially for crops, safety and human health with the great convenience of high chemical stability. Germination toxicity, oxidative stress biomarkers, and metabolomics were used to compare the relative magnitudes of toxicity of PFOS and its alternatives in wheat (Triticum aestivum L.). PFOS, F-53B, and OBS inhibited wheat germination compared to the control group, with germination inhibition rates of 45.6%, 53.5%, and 64.3% at 400 μM PFOS, F-53B, and OBS exposure, respectively. Moreover, oxidative stress biomarker changes were observed in PFOS, F-53B, and OBS, with OBS being more pronounced. The chlorophyll concentrations in wheat shoots increased, and the anthocyanin concentration decreased along with the increased exposure concentration. Superoxide dismutase (SOD) activity increased in wheat root but decreased in the shoot. Peroxidase (POD) activity and malondialdehyde (MDA) concentration increased, whereas catalase (CAT) activity decreased. Regarding metabolomics, PFOS, F-53B, and OBS exposure (10 μM) significantly altered 85, 133, and 134 metabolites, respectively. According to KEGG enrichment analysis, F-53B specifically affects lipid metabolism, whereas OBS causes an imbalance in amino acid and carbohydrate metabolism. These findings suggested that PFOS, F-53B, and OBS have distinct toxic mechanisms. Thus, our results indicated that the relative size of the toxicity in wheat is as follows: OBS > F-53B > PFOS, and this finding provides a new reference basis for the phytotoxicity assessment of F-53B and OBS.
Collapse
Affiliation(s)
- Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Zhan Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Yanhui Ge
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lianying Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
16
|
Cao X, Liu Y, Luo X, Wang C, Yue L, Elmer W, Dhankher OP, White JC, Wang Z, Xing B. Mechanistic investigation of enhanced bacterial soft rot resistance in lettuce (Lactuca sativa L.) with elemental sulfur nanomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163793. [PMID: 37127166 DOI: 10.1016/j.scitotenv.2023.163793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Crop diseases significantly threaten global food security and will worsen with a changing climate. Elemental sulfur nanomaterials (S NMs) were used to suppress bacterial pathogen Pectobacterium carotovorum on lettuce (Lactuca sativa L.). Foliar application with S NMs at 10-100 mg/L statistically decreased the occurrence of bacterial soft rot, where 100 mg/L exhibited the best performance with alleviating disease severity by 94.1 % as relative to infected controls. The disease suppression efficiency of S based materials (100 mg/L) and a conventional pesticide (thiophanate-methyl) followed the order of S NMs ≈ pesticide > S bulk particles (BPs) > sulfate. The disease control efficiency of S NMs was 1.33- and 3.20-fold that of S BPs and sulfate, respectively, and the shoot and root biomass with S NMs was 1.25- and 1.17-fold that of the pesticide treated plants. Mechanistically, S NMs (1) triggered jasmonic acid (JA) and salicylic acid (SA) mediated systematic induced resistance and systemic acquired resistance, thereby upregulating pathogenesis-related gene expression (enhanced by 29.3-259.7 %); (2) enhanced antioxidative enzyme activity and antioxidative gene expression (improved by 67.5-326.6 %), thereby alleviating the oxidative stress; and (3) exhibited direct in vivo antibacterial activity. Metabolomics analysis demonstrated that S NMs also promoted the tricarboxylic acid cycle and increased SA and JA metabolite biosynthesis. Moreover, S NMs application increased nutritive quality of lettuce by 20.8-191.7 %. These findings demonstrate that S NMs have potential to manage crop disease, thereby reducing the environmental burden due to decreasing use of conventional pesticides.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yulin Liu
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wade Elmer
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
17
|
Borgatta J, Shen Y, Tamez C, Green C, Hedlund Orbeck JK, Cahill MS, Protter C, Deng C, Wang Y, Elmer W, White JC, Hamers RJ. Influence of CuO Nanoparticle Aspect Ratio and Surface Charge on Disease Suppression in Tomato ( Solanum lycopersicum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:9644-9655. [PMID: 37321591 PMCID: PMC10312190 DOI: 10.1021/acs.jafc.2c09153] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023]
Abstract
Nanoparticles (NPs) have been shown to deliver micronutrients to plants to improve health, increase biomass, and suppress disease. Nanoscale properties such as morphology, size, composition, and surface chemistry have all been shown to impact nanomaterial interactions with plant systems. An organic-ligand-free synthesis method was used to prepare positively charged copper oxide (CuO) nanospikes, negatively charged CuO nanospikes, and negatively charged CuO nanosheets with exposed (001) crystal faces. X-ray photoelectron spectroscopy measurements show that the negative charge correlates to increased surface concentration of O on the NP surface, whereas relatively higher Cu concentrations are observed on the positively charged surfaces. The NPs were then used to treat tomato (Solanum lycopersicum) grown in soil infested with Fusarium oxysporum f. sp. lycopersici under greenhouse conditions. The negatively charged CuO significantly reduced disease progression and increased biomass, while the positively charged NPs and a CuSO4 salt control had little impact on the plants. Self-assembled monolayers were used to mimic the leaf surface to understand the intermolecular interactions between the NPs and the plant leaf; the data demonstrate that NP electrostatics and hydrogen-bonding interactions play an important role in adsorption onto leaf surfaces. These findings have important implications for the tunable design of materials as a strategy for the use of nano-enabled agriculture to increase food production.
Collapse
Affiliation(s)
- Jaya Borgatta
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yu Shen
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Carlos Tamez
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Curtis Green
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jenny K. Hedlund Orbeck
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Meghan S. Cahill
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Connor Protter
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Chaoyi Deng
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Yi Wang
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Wade Elmer
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Jason C. White
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06511, United States
| | - Robert J. Hamers
- The
NSF Center for Sustainable Nanotechnology, Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Huang D, Shi Z, Shan X, Yang S, Zhang Y, Guo X. Insights into growth-affecting effect of nanomaterials: Using metabolomics and transcriptomics to reveal the molecular mechanisms of cucumber leaves upon exposure to polystyrene nanoplastics (PSNPs). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161247. [PMID: 36603646 DOI: 10.1016/j.scitotenv.2022.161247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene nanoplastics (PSNPs, <100nm), an artificial pollutant that is widespread in the environment, can be assimilated by plants to alter plant gene expression and its metabolic pathway; thus, interfering with physiological homeostasis and growth of plants. Recently, the biosafety and potential environmental risks of PSNPs have attracted enormous attention. However, the knowledge regarding the uptake and phytotoxicity of atmosphere PSNPs subsiding to plant leaves is still limited. Here, we separately applied 50 mg/L and 100 mg/L PSNPs on cucumber leaves to simulate the plant response to the atmosphere PSNPs. We found that the PSNPs can be accumulated on the surface of cucumber leaves and are also able to be uptake by cucumber leaf stomata. The repertoires of metabolomics and transcriptomics from cucumber leaves upon PSNPs treatment demonstrated that the deposition of PSNPs on leaves alters the biosynthesis of various metabolites and the expression of a variety of genes. The leaves exposure to low concentration (50 mg/L) of PSNPs impact the genes involved in carbohydrate metabolism and the biosynthesis of metabolites related to membrane stability maintenance, thereby, probably enhancing plant tolerance to the stress caused by PSNPs. Whereas, exposure to high concentration (100 mg/L) of PSNPs, both nitrogen and carbohydrate metabolism in cucumber leaves are affected, as well as that the photosynthetic capacity was decreased, leading to the threat to plant health. Combined omics technologies, our findings advance our understanding about how the PSNPs released to ecological environment influence the terrestrial plant growth and provide phytotoxic mechanism.
Collapse
Affiliation(s)
- Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zihan Shi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Shan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University Xining, China
| | - Yuzhou Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Ahmed A, He P, He P, Wu Y, He Y, Munir S. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. ENVIRONMENT INTERNATIONAL 2023; 173:107819. [PMID: 36842382 DOI: 10.1016/j.envint.2023.107819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Agriculture-related manufactured nano-objects (MNOs) can revolutionize the crop production and help to achieve sustainable development goals. MNOs with diverse physico-chemical properties and ability to encapsulate and deliver active ingredients in controlled, targeted and stimuli responsive manner can enhance the efficiency while minimizing collateral damage to non-target organisms and environment. Application of MNOs in the form of nanopesticides and nanofertilizers is known to affect soil microbial communities both positively and negatively, but detailed studies with varying dose, type and environmental conditions are scarce. Therefore, it is imperative to understand the complex mechanisms and factors which shape the MNOs-microbial interactions through integrating state of the art technologies including omics (transcriptomics, metabolomics, and proteomics), artificial intelligence, and statistical frameworks. Lastly, we propose the idea of MNOs-mediated manipulation of soil microbiome to modify the soil microbial communities for improved microbial services. These microbial services, if harnessed appropriately, can revolutionize modern agriculture and help in achieving sustainable development goals.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
20
|
Zhang Y, Fu L, Martinez MR, Sun H, Nava V, Yan J, Ristroph K, Averick SE, Marelli B, Giraldo JP, Matyjaszewski K, Tilton RD, Lowry GV. Temperature-Responsive Bottlebrush Polymers Deliver a Stress-Regulating Agent In Vivo for Prolonged Plant Heat Stress Mitigation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:3346-3358. [PMID: 36874196 PMCID: PMC9976702 DOI: 10.1021/acssuschemeng.2c06461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Anticipated increases in the frequency and intensity of extreme temperatures will damage crops. Methods that efficiently deliver stress-regulating agents to crops can mitigate these effects. Here, we describe high aspect ratio polymer bottlebrushes for temperature-controlled agent delivery in plants. The foliar-applied bottlebrush polymers had near complete uptake into the leaf and resided in both the apoplastic regions of the leaf mesophyll and in cells surrounding the vasculature. Elevated temperature enhanced the in vivo release of spermidine (a stress-regulating agent) from the bottlebrushes, promoting tomato plant (Solanum lycopersicum) photosynthesis under heat and light stress. The bottlebrushes continued to provide protection against heat stress for at least 15 days after foliar application, whereas free spermidine did not. About 30% of the ∼80 nm short and ∼300 nm long bottlebrushes entered the phloem and moved to other plant organs, enabling heat-activated release of plant protection agents in phloem. These results indicate the ability of the polymer bottlebrushes to release encapsulated stress relief agents when triggered by heat to provide long-term protection to plants and the potential to manage plant phloem pathogens. Overall, this temperature-responsive delivery platform provides a new tool for protecting plants against climate-induced damage and yield loss.
Collapse
Affiliation(s)
- Yilin Zhang
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Liye Fu
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Martinez
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hui Sun
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Valeria Nava
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kurt Ristroph
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Saadyah E. Averick
- Neuroscience
Institute, Allegheny Health Network, Allegheny
General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Benedetto Marelli
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Juan Pablo Giraldo
- Department
of Botany and Plant Sciences, University
of California, Riverside, California 92521, United States
| | - Krzysztof Matyjaszewski
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D. Tilton
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V. Lowry
- Department
of Civil and Environmental Engineering, Center for Environmental Implications
of Nano Technology (CEINT), Department of Chemistry, Department of Chemical Engineering, Department of Biomedical
Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Pagano L, Rossi R, White JC, Marmiroli N, Marmiroli M. Nanomaterials biotransformation: In planta mechanisms of action. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120834. [PMID: 36493932 DOI: 10.1016/j.envpol.2022.120834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Research on engineered nanomaterials (ENMs) exposure has continued to expand rapidly, with a focus on uncovering the underlying mechanisms. The EU largely limits the number and the type of organisms that can be used for experimental testing through the 3R normative. There are different routes through which ENMs can enter the soil-plant system: this includes the agricultural application of sewage sludges, and the distribution of nano-enabled agrochemicals. However, a thorough understanding of the physiological and molecular implications of ENMs dispersion and chronic low-dose exposure remains elusive, thus requiring new evidence and a more mechanistic overview of pathways and major effectors involved in plants. Plants can offer a reliable alternative to conventional model systems to elucidate the concept of ENM biotransformation within tissues and organs, as a crucial step in understanding the mechanisms of ENM-organism interaction. To facilitate the understanding of the physico-chemical forms involved in plant response, synchrotron-based techniques have added new potential perspectives in studying the interactions between ENMs and biota. These techniques are providing new insights on the interactions between ENMs and biomolecules. The present review discusses the principal outcomes for ENMs after intake by plants, including possible routes of biotransformation which make their final fate less uncertain, and therefore require further investigation.
Collapse
Affiliation(s)
- Luca Pagano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Riccardo Rossi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Centro Interdipartimentale per L'Energia e L'Ambiente (CIDEA), University of Parma, 43124, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), University of Parma, 43124, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124, Parma, Italy; Interdepartmental Centre for Food Safety, Technologies and Innovation for Agri-food (SITEIA.PARMA), 43124, Parma, Italy.
| |
Collapse
|
22
|
Su Y, Zhou X, Meng H, Xia T, Liu H, Rolshausen P, Roper C, McLean JE, Zhang Y, Keller AA, Jassby D. Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. NATURE FOOD 2022; 3:1020-1030. [PMID: 37118298 DOI: 10.1038/s43016-022-00647-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 04/30/2023]
Abstract
Nanotechnology-based approaches have demonstrated encouraging results for sustainable agriculture production, particularly in the field of fertilizers and pesticide innovation. It is essential to evaluate the economic and environmental benefits of these nanoformulations. Here we estimate the potential revenue gain/loss associated with nanofertilizer and/or nanopesticide use, calculate the greenhouse gas emissions change from the use of nanofertilizer and identify feasible applications and critical issues. The cost-benefit analysis demonstrates that, while current nanoformulations show promise in increasing the net revenue from crops and lowering the environmental impact, further improving the efficiency of nanoformulations is necessary for their widescale adoption. Innovating nanoformulation for targeted delivery, lowering the greenhouse gas emissions associated with nanomaterials and minimizing the content of nanomaterials in the derived nanofertilizers or pesticides can substantially improve both economic and environmental benefits.
Collapse
Affiliation(s)
- Yiming Su
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, USA.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, National Facility Agriculture Engineering Technology Research Center, Tongji University, Shanghai, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, USA
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, National Facility Agriculture Engineering Technology Research Center, Tongji University, Shanghai, China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Wang Y, Deng C, Shen Y, Borgatta J, Dimkpa CO, Xing B, Dhankher OP, Wang Z, White JC, Elmer WH. Surface Coated Sulfur Nanoparticles Suppress Fusarium Disease in Field Grown Tomato: Increased Yield and Nutrient Biofortification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14377-14385. [PMID: 36331134 DOI: 10.1021/acs.jafc.2c05255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Little is known about the effect of nano sulfur (NS) under field conditions as a multifunctional agricultural amendment. Pristine and surface coated NS (CS) were amended in soil at 200 mg/kg that was planted with tomato (Solanum lycopersicum) and infested with Fusarium oxysporum f. sp. lycopersici. Foliar exposure of CS (200 μg/mL) was also included. In healthy plants, CS increased tomato marketable yield up to 3.3∼3.4-fold compared to controls. In infested treatments, CS significantly reduced disease severity compared to the other treatments. Foliar and soil treatment with CS increased yield by 107 and 192% over diseased controls, respectively, and significantly increased fruit Ca, Cu, Fe, and Mg contents. A $33/acre investment in CS led to an increase in marketable yield from 4920 to 11,980 kg/acre for healthy plants and from 1135 to 2180 kg/acre for infested plants, demonstrating the significant potential of this nanoenabled strategy to increase food production.
Collapse
Affiliation(s)
- Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Chaoyi Deng
- Environmental Science and Engineering Ph.D. Program, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas79968, United States
| | - Yu Shen
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Jaya Borgatta
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi214122, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| | - Wade H Elmer
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, Connecticut06504, United States
| |
Collapse
|