1
|
Jin Z, Zhang Y, Hu H, Li Q, Zhang L, Zhao K, Liu W, Li L, Gao C. Closed-loop theranostic microgels for immune microenvironment modulation and microbiota remodeling in ulcerative colitis. Biomaterials 2025; 314:122834. [PMID: 39288617 DOI: 10.1016/j.biomaterials.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by the upregulation of reactive oxygen species (ROS) and dysfunction of gut immune system, and microbiota. The conventional treatments mainly focus on symptom control with medication by overuse of drugs. There is an urgent need to develop a closed-loop strategy that combines in situ monitoring and precise treatment. Herein, we innovatively designed the 'cluster munition structure' theranostic microgels to realize the monitoring and therapy for ulcerative colitis (a subtype of IBD). The superoxide anion specific probe (tetraphenylethylene-coelenterazine, TPC) and ROS-responsive nanogels consisting of postbiotics urolithin A (UA) were loaded into alginate and ion-crosslinked to obtain the theranostic microgels. The theranostic microgels could be delivered to the inflammatory site, where the environment-triggered breakup of the microgels and release of the nanogels were achieved in sequence. The TPC-UA group had optimal results in reducing inflammation, repairing colonic epithelial tissue, and remodeling microbiota, leading to inflammation amelioration and recovery of tight junction between the colonic epithelium, and maintenance of gut microbiota. During the recovery process, the local chemiluminescence intensity, which is proportional to the degree of inflammation, was gradually inhibited. The cluster munition of theranostic microgels displayed promising outcomes in monitoring inflammation and precise therapy, and demonstrated the potential for inflammatory disease management.
Collapse
Affiliation(s)
- Zeyuan Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Haijun Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Kefei Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312099, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Feng J, Wang Z, Huang W, Zhao X, Xu L, Teng C, Li Y. Hyaluronic acid-decorated lipid nanocarriers as novel vehicles for curcumin: Improved stability, cellular absorption, and anti-inflammatory effects. Food Chem 2025; 463:141420. [PMID: 39369603 DOI: 10.1016/j.foodchem.2024.141420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to investigate how hyaluronic acid interfacial decoration affects the stability, cellular absorption, and anti-inflammatory effects of curcumin-loaded nanostructured lipid carriers. Nanocarriers were synthesized with an ovalbumin single layer and ovalbumin/hyaluronic acid double, mixed, or conjugated layers. All nanocarriers were spherical (200-300 nm diameter), and their encapsulation efficiency exceeded 95 %. Among the layers, the conjugated one exhibited the highest elastic surface dilatational modulus of approximately 40 mN/m, and the longest curcumin half-life of 186.07 days at 4 °C. Spearman's correlation analysis showed a negative correlation (r = -0.6698) between the recrystallization index and curcumin stability. The layer's mechanical strength improved curcumin stability by preventing crystal transition. Hyaluronic acid decoration enhanced the curcumin uptake of Caco-2 cells by 1.96-2.48 folds. Among the layers, the conjugate one was the most effective because of its strong binding constant with the receptor. Hyaluronic acid decoration improved the anti-inflammatory effects of curcumin.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Zhen Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xingyu Zhao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lujing Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Cong Teng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
3
|
Wang J, Lv X, Li Y, Wu H, Chen M, Yu H, Wu J, Li C, Xiong W. A ROS-responsive hydrogel that targets inflamed mucosa to relieve ulcerative colitis by reversing intestinal mucosal barrier loss. J Control Release 2025; 377:606-618. [PMID: 39608456 DOI: 10.1016/j.jconrel.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Intestinal mucosal barrier loss is responsible for the chronic and recurrent ulcerative colitis. Myosin light chain kinase (MLCK) is a potential therapeutic target of the intestinal mucosal barrier dysfunction. Here, we developed a reactive oxygen species (ROS)-sensitive hydrogel (ATG-CS-Gel) derived from a diselenide-bridged arctigenin (ATG) and chitosan (CS) conjugate, with the aims of targeting to inflamed mucosa and modulating MLCK. Our results demonstrated that ATG-CS-Gel achieved ROS-responsive release and significantly inhibited ROS production and mitochondrial depolarization in the Caco-2 and HT-29/MTX-E12 cells under H2O2-induced stress conditions. Compared with normal tissues, orally-administrated ATG-CS-Gel preferentially adhered to the inflamed mucosa for 24 h, which was attributed to the adhesion between CS and mucin. Therapeutically, ATG-CS-Gel reduced inflammatory symptoms, accelerated intestinal mucosal healing, scavenged excessive ROS, reshaped intestinal flora, and eventually achieved much better therapeutic efficacy in DSS-induced colitis mice when compared to 5-aminosalicylic acid. Moreover, ATG-CS-Gel was demonstrated to reverse intestinal mucosal barrier loss by blocking MLCK activation and maintaining tight junction expression. In summary, this study highlights the potential of MLCK modulation in the restoration of intestinal mucosal barrier using ATG-CS-Gel. The development of ATG-CS-Gel represents a novel and promising strategy for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Jianwei Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Xiaojia Lv
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Ying Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao
| | - Jianwei Wu
- Division of Gastroenterology, Baoan People's Hospital of Shenzhen (Group), Shenzhen 518055, China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Chi R, Pan L, Yang Z, Yang X, Xia H, Lin D, Hao J, Si X, Yan D, Li H, Shi C, Wang Y, Li W. Oxaliplatin-loaded amphiphilic hyaluronic acid nanohydrogel formed via interfacial reactions enhances the therapeutic effect of targeted tumor. Int J Biol Macromol 2025; 284:138118. [PMID: 39608531 DOI: 10.1016/j.ijbiomac.2024.138118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Hyaluronic acid (HA) nanogels have attracted widespread attention, aiming to improve cancer treatment paradigms and overcome the limitations of free-form drugs. However highly hydrophilic nature of HA nanogels limits their potential application where amphiphilic interactions are required for the delivery of hydrophobic drugs. In this study, we developed amphiphilic structure oxaliplatin (OXA) loaded oligo-hyaluronic acid (oHA)-PEG-Octane nanogel using stable disulfide bonds with ultrasonic re-emulsion method. 1,8-Mercaptooctane present in the organic phase underwent crosslinking with sulfhydryl groups conjugated on oHA and PEG in the inner aqueous phase through interfacial reactions, resulting in the formation of an amphiphilic structure of the nanogels. The nanogels demonstrated uniform size, stability, excellent biocompatibility, and achieved a high drug-loading capacity of 10.8 %. OXA NGs targeted tumor cells through CD44-mediated endocytosis, disassembled under the influence of high glutathione (GSH) levels within the tumor microenvironment (TME) and released OXA inside the reductive cytosol to trigger immunogenic cell death (ICD) of tumor cells. In vivo experiments showed OXA NGs could inhibit tumor growth. Furthermore, the amphiphilic hyaluronic acid nanohydrogel may have clinical potential due to its ability to accommodate various therapeutic agents; therefore, OXA NGs are a potential candidate for clinical translation.
Collapse
Affiliation(s)
- Runrun Chi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Luqi Pan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dan Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
| | - Yuqin Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
5
|
Zhu K, Liu X, Fu L, Cao J, Wu Y, Mo C, Mu J, Song J. NIR-II Ratiometric Optical Theranostic Capsule for In Situ Diagnosis and Precise Therapy of Intestinal Inflammation. ACS NANO 2024; 18:34912-34923. [PMID: 39661927 DOI: 10.1021/acsnano.4c12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Capsules were widely used in clinical settings for the oral delivery of various drugs, although it remains challenging to trace real-time drug release behavior and adjust dosages based on the therapeutic effect. To address these issues, we developed theranostic capsules that loaded two kinds of fluorescence nanoparticles, H2O2-responsive Janus Ag/Ag2S nanoparticles (Ag/Ag2S JNPs) and the downconversion nanoparticles (DCNPs), and the dexamethasone (Dex) drug. The Ag/Ag2S JNPs exhibit a highly sensitive fluorescence (FL) signal at 1250 nm in response to H2O2, while the FL signal from the DCNPs at 1550 nm remains stable under physiological conditions. The ratio of these two FL signals formed the ratiometric FL signal, which shows correlation with the H2O2 concentration with a detection limit of 1.7 μM. Moreover, the capsules can be precisely delivered into the intestine, where they release the JNPs and DCNPs simultaneously. The H2O2-triggered ratiometric FL signals and images can diagnose inflammation and indicate its location. Meanwhile, the encapsulated Dex is released in the disease region, with ratiometric imaging allowing for real-time tracking of therapeutic efficacy and providing guidance for ongoing treatment. The theranostic capsule system provides an approach for quantitative detection of disease biomarkers and further localized release of therapeutics, thereby avoiding overdose and reducing side effects.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingjing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunxiang Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Madabeni A, Bortoli M, Nogara PA, Ribaudo G, Dalla Tiezza M, Flohé L, Rocha JBT, Orian L. 50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories. Chemistry 2024; 30:e202403003. [PMID: 39304519 PMCID: PMC11639659 DOI: 10.1002/chem.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloOslo0315Norway
| | - Pablo A. Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul)Av. Leonel de Moura Brizola, 250196418-400Bagé, RSBrasil
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
| | - Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Leopold Flohé
- Department of Molecular MedicineUniversity of PadovaItaly
- Departamento de BioquímicaUniversidad de la RepúblicaMontevideoUruguay
| | - João B. T. Rocha
- Departamento de BioquímicaUniversidade Federaldo Rio Grande do Sul (UFRGS)90035-003Porto Alegre, RSBrazil
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
7
|
Qian D, Xu J, Zhang X, Hu F, Cao S, Dong Y, Liu X, Yao Y, Yu H, Lu Y, Ma X, Cheng K, Zhao X, Nie G, Zhang X. Microenvironment Self-Adaptive Nanomedicine Promotes Spinal Cord Repair by Suppressing Inflammation Cascade and Neural Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307624. [PMID: 39478649 DOI: 10.1002/adma.202307624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/29/2024] [Indexed: 12/13/2024]
Abstract
Despite various biomaterial-based strategies are tried in spinal cord injury (SCI), developing safe and effective microinvasive pharmacotherapy strategies is still an unmet clinical need. Stimuli-responsive nanomedicine has emerged as a promising non-invasion technology, which enhances drug delivery and promotes functional recovery following SCI. Considering the multiple progressive pathological events and the blood spinal cord barrier (BSCB) associating SCI, a microenvironment self-adaptive nanoparticle (custom-designed with rabies virus glycoprotein 29-RVG29 and hyaluronic acid-HA, RHNP) capable of consistently crossing the BSCB and selectively targeting inflammatory cells and neural cells based on different stages of SCI are developed. The data indicated that RHNP can effectively traverse the BSCB through RVG29, and adaptively modulate cellular internalization by selectively exposing either HA or RVG29 through diselenide bonds, depending on pathological reactive oxygen species (ROS) signals. Furthermore, curcumin is loaded into RHNP (RHNP-Cur) to improve motor function and coordination of hind-limbs in a traumatic SCI mouse model. This study finds that RHNP-Cur exhibited inhibitory effects on the inflammatory cascade originating from M1 microglia/macrophages and neurotoxic astrocytes, and protected neural cells from inflammation-induced apoptosis during nerve regeneration. Collectively, the work provides a microenvironment self-adaptive nanomedicine which enables efficient microinvasive treatment of SCI.
Collapse
Affiliation(s)
- Dingfei Qian
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiaqi Xu
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xuelian Zhang
- China-Japan Friendship Hospital, 2 Yinghuayuan East Street, Chaoyang District, Beijing, 100029, China
| | - Fanqi Hu
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shiqi Cao
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yuan Dong
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiaole Liu
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yawei Yao
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Haichao Yu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yichao Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Zhang
- Department of Orthopedics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
8
|
Huai M, Pei M, Chen J, Duan X, Zhu Y, Yang F, Ge W. Oral creatine-modified selenium-based hyaluronic acid nanogel mediated mitochondrial energy recovery to drive the treatment of inflammatory bowel disease. J Nanobiotechnology 2024; 22:740. [PMID: 39609811 PMCID: PMC11603945 DOI: 10.1186/s12951-024-03007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
The damnification of mitochondrion is often considered to be an important culprit of inflammatory bowel disease (IBD), however, there are fewer reports of mechanisms of mitochondria-mediated IBD treatment. Therefore, we first proposed to reboot mitochondrial energy metabolism to treat IBD by capturing the double-sided factor of ROS and creatine (Cr)-assisted energy adjustment. Herein, an oral Cr-modified selenium-based hyaluronic acid (HA) nanogel (HASe-Cr nanogel) was fabricated for treatment of IBD, through ROS elimination and energy metabolism upgradation. More concretely, due to IBD lesion-specific positive charge and the high expression of CD44, HASe-Cr nanogel exhibited dual targeted inflammatory bio-functions, and ROS-driven degradation properties in high-yield ROS levels in inflammation areas. As expected, multifunctional HASe-Cr nanogel could effectively ameliorate IBD-related symptoms, such as mitochondrial biological function restoration, inhibition of M1-like macrophage polarization, gut mucosal reconstruction, microbial ecological repair, etc., thus excellently treating IBD. Overall, the proposed strategy underlined that the great potentiality of HASe-Cr nanogel by restarting mitochondrial metabolic energy in colitis lesions, providing new a pavement of mitochondrion-mediated colitis treatment in clinical applications.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Mingliang Pei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Chen
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No.241 West Huaihai Road, Shanghai, 200030, P. R. China
| | - Xiaoyan Duan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Yun Zhu
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| |
Collapse
|
9
|
Ren Y, Chen Q, Lu Z, Su G, Wu C, Rao H, Wang Y, Wei X, Sun M. MnNi@PVP Nanoenzyme Based on Regulating Inflammation and Immune Homeostasis for the Therapy of Inflammatory Bowel Disease. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64463-64475. [PMID: 39534949 DOI: 10.1021/acsami.4c11100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nanozymes exhibiting remarkable antioxidant capabilities represent an effective therapeutic approach for ulcerative colitis (UC). This study synthesized the MnNi@PVP nanoenzyme through high-temperature pyrolysis and the NaCl template method, which exhibited multienzyme activity comprising glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). This study investigated the therapeutic effect of MnNi@PVP on colitis caused by sodium dextran sulfate (DSS). The findings indicated that MnNi@PVP notably decreased the disease activity index (DAI) score, which encompasses weight loss, colon shortening, and histopathological changes. MnNi@PVP showed effectiveness in addressing oxidative damage and suppressing the levels of proinflammatory markers, such as tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), and interleukin (IL)-6, by inactivating the TLR4 pathway and macrophages. In addition, MnNi@PVP demonstrated the ability to repair tight junction proteins (occludin and ZO-1) and restore the intestinal barrier. The transcriptome sequencing demonstrated that MnNi@PVP could regulate inflammatory factor expression pathways and immune processes. Additionally, negatively charged MnNi@PVP can selectively bind to inflamed colonic tissues through electrostatic interactions, endowing it with targeted reparative capabilities at the location of intestinal inflammation. The MnNi@PVP, which possesses the reactive oxygen and nitrogen species (RONS) clearance capability examined in this section, is expected to provide the basis for the targeted repair of intestinal function.
Collapse
Affiliation(s)
- Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Xing Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
10
|
Song X, Zhang X, Zhang M, Liu S, Zhang N, Liu X, Li B, Li J, Geng Z, Zuo L, Wang Y, Wang L, Hu J. The JNK/P38 signalling pathway activated by testin protects the intestinal epithelial barrier against Crohn's disease-like colitis. Chem Biol Interact 2024; 403:111222. [PMID: 39237074 DOI: 10.1016/j.cbi.2024.111222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The unknown mechanism that controls intestinal barrier dysfunction in individuals with Crohn's disease (CD) plays a crucial role in the onset of intestinal inflammation. Testin, an intercellular linker protein, has the potential to protect epithelial barrier function. This study aimed to analyse the effects of Testin on CD-like colitis and explore the possible underlying mechanism. Colon samples from CD patients and trinitrobenzene-sulfonic acid (TNBS)-treated mice were collected to examine changes in Testin expression. To assess the therapeutic effects of Testin on CD-like colitis in mice, we examined the symptoms of enteritis, performed histological analysis, and evaluated intestinal barrier permeability. The ability of Testin to stabilize tight junction (TJ) proteins was investigated via immunofluorescence and western blotting. We conducted in vivo and in vitro experiments using colonic organoids and blocking techniques to explore how Testin safeguards the integrity of the intestinal barrier. Testin expression was downregulated in the colons of CD patients and TNBS-treated mice. Increasing Testin expression led to amelioration of colitis symptoms and reduced the production of inflammatory cytokines in the colons of TNBS-induced colitis model mice. Furthermore, increased Testin expression resulted in decreased depletion of TJ proteins (ZO-1 and Claudin-1) and promoted the effectiveness of the intestinal barrier in mice with TNBS-induced colon damage and in lipopolysaccharide (LPS)-stimulated colonic organoids. Elevated Testin levels inactivated the JNK/P38 signalling pathway, potentially contributing to the beneficial impact of Testin on the intestinal barrier. Testin can inhibit the loss of TJ proteins in CD mice by inactivating the JNK/P38 pathway. These findings help to clarify how Testin alleviates CD-like colitis in mice by protecting intestinal barrier function. These findings could lead to the use of a new treatment approach for CD in clinical practice.
Collapse
Affiliation(s)
- Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Xiaofeng Zhang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Min Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Laboratory Medicine, Bengbu Medical University, Bengbu, 233000, China
| | - Shengbao Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Nuo Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Xinyue Liu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Bohan Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Jing Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Yueyue Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Lian Wang
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu, 233000, China; Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
11
|
Zhao J, Fang Z, Wang B, Li J, Bahatibieke A, Meng H, Xie Y, Peng J, Zheng Y. Dual cross-linked polyurethane-alginate biomimetic hydrogel for elastic gradient simulation in osteochondral structures: Microenvironment modulation and tissue regeneration. Int J Biol Macromol 2024; 281:136215. [PMID: 39378917 DOI: 10.1016/j.ijbiomac.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The distinctive composition and functions of osteochondral structures result in constrained regeneration. Insufficient healing processes may precipitate the emergence of tissue growth disorders or excessive subchondral bone formation, which can culminate in the deterioration and failure of osteochondral tissue repair. To overcome these limitations, materials designed for osteochondral repair must provide region-specific modulation of the microenvironment and mechanical compatibility. To address these challenges, we propose a method to create continuous hydrogels with distinct structural and functional properties by a precise cross-linking method. We have developed an innovative polyurethane enriched with dimethylglyoxime, facilitating the coordinated loading and precise release of Zn2+. This strategy enables the meticulous control of alginate cross-linking, resulting in an elastic gradient hydrogel that closely resembles the osteochondral interface. The SeSe within the hydrogel effectively modulates the inflammatory microenvironment and fosters the M2 polarization of macrophages. The hydrogel's lower layer is designed to rapidly release Zn2+, thereby enhancing bone regeneration. The upper layer is intended to prevent bone overgrowth and stimulate chondrogenic differentiation. This dual-layer strategy allows targeted stimuli to each region, promoting the seamless integration of neoosteochondral tissue. Our study demonstrates the potential of this stratified hydrogel in achieving uniform and smooth osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Jianming Zhao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyuan Fang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bingxuan Wang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Abudureheman Bahatibieke
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiang Peng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
12
|
Wang C, Liu H, Li Z, Yang Q, Wang Q, Yang T, Tang D, Wang C, Liu J. Oleanolic acid 28-O-β-D-glucopyranoside: A novel therapeutic agent against ulcerative colitis via anti-inflammatory, barrier-preservation, and gut microbiota-modulation. Biomed Pharmacother 2024; 180:117534. [PMID: 39405905 DOI: 10.1016/j.biopha.2024.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Ulcerative colitis (UC), an incurable and recurrent inflammatory bowel disease, presents a significant threat to health and highlights the need for novel therapeutic strategies. Oleanolic acid 28-O-β-D-glucopyranoside (OAG) is a naturally occurring pentacyclic triterpenoid found in ginseng. In this study, we demonstrated that OAG exhibited remarkable anti-UC activity in LPS-induced Caco-2 cells and DSS-induced model mice. First, OAG alleviated the symptoms of UC by mitigating weight loss, reducing the DAI score, and increasing colon length. Second, the inflammatory response was inhibited after OAG intervention, evidenced decreases in the spleen coefficient, cytokine levels, and inflammatory cell infiltration in colon tissue. Thirdly, OAG also enhanced intestinal epithelial barrier function, as evidenced by elevated TEER values, increased expression of tight junction proteins, diminished bacterial translocation, and maintained intact ultrastructure of colonic mucosal cells. Notably, compared with 5-aminosalicylic acid, OAG demonstrated superior efficacy in enhancing mucosal barrier function. Fourth, OAG increased microbial diversity, promoted the abundance of beneficial bacteria, reduced the abundance of harmful bacteria, and rebalanced the gut microbiome. Finally, the PI3K-AKT and MAPK signaling pathways were identified as crucial mechanisms underlying the therapeutic effects of OAG against UC through multi-omics. In summary, we identified OAG as a novel therapeutic agent against UC, demonstrating anti-inflammatory, barrier-preserving, and gut microbiota-modulating effects, highlighting its promising potential as a candidate UC drug.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Qingya Yang
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ting Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
14
|
Liu T, Qu L, Zhu C, Guo M, Ma X, Lei H, Fan D. Oxygen-generating hydrogels combined with electrical stimulation: A dual approach for promoting diabetic wound healing. Acta Biomater 2024:S1742-7061(24)00640-8. [PMID: 39489203 DOI: 10.1016/j.actbio.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds resulting from hyperglycemia and hypoxia are common complications in diabetic patients, posing significant challenges for clinical treatment. In this study, we developed a hydrogel (PVNP-SP) using [VBIM]Br, NIPAM, PEGDA, and spirulina, which exhibited strong antioxidant properties. The incorporation of [VBIM]Br endowed the hydrogel with electrical conductivity, allowing it to activate voltage-gated ion channels under an external electric field, thereby promoting cell survival and migration. The hydrogel also enhanced cellular antioxidant capacity by providing sustained oxygenation, inhibiting HIF-1α nuclear translocation, and activating the Nrf2/HO-1 pathway. Notably, in a chronic wound model, the combined effects of oxygen production and electrical stimulation from the PVNP-SP hydrogel significantly reduced wound inflammation, promoted collagen deposition and angiogenesis, and facilitated early wound closure. This therapeutic strategy, which mitigates hypoxia while integrating electrical stimulation, offers a highly effective strategy for improving chronic wound healing in diabetic patients. STATEMENT OF SIGNIFICANCE: Inspired by photoautotrophic organisms, we combined microalgae with a conductive hydrogel and we demonstrated the synergistic promotion of chronic wound healing by electrical stimulation combined with microalgae oxygen-producing hydrogel. The approach of combining microalgae hydrogel patches with electrical stimulation demonstrates the feasibility of delivering oxygen to tissues while combining electrical stimulation for synergistic tissue repair. The hydrogel is easy to fabricate and handle, and may be suitable for a variety of treatments, such as myocardial infarction, lower limb ischemia, and drug delivery. The potential applicability of this hydrogel in a variety of treatments suggests that it has promising applications in regenerative medicine.
Collapse
Affiliation(s)
- Taishan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Linlin Qu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China; Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Mengdi Guo
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710076, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
15
|
Wu H, Shi C, Li Q, Wang L, Wang R, Chen F, Li R, Guo X, Chen Y, She J. Oral Administration of Bioactive Nanoparticulates for Inflammatory Bowel Disease Therapy by Mitigating Oxidative Stress and Restoring Intestinal Microbiota Homeostasis. Mol Pharm 2024. [PMID: 39462848 DOI: 10.1021/acs.molpharmaceut.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The management of inflammatory bowel disease (IBD) continues to pose significant challenges due to the absence of curative therapies and a high rate of recurrence. Therefore, it is imperative to explore novel approaches to enhance the efficacy of IBD therapy. Herein, a bioactive nanoparticulate s is tailored designed to achieve a "Pull-Push" approach for efficient and safe IBD treatment by integrating reactive oxygen species (ROS) scavenging (Pull) with anti-inflammatory agent delivery (Push) in the inflammatory microenvironment. The multifunctional nanomedicine, designated MON-PAMAM@SASP, is developed through the encapsulation of sulfasalazine (SASP), a widely utilized clinical drug for the treatment of IBD, within cationic diselenide-bridged mesoporous organosilica nanoparticles (MONs) that possess significant antioxidant properties. Herein, poly(amidoamine) (PAMAM) endows the original MONs with positive charge characteristics. The MON-PAMAM@SASP not only displays the remarkable capability of neutralizing ROS to ameliorates intestinal damage, but also achieves controllable release of SASP to mitigate intestinal inflammation. Consequently, this nanomedicine effectively mitigates IBD by colitis in mouse models, and our current research has not identified any significant drug toxicity. Beyond regulating inflammatory microenvironment in intestine, treatment with MON-PAMAM@SASP results in increased richness and restores intestinal microbiota homeostasis, thereby mitigating IBD to a certain extent. Together, our work provides a highly versatile "Pull-Push" approach for IBD management and encourages the development of similar nanomedicine to treating multiple inflammatory diseases of gastrointestinal tract.
Collapse
Affiliation(s)
- Hong Wu
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- The Third Department of General Surgery, Xi'an Daxing Hospital Affiliated to Yan'an University, Xi'an 710016, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qixin Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lizhao Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ruochen Wang
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Ruizhe Li
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaolong Guo
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Yinnan Chen
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| | - Junjun She
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
16
|
Chi X, Chen T, Luo F, Zhao R, Li Y, Hu S, Li Y, Jiang W, Chen L, Wu D, Du Y, Hu J. Targeted no-releasing L-arginine-induced hesperetin self-assembled nanoparticles for ulcerative colitis intervention. Acta Biomater 2024:S1742-7061(24)00628-7. [PMID: 39461688 DOI: 10.1016/j.actbio.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Overproduction of reactive oxygen species (ROS) plays a crucial role in initiating and advancing ulcerative colitis (UC), and the persistent cycle between ROS and inflammation accelerates disease development. Therefore, developing strategies that can effectively scavenge ROS and provide targeted intervention are crucial for the management of UC. In this study, we synthesized natural carrier-free nanoparticles (HST-Arg NPs) using the Mannich reaction and π-π stacking for the intervention of UC. HST-Arg NPs are an oral formulation that exhibit good antioxidant capabilities and gastrointestinal stability. Benefiting from the negatively charged characteristics, HST-Arg NPs can specifically accumulate in positively charged inflamed regions of the colon. Furthermore, in the oxidative microenvironment of colonic inflammation, HST-Arg NPs respond to ROS by releasing nitric oxide (NO). In mice model of UC induced by dextran sulfate sodium (DSS), HST-Arg NPs significantly mitigated colonic injury by modulating oxidative stress, lowering pro-inflammatory cytokines, and repairing intestinal barrier integrity. In summary, this convenient and targeted oral nanoparticle can effectively scavenge ROS at the site of inflammation and achieve gas intervention, offering robust theoretical support for the development of subsequent oral formulations in related inflammatory interventions. STATEMENT OF SIGNIFICANCE: Nanotechnology has been extensively explored in the biomedical field, but the application of natural carrier-free nanotechnology in this area remains relatively rare. In this study, we developed a natural nanoparticle system based on hesperetin (HST), L-arginine (L-Arg), and vanillin (VA) to scavenge ROS and alleviate inflammation. In the context of ulcerative colitis (UC), the synthesized nanoparticles exhibited excellent intervention effects, effectively protecting the colon from damage. Consequently, these nanoparticles provide a promising and precise nutritional intervention strategy by addressing both oxidative stress and inflammatory pathways simultaneously, demonstrating significant potential for application.
Collapse
Affiliation(s)
- Xuesong Chi
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Fengxian Luo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yangjing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shumeng Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wen Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - LiHang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
17
|
Pan Q, Xie L, Zhu H, Zong Z, Wu D, Liu R, He B, Pu Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen Biomater 2024; 11:rbae122. [PMID: 39539979 PMCID: PMC11558062 DOI: 10.1093/rb/rbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Natural remedies are gaining attention as promising approaches to alleviating inflammation, yet their full potential is often limited by challenges such as poor bioavailability and suboptimal therapeutic effects. To overcome these limitations, we have developed a novel nano-antioxidant (EK) based on epigallocatechin gallate (EGCG) aimed at enhancing the oral and systemic bioavailability, as well as the anti-inflammatory efficacy, of curcumin (Cur) in conditions such as acute colon and kidney inflammation. EK is synthesized using a straightforward Mannich reaction between EGCG and L-lysine (K), resulting in the formation of EGCG oligomers. These oligomers spontaneously self-assemble into nanoparticles with a spherical morphology and an average diameter of approximately 160 nm. In vitro studies reveal that EK nanoparticles exhibit remarkable radical-scavenging capabilities and effectively regulate redox processes within macrophages, a key component in the body's inflammatory response. By efficiently encapsulating curcumin within these EK nanoparticles, we create Cur@EK, a formulation that demonstrates a synergistic anti-inflammatory effect. Specifically, Cur@EK significantly reduces the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the anti-inflammatory cytokine IL-10 in lipopolysaccharide-stimulated macrophages, highlighting its potent anti-inflammatory properties. When administered either orally or intravenously, Cur@EK shows superior bioavailability compared to free curcumin and exhibits pronounced anti-inflammatory effects in mouse models of ulcerative colitis and acute kidney injury. These findings suggest that the EK nano-antioxidant platform not only enhances the bioavailability of curcumin but also amplifies its therapeutic impact, offering a promising new avenue for the treatment and management of inflammation in both oral and systemic contexts.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
18
|
Ouyang Q, Zhao Y, Xu K, He Y, Qin M. Hyaluronic Acid Receptor-Mediated Nanomedicines and Targeted Therapy. SMALL METHODS 2024; 8:e2400513. [PMID: 39039982 DOI: 10.1002/smtd.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/25/2024] [Indexed: 07/24/2024]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide found in the extracellular matrix with broad applications in disease treatment. HA possesses good biocompatibility, biodegradability, and the ability to interact with various cell surface receptors. Its wide range of molecular weights and modifiable chemical groups make it an effective drug carrier for drug delivery. Additionally, the overexpression of specific receptors for HA on cell surfaces in many disease states enhances the accumulation of drugs at pathological sites through receptor binding. In this review, the modification of HA with drugs, major receptor proteins, and the latest advances in receptor-targeted nano drug delivery systems (DDS) for the treatment of tumors and inflammatory diseases are summarized. Furthermore, the functions of HA with varying molecular weights of HA in vivo and the selection of drug delivery methods for different diseases are discussed.
Collapse
Affiliation(s)
- Qiuhong Ouyang
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Zhao
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kunyao Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuechen He
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Qin
- Department of Lung Cancer Center and Center for Preclinical Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Xie X, Wang Y, Deng B, Blatchley MR, Lan D, Xie Y, Lei M, Liu N, Xu F, Wei Z. Matrix metalloproteinase-responsive hydrogels with tunable retention for on-demand therapy of inflammatory bowel disease. Acta Biomater 2024; 186:354-368. [PMID: 39117116 DOI: 10.1016/j.actbio.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Therapeutic options for addressing inflammatory bowel disease (IBD) include the administration of an enema to reduce intestinal inflammation and alleviate associated symptoms. However, uncontrollable retention of enemas in the intestinal tract has posed a long-term challenge for improving their therapeutic efficacy and safety. Herein we have developed a protease-labile hydrogel system as an on-demand enema vehicle with tunable degradation and drug release rates in response to varying matrix metalloproteinase-9 (MMP-9) expression. The system, composed of three tailored hydrogel networks, is crosslinked by poly (ethylene glycol) (PEG) with 2-, 4- and 8-arms through dynamic hydrazone bonds to confer injectability and generate varying network connectivity. The retention time of the hydrogels can be tuned from 12 to 36 h in the intestine due to their different degradation behaviors induced by MMP-9. The drug-releasing rate of the hydrogels can be controlled from 0.0003 mg/h to 0.278 mg/h. In addition, injection of such hydrogels in vivo resulted in significant differences in therapeutic effects including MMP-9 consumption, colon tissue repair, reduced collagen deposition, and decreased macrophage cells, for treating a mouse model of acute colitis. Among them, GP-8/5-ASA exhibits the best performance. This study validates the effectiveness of the tailored design of hydrogel architecture in response to pathological microenvironment cues, representing a promising strategy for on-demand therapy of IBD. STATEMENT OF SIGNIFICANCE: The uncontrollable retention of enemas at the delivery site poses a long-term challenge for improving therapeutic efficacy in IBD patients. MMP-9 is highly expressed in IBD and correlates with disease severity. Therefore, an MMP-9-responsive GP hydrogel system was developed as an enema by linking multi-armed PEG and gelatin through hydrazone bonds. This forms a dynamic hydrogel characterized by in situ gelation, injectability, enhanced bio-adhesion, biocompatibility, controlled retention time, and regulated drug release. GP hydrogels encapsulating 5-ASA significantly improved the intestinal phenotype of acute IBD and demonstrated notable therapeutic differences with increasing PEG arms. This method represents a promising on-demand IBD therapy strategy and provides insights into treating diseases of varying severities using endogenous stimulus-responsive drug delivery systems.
Collapse
Affiliation(s)
- Xueyong Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaohui Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Bo Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Michael R Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder 3415 Colorado Ave, Boulder, CO 80303, USA
| | - Dongwei Lan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yizhou Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Meng Lei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
20
|
Weng MT, Hsiung CY, Wei SC, Chen Y. Nanotechnology for Targeted Inflammatory Bowel Disease Therapy: Challenges and Opportunities. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1999. [PMID: 39439396 DOI: 10.1002/wnan.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex and recurring inflammatory disorder that affects the gastrointestinal tract and is influenced by genetic predisposition, immune dysregulation, the gut microbiota, and environmental factors. Advanced therapies, such as biologics and small molecules, target diverse immune pathways to manage IBD. Nanoparticle (NP)-based drugs have emerged as effective tools, offering controlled drug release and targeted delivery. This review highlights NP modifications for anti-inflammatory purposes, utilizing changes such as those in size, charge, redox reactions, and ligand-receptor interactions in drug delivery systems. By using pathological and microenvironmental cues to guide NP design, precise targeting can be achieved. In IBD, a crucial aspect of NP intervention is targeting specific types of cells, such as immune and epithelial cells, to address compromised intestinal barrier function and reduce overactive immune responses. This review also addresses current challenges and future prospects, with the goal of advancing the development of NP-mediated strategies for IBD treatment.
Collapse
Affiliation(s)
- Meng-Tzu Weng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chia-Yueh Hsiung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Dong F, Hao L, Wang L, Huang Y. Clickable nanozyme enhances precise colonization of probiotics for ameliorating inflammatory bowel disease. J Control Release 2024; 373:749-765. [PMID: 39084465 DOI: 10.1016/j.jconrel.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Convincing evidence suggests that aberrant gut microbiota changes play a critical role in the progression and pathogenesis of inflammatory bowel disease (IBD). Probiotic therapeutic interventions targeting the microbiota may provide alternative avenues to treat IBD, but currently available probiotics often suffer from low intestinal colonization and limited targeting capability. Here, we developed azido (N3)-modified Prussian blue nanozyme (PB@N3) spatio-temporal guidance enhances the targeted colonization of probiotics to alleviate intestinal inflammation. First, clickable PB@N3 targets intestinal inflammation, simultaneously, it scavenges reactive oxygen species (ROS). Subsequently, utilizing "click" chemistry to spatio-temporally guide targeted colonization of dibenzocyclooctyne (DBCO)-modified Lactobacillus reuteri DSM 17938 (LR@DBCO). The "click" reaction between PB@N3 and LR@DBCO has excellent specificity and efficacy both in vivo and in vitro. Despite the complex physiological environment of IBD, "click" reaction can prolong the retention time of probiotics in the intestine. Dextran sulfate sodium (DSS)-induced colitis mice model, demonstrates that the combination of PB@N3 and LR@DBCO effectively mitigates levels of ROS, enhances the colonization of probiotics, modulates intestinal flora composition and function, regulates immune profiles, restores intestinal barrier function, and alleviates intestinal inflammation. Hence, PB@N3 spatio-temporal guidance enhances targeted colonization of LR@DBCO provides a promising medical treatment strategy for IBD.
Collapse
Affiliation(s)
- Fang Dong
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Liangwen Hao
- The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Wang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ying Huang
- Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|
22
|
Zhu H, Zhou L, Tang J, Xu Y, Wang W, Shi W, Li Z, Zhang L, Ding Z, Xi K, Gu Y, Chen L. Reactive Oxygen Species-Responsive Composite Fibers Regulate Oxidative Metabolism through Internal and External Factors to Promote the Recovery of Nerve Function. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401241. [PMID: 38660829 DOI: 10.1002/smll.202401241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/28/2024] [Indexed: 04/26/2024]
Abstract
It is challenging to sufficiently regulate endogenous neuronal reactive oxygen species (ROS) production, reduce neuronal apoptosis, and reconstruct neural networks under spinal cord injury conditions. Here, hydrogel surface grafting and microsol electrospinning are used to construct a composite biomimetic scaffold with "external-endogenous" dual regulation of ROS. The outer hydrogel enhances local autophagy through responsive degradation and rapid release of rapamycin (≈80% within a week), neutralizing extracellular ROS and inhibiting endogenous ROS production, further reducing neuronal apoptosis. The inner directional fibers continuously supply brain-derived neurotrophic factors to guide axonal growth. The results of in vitro co-culturing show that the dual regulation of oxidative metabolism by the composite scaffold approximately doubles the neuronal autophagy level, reduces 60% of the apoptosis induced by oxidative stress, and increases the differentiation of neural stem cells into neuron-like cells by ≈2.5 times. The in vivo results show that the composite fibers reduce the ROS levels by ≈80% and decrease the formation of scar tissue. RNA sequencing results show that composite scaffolds upregulate autophagy-associated proteins, antioxidase genes, and axonal growth proteins. The developed composite biomimetic scaffold represents a therapeutic strategy to achieve neurofunctional recovery through programmed and accurate bidirectional regulation of the ROS cascade response.
Collapse
Affiliation(s)
- Hongyi Zhu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Zhou
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Jincheng Tang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yichang Xu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Wang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Wenxiao Shi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Ziang Li
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Lichen Zhang
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Zhouye Ding
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Kun Xi
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Yong Gu
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| | - Liang Chen
- Department of Orthopedic Surgery, Orthopedic Institute, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215006, P. R. China
| |
Collapse
|
23
|
Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y, Gao F. Tofacitinib Citrate Coordination-Based Dual-Responsive/Scavenge Nanoplatform Toward Regulate Colonic Inflammatory Microenvironment for Relieving Colitis. Adv Healthc Mater 2024:e2401869. [PMID: 39180276 DOI: 10.1002/adhm.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Jiang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzuo Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100050, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
24
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
25
|
Pu M, Cao H, Zhang H, Wang T, Li Y, Xiao S, Gu Z. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. MATERIALS HORIZONS 2024; 11:3721-3746. [PMID: 38894682 DOI: 10.1039/d4mh00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hydrogels with intricate 3D networks and high hydrophilicity have qualities resembling those of biological tissues, making them ideal candidates for use as smart biomedical materials. Reactive oxygen species (ROS) responsive hydrogels are an innovative class of smart hydrogels, and are cross-linked by ROS-responsive modules through covalent interactions, coordination interactions, or supramolecular interactions. Due to the introduction of ROS response modules, this class of hydrogels exhibits a sensitive response to the oxidative stress microenvironment existing in organisms. Simultaneously, due to the modularity of the ROS-responsive structure, ROS-responsive hydrogels can be manufactured on a large scale through additive manufacturing. This review will delve into the design, fabrication, and applications of ROS-responsive hydrogels. The main goal is to clarify the chemical principles that govern the response mechanism of these hydrogels, further providing new perspectives and methods for designing responsive hydrogel materials.
Collapse
Affiliation(s)
- Minju Pu
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Huan Cao
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Hengjie Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Tianyou Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| | - Shimeng Xiao
- Department of Periodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China.
| |
Collapse
|
26
|
Muro P, Zhang L, Li S, Zhao Z, Jin T, Mao F, Mao Z. The emerging role of oxidative stress in inflammatory bowel disease. Front Endocrinol (Lausanne) 2024; 15:1390351. [PMID: 39076514 PMCID: PMC11284038 DOI: 10.3389/fendo.2024.1390351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition that affects the digestive system and includes Crohn's disease (CD) and ulcerative colitis (UC). Although the exact etiology of IBD remains uncertain, dysfunctional immunoregulation of the gut is believed to be the main culprit. Amongst the immunoregulatory factors, reactive oxygen species (ROS) and reactive nitrogen species (RNS), components of the oxidative stress event, are produced at abnormally high levels in IBD. Their destructive effects may contribute to the disease's initiation and propagation, as they damage the gut lining and activate inflammatory signaling pathways, further exacerbating the inflammation. Oxidative stress markers, such as malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and serum-free thiols (R-SH), can be measured in the blood and stool of patients with IBD. These markers are elevated in patients with IBD, and their levels correlate with the severity of the disease. Thus, oxidative stress markers can be used not only in IBD diagnosis but also in monitoring the response to treatment. It can also be targeted in IBD treatment through the use of antioxidants, including vitamin C, vitamin E, glutathione, and N-acetylcysteine. In this review, we summarize the role of oxidative stress in the pathophysiology of IBD, its diagnostic targets, and the potential application of antioxidant therapies to manage and treat IBD.
Collapse
Affiliation(s)
- Peter Muro
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Li Zhang
- Nanjing Lishui People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shuxuan Li
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zihan Zhao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Tao Jin
- Department of Gastrointestinal and Endoscopy, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhenwei Mao
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
27
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
28
|
Wang YC, Shueng PW, Hu CY, Tung FI, Chen MH, Liu TY. Hyaluronic acid-based injectable formulation developed to mitigate metastasis and radiation-induced skin fibrosis in breast cancer treatment. Carbohydr Polym 2024; 336:122136. [PMID: 38670762 DOI: 10.1016/j.carbpol.2024.122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
The standard treatment for early-stage breast cancer involves breast-conserving surgery followed by adjuvant radiotherapy. However, approximately 20 % of patients experience distant metastasis, and adjuvant radiotherapy often leads to radiation-induced skin fibrosis (RISF). In this study, we develop an on-site injectable formulation composed of selenocystamine (SeCA) and hyaluronic acid (HyA), referred to as SeCA cross-linked HyA (SCH) agent, and investigate its potential to mitigate metastasis and prevent RISF associated with breast cancer therapy. SCH agents are synthesized using the nanoprecipitation method to modulate cell-cell tight junctions and tissue inflammation. The toxicity assessments reveal that SCH agents with a higher Se content (Se payload 17.4 μg/mL) are well tolerated by L929 cells compared to SeCA (Se payload 3.2 μg/mL). In vitro, SCH agents significantly enhance cell-cell tight junctions and effectively mitigate migration and invasion of breast cancer cells (4T1). In vivo, SCH agents mitigate distant lung metastasis. Furthermore, in animal models, SCH agents reduce RISF and promote wound repair. These findings highlight the potential of SCH agents as a novel therapeutic formulation for effectively mitigating metastasis and reducing RISF. This holds great promise for improving clinical outcomes in breast cancer patients undergoing adjuvant radiotherapy.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chan-Yu Hu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan; Department of Health and Welfare, College of City Management, University of Taipei, Taipei 111036, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
29
|
Li Q, Zhang C, Zhu M, Shan J, Qian H, Ma Y, Wang X. W-GA nanodots restore intestinal barrier functions by regulating flora disturbance and relieving excessive oxidative stress to alleviate colitis. Acta Biomater 2024; 182:260-274. [PMID: 38777175 DOI: 10.1016/j.actbio.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) may arise due to disruption of mucosal barriers as a result of dysregulation of the intestinal flora and excessive oxidative stress. The creation of nanomaterials with only microbiota-regulating effects often leads to inadequate therapeutic outcomes caused by the disruption of a healthy microbial balance and the emergence of tissue harm caused by excessive oxidative stress. This report describes the multifunctional activity of ultrasmall W-GA nanodots, which can precisely regulate the intestinal microbiome by inhibiting the abnormal expansion of Enterobacteriaceae during colitis and alleviating the damage caused by oxidative stress to the reconstructive microflora, ultimately restoring intestinal barrier function. W-GA nanodots have been synthesized through a simple coordination reaction and can be dispersed in various solvents in vitro, demonstrating favorable safety profiles in cells, significant clearance of reactive oxygen and nitrogen species (RONS), and increased cell survival in models of oxidative stress induced by hydrogen peroxide (H2O2). Through oral or intravenous administration, the W-GA nanodots were shown to be highly safe when tested in vivo, and they effectively reduced colon damage in mice with DSS-induced colitis by restoring the integrity of the intestinal barrier. W-GA nanodots have enabled the integration of microflora reprogramming and RONS clearance, creating a potent therapeutic strategy for treating gut inflammation. Consequently, the development of W-GA nanodots represents a promising strategy for enhancing the formation and preservation of the intestinal barrier to treat IBD by suppressing the growth of Enterobacteriaceae, a type of facultative anaerobic bacterium, and facilitating the effective removal of RONS. Ultimately, this leads to the restoration of the intestinal barrier's functionality. STATEMENT OF SIGNIFICANCE: An increasing number of nanoparticles are under development for treating inflammatory bowel disease. Although they can alleviate inflammation symptoms by regulating reactive oxygen and nitrogen species (RONS) and microbiota, their understanding of the mechanism behind microbiota regulation is limited. This study synthesized W-GA nanodots using a straightforward one-pot synthesis method. Simple synthesis holds significant promise for clinical applications, as it encompasses multiple nanoenzyme functions and also exhibits Enterobacteriaceae inhibitory properties.Thus, it contributes to ameliorating the current medical landscape of inflammatory bowel disease.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China
| | - Cong Zhang
- Division of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Mengmei Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jie Shan
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, PR China
| | - Haisheng Qian
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Yan Ma
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
30
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
31
|
Li J, Song J, Deng Z, Yang J, Wang X, Gao B, Zhu Y, Yang M, Long D, Luo X, Zhang M, Zhang M, Li R. Robust reactive oxygen species modulator hitchhiking yeast microcapsules for colitis alleviation by trilogically intestinal microenvironment renovation. Bioact Mater 2024; 36:203-220. [PMID: 38463553 PMCID: PMC10924178 DOI: 10.1016/j.bioactmat.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic inflammatory processes of the intestinal tract of unknown origin. Current treatments lack understanding on how to effectively alleviate oxidative stress, relieve inflammation, as well as modulate gut microbiota for maintaining intestinal homeostasis synchronously. In this study, a novel drug delivery system based on a metal polyphenol network (MPN) was constructed via metal coordination between epigallocatechin gallate (EGCG) and Fe3+. Curcumin (Cur), an active polyphenolic compound, with distinguished anti-inflammatory activity was assembled and encapsulated into MPN to generate Cur-MPN. The obtained Cur-MPN could serve as a robust reactive oxygen species modulator by efficiently scavenging superoxide radical (O2•-) as well as hydroxyl radical (·OH). By hitchhiking yeast microcapsule (YM), Cur-MPN was then encapsulated into YM to obtain CM@YM. Our findings demonstrated that CM@YM was able to protect Cur-MPN to withstand the harsh gastrointestinal environment and enhance the targeting and retention abilities of the inflamed colon. When administered orally, CM@YM could alleviate DSS-induced colitis with protective and therapeutic effects by scavenging ROS, reducing pro-inflammatory cytokines, and regulating the polarization of macrophages to M1, thus restoring barrier function and maintaining intestinal homeostasis. Importantly, CM@YM also modulated the gut microbiome to a favorable state by improving bacterial diversity and transforming the compositional structure to an anti-inflammatory phenotype as well as increasing the content of short-chain fatty acids (SCFA) (such as acetic acid, propionic acid, and butyric acid). Collectively, with excellent biocompatibility, our findings indicate that synergistically regulating intestinal microenvironment will be a promising approach for UC.
Collapse
Affiliation(s)
- Jintao Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Song
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhichao Deng
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jian Yang
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiaoqin Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Bowen Gao
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yuanyuan Zhu
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Dingpei Long
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Luo
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Runqing Li
- Department of Radiology, the First Affiliated Hospital, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
32
|
Qiao L, Li Z, Shi P. Disease-modifying potential of diphenyl diselenide in an experimental osteoarthritis model. Biochem Biophys Res Commun 2024; 710:149885. [PMID: 38588612 DOI: 10.1016/j.bbrc.2024.149885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Oxidative stress is a key factor in the disruption of cartilage homeostasis during the development of osteoarthritis (OA). Organic selenium (Se)-containing compounds such as diselenides have excellent antioxidant activity and may prevent related diseases. We aimed to examine the benefits of the synthetic small molecule diphenyl diselenide (DPDSe) in OA models in vitro and in vivo. Our findings showed that DPDSe could maintain extracellular matrix (ECM) homeostasis and inhibit reactive oxygen species (ROS) production in IL-1β-treated chondrocytes. In a destabilization of the medial meniscus (DMM)-induced OA mouse model, intra-articular administration of DPDSe alleviated joint degeneration, as evidenced by a decrease in the OARSI score and the restoration of collagen II (COL2) and MMP-13 expression in cartilage tissues. We confirmed that DDS activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in IL-1β-treated chondrocytes, and its chondroprotective effects were significantly counteracted when Nrf2 signaling was blocked by the inhibitor ML385 or by siRNA-mediated Nrf2 knockdown. The relatively strong performance of DPDSe makes it an ideal candidate for further trials as a disease-modifying OA drug (DMOAD).
Collapse
Affiliation(s)
- Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, PR China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, PR China.
| |
Collapse
|
33
|
Chen T, Meng W, Li Y, Li X, Yu X, Qi J, Ding D, Li W. Probiotics Armed with In Situ Mineralized Nanocatalysts and Targeted Biocoatings for Multipronged Treatment of Inflammatory Bowel Disease. NANO LETTERS 2024. [PMID: 38787330 DOI: 10.1021/acs.nanolett.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
While oral probiotics show promise in treating inflammatory bowel disease, the primary challenge lies in sustaining their activity and retention within the inflamed gastrointestinal environment. In this work, we develop an engineered probiotic platform that is armed with biocatalytic and inflamed colon-targeting nanocoatings for multipronged management of IBD. Notably, we achieve the in situ growth of artificial nanocatalysts on probiotics through a bioinspired mineralization strategy. The resulting ferrihydrite nanostructures anchored on bacteria exhibit robust catalase-like activity across a broad pH range, effectively scavenging ROS to alleviate inflammation. The further envelopment with fucoidan-based shields confers probiotics with additional inflamed colon-targeting functions. Upon oral administration, the engineered probiotics display markedly improved viability and colonization within the inflamed intestine, and they further elicit boosted prophylactic and therapeutic efficacy against colitis through the synergistic interplay of nanocatalysis-based immunomodulation and probiotics-mediated microbiota reshaping. The robust and multifunctional probiotic platforms offer great potential for the comprehensive management of gastrointestinal disorders.
Collapse
Affiliation(s)
- Ting Chen
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wen Meng
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yi Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xuya Yu
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
34
|
Li X, Gao J, Wu C, Wang C, Zhang R, He J, Xia ZJ, Joshi N, Karp JM, Kuai R. Precise modulation and use of reactive oxygen species for immunotherapy. SCIENCE ADVANCES 2024; 10:eadl0479. [PMID: 38748805 PMCID: PMC11095489 DOI: 10.1126/sciadv.adl0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reactive oxygen species (ROS) play an important role in regulating the immune system by affecting pathogens, cancer cells, and immune cells. Recent advances in biomaterials have leveraged this mechanism to precisely modulate ROS levels in target tissues for improving the effectiveness of immunotherapies in infectious diseases, cancer, and autoimmune diseases. Moreover, ROS-responsive biomaterials can trigger the release of immunotherapeutics and provide tunable release kinetics, which can further boost their efficacy. This review will discuss the latest biomaterial-based approaches for both precise modulation of ROS levels and using ROS as a stimulus to control the release kinetics of immunotherapeutics. Finally, we will discuss the existing challenges and potential solutions for clinical translation of ROS-modulating and ROS-responsive approaches for immunotherapy, and provide an outlook for future research.
Collapse
Affiliation(s)
- Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jingjing Gao
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Engineering, Material Science and Engineering Graduate Program and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chengcheng Wu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Chaoyu Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ruoshi Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziting Judy Xia
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nitin Joshi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
35
|
Stevanović M, Filipović N. A Review of Recent Developments in Biopolymer Nano-Based Drug Delivery Systems with Antioxidative Properties: Insights into the Last Five Years. Pharmaceutics 2024; 16:670. [PMID: 38794332 PMCID: PMC11125366 DOI: 10.3390/pharmaceutics16050670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, biopolymer-based nano-drug delivery systems with antioxidative properties have gained significant attention in the field of pharmaceutical research. These systems offer promising strategies for targeted and controlled drug delivery while also providing antioxidant effects that can mitigate oxidative stress-related diseases. Generally, the healthcare landscape is constantly evolving, necessitating the continual development of innovative therapeutic approaches and drug delivery systems (DDSs). DDSs play a pivotal role in enhancing treatment efficacy, minimizing adverse effects, and optimizing patient compliance. Among these, nanotechnology-driven delivery approaches have garnered significant attention due to their unique properties, such as improved solubility, controlled release, and targeted delivery. Nanomaterials, including nanoparticles, nanocapsules, nanotubes, etc., offer versatile platforms for drug delivery and tissue engineering applications. Additionally, biopolymer-based DDSs hold immense promise, leveraging natural or synthetic biopolymers to encapsulate drugs and enable targeted and controlled release. These systems offer numerous advantages, including biocompatibility, biodegradability, and low immunogenicity. The utilization of polysaccharides, polynucleotides, proteins, and polyesters as biopolymer matrices further enhances the versatility and applicability of DDSs. Moreover, substances with antioxidative properties have emerged as key players in combating oxidative stress-related diseases, offering protection against cellular damage and chronic illnesses. The development of biopolymer-based nanoformulations with antioxidative properties represents a burgeoning research area, with a substantial increase in publications in recent years. This review provides a comprehensive overview of the recent developments within this area over the past five years. It discusses various biopolymer materials, fabrication techniques, stabilizers, factors influencing degradation, and drug release. Additionally, it highlights emerging trends, challenges, and prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Magdalena Stevanović
- Group for Biomedical Engineering and Nanobiotechnology, Institute of Technical Sciences of SASA, Kneza Mihaila 35/IV, 11000 Belgrade, Serbia;
| | | |
Collapse
|
36
|
Uthaman S, Parvinroo S, Mathew AP, Jia X, Hernandez B, Proctor A, Sajeevan KA, Nenninger A, Long MJ, Park IK, Chowdhury R, Phillips GJ, Wannemuehler MJ, Bardhan R. Inhibiting the cGAS-STING Pathway in Ulcerative Colitis with Programmable Micelles. ACS NANO 2024; 18:12117-12133. [PMID: 38648373 DOI: 10.1021/acsnano.3c11257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Ulcerative colitis is a chronic condition in which a dysregulated immune response contributes to the acute intestinal inflammation of the colon. Current clinical therapies often exhibit limited efficacy and undesirable side effects. Here, programmable nanomicelles were designed for colitis treatment and loaded with RU.521, an inhibitor of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. STING-inhibiting micelles (SIMs) comprise hyaluronic acid-stearic acid conjugates and include a reactive oxygen species (ROS)-responsive thioketal linker. SIMs were designed to selectively accumulate at the site of inflammation and trigger drug release in the presence of ROS. Our in vitro studies in macrophages and in vivo studies in a murine model of colitis demonstrated that SIMs leverage HA-CD44 binding to target sites of inflammation. Oral delivery of SIMs to mice in both preventive and delayed therapeutic models ameliorated colitis's severity by reducing STING expression, suppressing the secretion of proinflammatory cytokines, enabling bodyweight recovery, protecting mice from colon shortening, and restoring colonic epithelium. In vivo end points combined with metabolomics identified key metabolites with a therapeutic role in reducing intestinal and mucosal inflammation. Our findings highlight the significance of programmable delivery platforms that downregulate inflammatory pathways at the intestinal mucosa for managing inflammatory bowel diseases.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Shadi Parvinroo
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Ansuja Pulickal Mathew
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Xinglin Jia
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, United States
| | - Belen Hernandez
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Alexandra Proctor
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Karuna Anna Sajeevan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Ariel Nenninger
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Mary-Jane Long
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| | - Gregory J Phillips
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J Wannemuehler
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
- Nanovaccine Institute, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
37
|
Fu YJ, Zhao X, Wang LY, Li K, Jiang N, Zhang ST, Wang RK, Zhao YF, Yang W. A Gas Therapy Strategy for Intestinal Flora Regulation and Colitis Treatment by Nanogel-Based Multistage NO Delivery Microcapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309972. [PMID: 38324725 DOI: 10.1002/adma.202309972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Current approaches to treating inflammatory bowel disease focus on the suppression of overactive immune responses, the removal of reactive intestinal oxygen species, and regulation of the intestinal flora. However, owing to the complex structure of the gastrointestinal tract and the influence of mucus, current small-molecule and biologic-based drugs for treating colitis cannot effectively act at the site of colon inflammation, and as a result, they tend to exhibit low efficacies and toxic side effects. In this study, nanogel-based multistage NO delivery microcapsules are developed to achieve NO release at the inflammation site by targeting the inflammatory tissues using the nanogel. Surprisingly, oral administration of the microcapsules suppresses the growth of pathogenic bacteria and increases the abundance of probiotic bacteria. Metabolomics further show that an increased abundance of intestinal probiotics promotes the production of metabolites, including short-chain fatty acids and indole derivatives, which modulate the intestinal immunity and restore the intestinal barrier via the interleukin-17 and PI3K-Akt signaling pathways. This work reveals that the developed gas therapy strategy based on multistage NO delivery microcapsules modulates the intestinal microbial balance, thereby reducing inflammation and promoting intestinal barrier repair, ultimately providing a new therapeutic approach for the clinical management of colitis.
Collapse
Affiliation(s)
- Ya-Jun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xing Zhao
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Li-Ya Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Niu Jiang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shu-Ting Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rao-Kaijuan Wang
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Yi-Fan Zhao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610032, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
38
|
Li Y, Chen T, Chen L, Wu D, Hu J. Construction of hyaluronic acid-functionalized magnolol nanoparticles for ulcerative colitis treatment. Int J Biol Macromol 2024; 268:131920. [PMID: 38679261 DOI: 10.1016/j.ijbiomac.2024.131920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Oral targeted anti-inflammatory drugs have garnered significant interest in treating ulcerative colitis (UC) due to their potential in reducing medical costs and enhancing treatment efficacy. Magnolol (Mag), a natural anti-inflammatory compound, has demonstrated protective effects against UC. However, its application as an alternative therapeutic agent for UC is limited by poor gastrointestinal stability and inadequate accumulation at inflamed colonic lesions. This study introduces a novel nanoparticle (NPs) formulation based on Mag, functionalized with hyaluronic acid (HA) for targeted UC therapy. Bovine serum albumin (BSA) was modified with 2-thiamine hydrochloride to synthesize BSA·SH. Thiol-ene click reaction with Mag led to the formation of BSA·SH-Mag NPs, which were further modified with HA through dehydration condensation, regular spherical inflammation-targeting HA-BSA·SH-Mag nanoparticles with a charge of -23.6 mV and a particle size of 403 ± 4 nm were formed. In vitro studies revealed significant macrophage targeting and enhanced uptake by colon epithelial cells. Oral administration of HA-BSA·SH-Mag facilitated colon mucosal barrier repair by modulating pro-inflammatory cytokines (TNF-α, IL-6, IL-1β), anti-inflammatory cytokines (IL-10), and tight junction proteins (ZO-1, Claudin, Occludin). Crucially, HA-BSA·SH-Mag was found to inhibit the JAK2/STAT3/NF-κB signaling pathway, reducing DSS-induced colon tissue inflammation. This research provides valuable insights into the oral use of natural compounds in UC therapy, highlighting the therapeutic potential of HA-BSA·SH-Mag NPs.
Collapse
Affiliation(s)
- Yanfei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
39
|
Zhu L, Yu T, Wang W, Xu T, Geng W, Li N, Zan X. Responsively Degradable Nanoarmor-Assisted Super Resistance and Stable Colonization of Probiotics for Enhanced Inflammation-Targeted Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308728. [PMID: 38241751 DOI: 10.1002/adma.202308728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/09/2023] [Indexed: 01/21/2024]
Abstract
Manipulation of the gut microbiota using oral microecological preparations has shown great promise in treating various inflammatory disorders. However, delivering these preparations while maintaining their disease-site specificity, stability, and therapeutic efficacy is highly challenging due to the dynamic changes associated with pathological microenvironments in the gastrointestinal tract. Herein, a superior armored probiotic with an inflammation-targeting capacity is developed to enhance the efficacy and timely action of bacterial therapy against inflammatory bowel disease (IBD). The coating strategy exhibits suitability for diverse probiotic strains and has negligible influence on bacterial viability. This study demonstrates that these armored probiotics have ultraresistance to extreme intraluminal conditions and stable mucoadhesive capacity. Notably, the HA-functionalized nanoarmor equips the probiotics with inflamed-site targetability through multiple interactions, thus enhancing their efficacy in IBD therapy. Moreover, timely "awakening" of ingested probiotics through the responsive transferrin-directed degradation of the nanoarmor at the site of inflammation is highly beneficial for bacterial therapy, which requires the bacterial cells to be fully functional. Given its easy preparation and favorable biocompatibility, the developed single-cell coating approach provides an effective strategy for the advanced delivery of probiotics for biomedical applications at the cellular level.
Collapse
Affiliation(s)
- Limeng Zhu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tiantian Yu
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Wenchao Wang
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tong Xu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wujun Geng
- Department of Pain, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Na Li
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
40
|
Liang D, Shen X, Han L, Ren H, Zang T, Tan L, Lu Z, Liao X, Vetha BSS, Liu Y, Zhang C, Sun J. Dual-ROS Sensitive Moieties Conjugate Inhibits Curcumin Oxidative Degradation for Colitis Precise Therapy. Adv Healthc Mater 2024; 13:e2303016. [PMID: 38431929 DOI: 10.1002/adhm.202303016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Indexed: 03/05/2024]
Abstract
Curcumin, a natural bioactive polyphenol with diverse molecular targets, is well known for its anti-oxidation and anti-inflammatory potential. However, curcumin exhibits low solubility (<1 µg mL-1), poor tissue-targeting ability, and rapid oxidative degradation, resulting in poor bioavailability and stability for inflammatory therapy. Here, poly(diselenide-oxalate-curcumin) nanoparticle (SeOC-NP) with dual-reactive oxygen species (ROS) sensitive chemical moieties (diselenide and peroxalate ester bonds) is fabricated by a one-step synthetic strategy. The results confirmed that dual-ROS sensitive chemical moieties endowed SeOC-NP with the ability of targeted delivery of curcumin and significantly suppress oxidative degradation of curcumin for high-efficiency inflammatory therapy. In detail, the degradation amount of curcumin for SeOC is about 4-fold lower than that of free curcumin in an oxidative microenvironment. As a result, SeOC-NP significantly enhanced the antioxidant activity and anti-inflammatory efficacy of curcumin in vitro analysis by scavenging intracellular ROS and suppressing the secretion of nitric oxide and pro-inflammatory cytokines. In mouse colitis models, orally administered SeOC-NP can remarkably alleviate the symptoms of IBD and maintain the homeostasis of gut microbiota. This work provided a simple and effective strategy to fabricate ROS-responsive micellar and enhance the oxidation stability of medicine for precise therapeutic inflammation.
Collapse
Affiliation(s)
- Dunsheng Liang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xiaofan Shen
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lu Han
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Tao Zang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Lulu Tan
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Zhaoxiang Lu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, P. R. China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, P. R. China
| |
Collapse
|
41
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
42
|
Chen J, Luo A, Xu M, Zhang Y, Wang Z, Yu S, Zhu L, Wu W, Yang D. The application of phenylboronic acid pinacol ester functionalized ROS-responsive multifunctional nanoparticles in the treatment of Periodontitis. J Nanobiotechnology 2024; 22:181. [PMID: 38622641 PMCID: PMC11017612 DOI: 10.1186/s12951-024-02461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Periodontitis is an inflammatory disease induced by the complex interactions between the host immune system and the microbiota of dental plaque. Oxidative stress and the inflammatory microenvironment resulting from periodontitis are among the primary factors contributing to the progression of the disease. Additionally, the presence of dental plaque microbiota plays a significant role in affecting the condition. Consequently, treatment strategies for periodontitis should be multi-faceted. In this study, a reactive oxygen species (ROS)-responsive drug delivery system was developed by structurally modifying hyaluronic acid (HA) with phenylboronic acid pinacol ester (PBAP). Curcumin (CUR) was encapsulated in this drug delivery system to form curcumin-loaded nanoparticles (HA@CUR NPs). The release results indicate that CUR can be rapidly released in a ROS environment to reach the concentration required for treatment. In terms of uptake, HA can effectively enhance cellular uptake of NPs because it specifically recognizes CD44 expressed by normal cells. Moreover, HA@CUR NPs not only retained the antimicrobial efficacy of CUR, but also exhibited more pronounced anti-inflammatory and anti-oxidative stress functions both in vivo and in vitro. This provides a good potential drug delivery system for the treatment of periodontitis, and could offer valuable insights for dental therapeutics targeting periodontal diseases.
Collapse
Affiliation(s)
- Jinhong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Aihua Luo
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Yao Zhang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Zheng Wang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Shuang Yu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China
| | - Li Zhu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 404100, China.
| |
Collapse
|
43
|
Nam NN, Tran NKS, Nguyen TT, Trai NN, Thuy NP, Do HDK, Tran NHT, Trinh KTL. Classification and application of metal-based nanoantioxidants in medicine and healthcare. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:396-415. [PMID: 38633767 PMCID: PMC11022389 DOI: 10.3762/bjnano.15.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Antioxidants play an important role in the prevention of oxidative stress and have been widely used in medicine and healthcare. However, natural antioxidants have several limitations such as low stability, difficult long-term storage, and high cost of large-scale production. Along with significant advances in nanotechnology, nanomaterials have emerged as a promising solution to improve the limitations of natural antioxidants because of their high stability, easy storage, time effectiveness, and low cost. Among various types of nanomaterials exhibiting antioxidant activity, metal-based nanoantioxidants show excellent reactivity because of the presence of an unpaired electron in their atomic structure. In this review, we summarize some novel metal-based nanoantioxidants and classify them into two main categories, namely chain-breaking and preventive antioxidant nanomaterials. In addition, the applications of antioxidant nanomaterials in medicine and healthcare are also discussed. This review provides a deeper understanding of the mechanisms of metal-based nanoantioxidants and a guideline for using these nanomaterials in medicine and healthcare.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Tan Tai Nguyen
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Ngoc Trai
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Phuong Thuy
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
44
|
Ma Y, Gou S, Zhu Z, Sun J, Shahbazi MA, Si T, Xu C, Ru J, Shi X, Reis RL, Kundu SC, Ke B, Nie G, Xiao B. Transient Mild Photothermia Improves Therapeutic Performance of Oral Nanomedicines with Enhanced Accumulation in the Colitis Mucosa. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309516. [PMID: 38085512 DOI: 10.1002/adma.202309516] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The treatment outcomes of oral medications against ulcerative colitis (UC) have long been restricted by low drug accumulation in the colitis mucosa and subsequent unsatisfactory therapeutic efficacy. Here, high-performance pluronic F127 (P127)-modified gold shell (AuS)-polymeric core nanotherapeutics loading with curcumin (CUR) is constructed. Under near-infrared irradiation, the resultant P127-AuS@CURs generate transient mild photothermia (TMP; ≈42 °C, 10 min), which facilitates their penetration through colonic mucus and favors multiple cellular processes, including cell internalization, lysosomal escape, and controlled CUR release. This strategy relieves intracellular oxidative stress, improves wound healing, and reduces immune responses by polarizing the proinflammatory M1-type macrophages to the anti-inflammatory M2-type. Upon oral administration of hydrogel-encapsulating P127-AuS@CURs plus intestinal intralumen TMP, their therapeutic effects against acute and chronic UC are demonstrated to be superior to those of a widely used clinical drug, dexamethasone. The treatment of P127-AuS@CURs (+ TMP) elevates the proportions of beneficial bacteria (e.g., Lactobacillus and Lachnospiraceae), whose metabolites can also mitigate colitis symptoms by regulating genes associated with antioxidation, anti-inflammation, and wound healing. Overall, the intestinal intralumen TMP offers a promising approach to enhance the therapeutic outcomes of noninvasive medicines against UC.
Collapse
Affiliation(s)
- Ya Ma
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangquan Gou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jianfeng Sun
- Botnar Research Centre, Nuffield Department of Orthopedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7LD, UK
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, Netherlands
| | - Tieyan Si
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng Xu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jinlong Ru
- Chair of Prevention of Microbial Diseases, School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimaraes, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, 4800-058, Portugal
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
45
|
Zhu Y, Fang Y, Wang Y, Han D, Liu J, Tian L, Xu M, Wang Y, Cao F. Cluster of Differentiation-44-Targeting Prussian Blue Nanoparticles Onloaded with Colchicine for Atherosclerotic Plaque Regression in a Mice Model. ACS Biomater Sci Eng 2024; 10:1530-1543. [PMID: 38372216 DOI: 10.1021/acsbiomaterials.3c01518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Atherosclerosis management heavily relies on the suppression of the inflammatory response of macrophages. Colchicine's potent anti-inflammatory properties make it a promising candidate for secondary prevention against cardiovascular disease. However, its high toxicity and numerous adverse effects limit its clinical use. To address this, there is an urgent need for specific drug delivery systems to boost the level of accumulation of colchicine within atherosclerotic plaques. In this study, the cluster of differentiation-44 receptor was verified to be overexpressed in inflammatory macrophages within plaques both in vitro and in vivo. Subsequently, a Prussian blue-based nanomedical loading system with hyaluronic acid (HA) coating was constructed, and its effects were observed on the atherosclerosis regression. Colchicine and Cy5.5 were encapsulated within Prussian blue nanoparticles through self-assembly, followed by conjugation with hyaluronic acid to create col@PBNP@HA. The formulated col@PBNP@HA displayed a cubic shape and scattered distribution. Importantly, col@PBNP@HA demonstrated specific cellular uptake into lipopolysaccharide-stimulated macrophages. In vitro experiments showed that col@PBNP@HA more effectively inhibited expression of inflammatory factors and scavenged reactive oxygen species compared with the control group, which were treated with colchicine. Furthermore, col@PBNP@HA exhibited its specific and higher accumulation in aortic plaque analysis via fluorescence imaging of aortas. After 4 weeks, administration of col@PBNP@HA resulted in significant atherosclerosis regression in the mice model, with therapeutic effects superior to those of free colchicine. Similar to colchicine, col@PBNP@HA inhibited the secretion of inflammation factors and scavenged ROS through the regulation of the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (Myd88)/nuclear factor kappa-B (NF-κB) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. In summary, col@PBNP@HA demonstrated specific targeting ability to inflammatory plaques and exerted beneficial effects on atherosclerosis regression through TLR4/Myd88/NF-κB and PGC-1α modulation.
Collapse
Affiliation(s)
- Yan Zhu
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Fang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yujia Wang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Dong Han
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Tian
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengqi Xu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yabin Wang
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
46
|
Xu T, Ning X, Wu J, Wang Q, Wang Z, Chen Z, Tang X, Bai P, Pu K, Li L, Zhang R. Metabolic Nanoregulator Remodels Gut Microenvironment for Treatment of Inflammatory Bowel Disease. ACS NANO 2024; 18:7123-7135. [PMID: 38390866 DOI: 10.1021/acsnano.3c11496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Inflammatory bowel disease (IBD) is strongly related to the occurrence of accumulation of toxic reactive oxygen species (ROS), inflammation of the mucosa, and an imbalance of intestinal microbes. However, current treatments largely focus on a single factor, yielding unsatisfactory clinical outcomes. Herein, we report a biocompatible and IBD-targeted metabolic nanoregulator (TMNR) that synergistically regulates cellular and bacterial metabolism. The TMNR comprises a melanin-gallium complex (MNR) encapsulated within a thermosensitive and colitis-targeting hydrogel, all composed of natural and FDA-approved components. The TMNR confers superior broad-spectrum antioxidant properties, effectively scavenging reactive oxygen species (ROS) and blocking inflammatory signaling pathways. The presence of Ga3+ in TMNR selectively disrupts iron metabolism in pathogenic microorganisms due to its structural resemblance to the iron atom. Additionally, incorporating a thermosensitive injectable hydrogel enables targeted delivery of TMNR to inflammatory regions, prolonging their retention time and providing a physical barrier function for optimizing IBD treatment efficacy. Collectively, TMNR effectively modulates the redox balance of inflamed colonic epithelial tissue and disrupts iron metabolism in pathogenic microorganisms, thereby eliminating inflammation and restoring intestinal homeostasis against IBD. Hence, this work presents a comprehensive approach for precise spatiotemporal regulation of the intestinal microenvironmental metabolism for IBD treatment.
Collapse
Affiliation(s)
- Ting Xu
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaogang Ning
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jiayan Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qian Wang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Zhifei Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqing Chen
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoxian Tang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| | - Peirong Bai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Liping Li
- The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, The Fifth Hospital of Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
47
|
He Z, Sun C, Ma Y, Chen X, Wang Y, Chen K, Xie F, Zhang Y, Yuan Y, Liu C. Rejuvenating Aged Bone Repair through Multihierarchy Reactive Oxygen Species-Regulated Hydrogel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306552. [PMID: 37848015 DOI: 10.1002/adma.202306552] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Indexed: 10/19/2023]
Abstract
Aging exacerbates the dysfunction of tissue regeneration at multiple levels and gradually diminishes individual's capacity to withstand stress, damage, and disease. The excessive accumulation of reactive oxygen species (ROS) is considered a hallmark feature of senescent stem cells, which causes oxidative stress, deteriorates the host microenvironment, and eventually becomes a critical obstacle for aged bone defect repair. Till now, the strategies cannot synchronously and thoroughly regulate intracellular and extracellular ROS in senescent cells. Herein, a multihierarchy ROS scavenging system for aged bone regeneration is developed by fabricating an injectable PEGylated poly(glycerol sebacate) (PEGS-NH2 )/poly(γ-glutamic acid) (γ-PGA) hydrogel containing rapamycin-loaded poly(diselenide-carbonate) nanomicelles (PSeR). This PSeR hydrogel exhibits highly sensitive ROS responsiveness to the local aged microenvironment and dynamically releases drug-loaded nanomicelles to scavenge the intracellular ROS accumulated in senescent bone mesenchymal stem cells. The PSeR hydrogel effectively tunes the antioxidant function and delays senescence of bone mesenchymal stem cells by safeguarding DNA replication in an oxidative environment, thereby promoting the self-renewal ability and enhancing the osteogenic capacity for aged bone repair in vitro and in vivo. Thus, this multihierarchy ROS-regulated hydrogel provides a new strategy for treating degenerative diseases.
Collapse
Affiliation(s)
- Zirui He
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chuanhao Sun
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yifan Ma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Xi Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ying Wang
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Kai Chen
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Fangru Xie
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Basic Science Center Project of National Natural Science Foundation of China, Key Laboratory for Ultrafine Materials of Ministry of Education and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
48
|
Zhang Z, Pan Y, Guo Z, Fan X, Pan Q, Gao W, Luo K, Pu Y, He B. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease. Bioact Mater 2024; 33:71-84. [PMID: 38024237 PMCID: PMC10658185 DOI: 10.1016/j.bioactmat.2023.10.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and refractory condition characterized by disrupted epithelial barrier, dysregulated immune balance, and altered gut microbiota. Nano-enabled interventions for restoring gut homeostasis have the potential to alleviate inflammation in IBD. Herein, we developed a combination of olsalazine (Olsa)-based nanoneedles and microbiota-regulating inulin gel to reshape intestinal homeostasis and relieve inflammation. The Olsa-derived nanoneedles exhibited reactive oxygen species scavenging ability and anti-inflammatory effects in lipopolysaccharide-simulated macrophages. The composite of nanoneedles and inulin gel (Cu2(Olsa)/Gel) displayed a macroporous structure, improved bio-adhesion, and enhanced colon retention after oral administration. Mechanistically, the composite effectively downregulated pro-inflammatory cytokine levels and promoted epithelial barrier repair through anti-inflammatory and antioxidant therapies, resulting in significant alleviation of colitis in three animal models of IBD. Furthermore, analysis of gut microbiota revealed that Cu2(Olsa)/Gel treatment increased the diversity of intestinal microflora and decreased the relative abundance of pathogenic bacteria such as Proteobacteria. Overall, this study provides a self-delivering nanodrug and dietary fiber hydrogel composite for IBD therapy, offering an efficient approach to restore intestinal homeostasis.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
49
|
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Chen K, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun 2024; 15:1673. [PMID: 38396052 PMCID: PMC10891058 DOI: 10.1038/s41467-024-46025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xudong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yalan Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shan Li
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yusi Qin
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingyi Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kang Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
50
|
Deng K, Tian H, Zhang T, Gao Y, Nice EC, Huang C, Xie N, Ye G, Zhou Y. Chemo-photothermal nanoplatform with diselenide as the key for ferroptosis in colorectal cancer. J Control Release 2024; 366:684-693. [PMID: 38224739 DOI: 10.1016/j.jconrel.2024.01.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Colorectal cancer (CRC) is a prevalent clinical malignancy of the gastrointestinal system, and its clinical drug resistance is the leading cause of poor prognosis. Mechanistically, CRC cells possess a specific oxidative stress defense mechanism composed of a significant number of endogenous antioxidants, such as glutathione, to combat the damage produced by drug-induced excessive reactive oxygen species (ROS). We report on a new anti-CRC nanoplatform, a multifunctional chemo-photothermal nanoplatform based on Camptothecin (CPT) and IR820, an indocyanine dye. The implementation of a GSH-triggered ferroptosis-integrated tumor chemo-photothermal nanoplatform successfully addressed the poor targeting ability of CPT and IR820 while exhibiting significant growth inhibitory effects on CRC cells. Mechanistically, to offset the oxidative stress created by the broken SeSe bonds, endogenous GSH was continuously depleted, which inactivated GPX4 to accumulate lipid peroxides and induce ferroptosis. Concurrently, exogenously administered linoleic acid was oxidized under photothermal conditions, resulting in an increase in LPO accumulation. With the breakdown of the oxidative stress defense system, chemotherapeutic efficacy could be effectively enhanced. In combination with photoacoustic imaging, the nanoplatform could eradicate solid tumors by means of ferroptosis-sensitized chemotherapy. This study indicates that chemotherapy involving a ferroptosis mechanism is a viable method for the treatment of CRC.
Collapse
Affiliation(s)
- Kaili Deng
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Hailong Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Tingting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Canhua Huang
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China.
| |
Collapse
|