1
|
Huang Y, Liao K, Yang Z, Tian S, Yuan X, Sun X, Li Z, Han L. Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls. Carbohydr Polym 2025; 348:122904. [PMID: 39567139 DOI: 10.1016/j.carbpol.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
Collapse
Affiliation(s)
- Yuanping Huang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Keke Liao
- College of Engineering, China Agricultural University, Beijing 100083, China; College of Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zengling Yang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Sicong Tian
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangru Yuan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xingming Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zichao Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lujia Han
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Hayashi K, Tokumaru T, Shibahara K, Taleb Alashkar AN, Zhang C, Kishida R, Nakashima Y, Ishikawa K. Wood-Derived Hydrogels for Osteochondral Defect Repair. ACS NANO 2025; 19:520-534. [PMID: 39730305 DOI: 10.1021/acsnano.4c10430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and N-acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils. CA and NAG intercalation increased the amorphous region of the cellulose microfibrils and endowed them with flexibility while maintaining the skeletal structure of the wood. Consequently, the CA-NAG-treated wood hydrogels became twistable and bendable, and the acquired stiffness, compressive strength, water content, and cushioning characteristics were similar to those of the cartilage. In rabbit femur cartilage defects, CA-NAG-treated wood hydrogels induced the differentiation of surrounding cells into chondrocytes. Consequently, the CA-NAG-treated wood hydrogels repaired cartilage defects, whereas the collagen scaffolds, delignified wood materials, and CA-treated wood hydrogels did not. The CA-NAG-treated wood hydrogels exhibit superior structural and mechanical characteristics over conventional cellulose-fiber-containing scaffolds. Furthermore, the CA-NAG-treated wood hydrogels can effectively repair cartilage on their own, whereas conventional natural and synthetic polymeric materials need to be combined with cells and growth factors to achieve a sufficient therapeutic effect. Therefore, the CA-NAG-treated wood hydrogels successfully address the limitations of current therapies that either fail to repair articular cartilage or sacrifice healthy cartilage. To our knowledge, this is the pioneer study on the utilization of thinned wood for tissue engineering, which will contribute to solving both global health and environmental problems and to creating a sustainable society.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuya Tokumaru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Shibahara
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
3
|
Tran VC, Mastantuoni G, Garemark J, Dreimol CH, Wang X, Berggren M, Zhou Q, Kroon R, Engquist I. Interconnecting EDOT-Based Polymers with Native Lignin toward Enhanced Charge Storage in Conductive Wood. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68416-68425. [PMID: 39625283 DOI: 10.1021/acsami.4c16298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The 3D micro- and nanostructure of wood has extensively been employed as a template for cost-effective and renewable electronic technologies. However, other electroactive components, in particular native lignin, have been overlooked due to the absence of an approach that allows access of the lignin through the cell wall. In this study, we introduce an approach that focuses on establishing conjugated-polymer-based electrical connections at various length scales within the wood structure, aiming to leverage the charge storage capacity of native lignin in wood-based energy storage electrodes. We demonstrate that poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) PEDOT/PSS, integrated within the cell wall lumen, can be interfaced with native lignin through the wood cell wall through in situ polymerization of a water-soluble S-EDOT monomer. This approach increases the capacitance of the conductive wood to 315 mF cm-2 at a scan rate of 5 mV s-1, which is seven and, respectively, two times higher compared to the capacitance of conductive wood made with the single components PEDOT/PSS or S-PEDOT. Moreover, we show that the capacitance is contributed by both the electroactive polymers and native lignin, with native lignin accounting for over 70% of the total charge storage capacity. We show that accessing native lignin through in situ creation of electrical interconnections within the wood structure offers a pathway toward sustainable, wood-based electrodes with improved charge-storage capacity for applications in electronics and energy storage.
Collapse
Affiliation(s)
- Van Chinh Tran
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Gabriella Mastantuoni
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Jonas Garemark
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Christopher H Dreimol
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
- Cellulose & Wood Materials Laboratory, Empa, 8600 Dübendorf, Switzerland
| | - Xin Wang
- Division Digital Systems, Department Smart Hardware, Unit Bio- and Organic Electronics, RISE Research Institutes of Sweden, 602 33, Norrköping, Sweden
- Digital Cellulose Center, RISE, 602 33 Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Initiative Material Science for Sustainability, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
4
|
Ruan M, Du C, Guo X, Xu S, Gao H, Ma X, Guan Y. Tetrapanax papyriferus lignocellulosic skeleton aerogel enhanced with polyvinyl alcohol of high mechanical performance and thermal insulating. Int J Biol Macromol 2024; 282:137264. [PMID: 39515692 DOI: 10.1016/j.ijbiomac.2024.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Biodegradable and renewable biomass aerogel has attracted significant attention because of its excellent characteristics. However, most aerogels were limited by poor mechanical strength and complex fabrication process. Herein, two delignified Tetrapanax papyriferus (TP) lignocellulosic samples (TP-SC, TP-FA/HAC) served as renewable porous skeletons with polyvinyl alcohol (PVA) modification to prepare high performance aerogels. The excellent pore structure facilitates the penetration of polyvinyl alcohol, which enhances the mechanical property and thermal stability of the resulting aerogel. The SC-8 h exhibited excellent mechanical strength with a bending stress of 102.9 MPa, 26.7 % increase in strain and 2.5 % in bending modulus compared to the TP-SC. The maximum thermal decomposition temperature of the FA/HAC-4 h was 358.6 °C, which was showed an outstanding thermal stability of the aerogel. Furthermore, these aerogels exhibited thermal insulating properties, and the maximum surface heating temperature after impregnation modification is lower than that of the original wood. This performance has a development prospect in the field of thermal insulation packaging and building structural materials. The high strength lignocellulosic skeleton aerogel could be prepared by a simple and effective strategy that preserved the original distinctive structure, offering a novel approach to the efficient utilization of TP.
Collapse
Affiliation(s)
- Mengya Ruan
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Chunhao Du
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoping Guo
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Siquan Xu
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Hui Gao
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Ma
- Department of Biomaterials, International Center for Bamboo and Rattan, No. 8 Futong Eastern Street, Chaoyang District, Beijing 100102, China.
| | - Ying Guan
- School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
6
|
Jiang J, Zhang Q, Luo X, Cheng B, Chen Q, Yang J, Huang L, Mondal AK, Yuan Z, Chen L, Li J. Superfast, large-scale harvesting of cellulose molecules via ethanol pre-swelling engineering of natural fibers. Carbohydr Polym 2024; 343:122484. [PMID: 39174103 DOI: 10.1016/j.carbpol.2024.122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Cellulose molecules, as the basic unit of biomass cellulose, have demonstrated advancements in versatile engineering and modification of cellulose toward sustainable and promising materials in our low-carbon society. However, harvesting high-quality cellulose molecules from natural cellulosic fibers (CF) remains challenging due to strong hydrogen bonds and unique crystalline structure, which limit solvents (such as ionic liquid, IL) transport and diffusion within CF, making the process energy/time-intensively. Herein, we superfast and sustainably engineer biomass fibers into high-performance cellulose molecules via ethanol pre-swelling of CF followed by IL treatment in the microwave (MW) system. Ethanol-pre-swelled cellulosic fibers (SCF) feature modified morphological and structural distinctions, with improved fiber width, pore size, and specific surface area. The ethanol in the SCF structure is appropriately removed through MW heating and cooling, leaving transport and diffusion pathways of IL within the SCF. Such strategy enables the superfast (140 s) and large-scale (kilogram level) harvesting of cellulose molecules with high molecular weight, resulting in high-performance, versatile cellulose ionogel with a 300 % increase in strength and 1027 % in toughness, monitoring human movement, external pressure, and temperature. Our strategy paves the way for time/energy-effectively, sustainably harvesting high-quality polymer molecules from natural sources beyond cellulose toward versatile and advanced materials.
Collapse
Affiliation(s)
- Jiajun Jiang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qianhong Zhang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiyao Luo
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Binbin Cheng
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Qunfeng Chen
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jiawei Yang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Liulian Huang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Zhanhui Yuan
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Lihui Chen
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Jianguo Li
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
7
|
Liang S, Ji Q, Wang R, Hu G, Li W, He L, Jiao Y, Singh T, Zhu H, Wang K, Fu Q, He W. Wood Cell Wall Nanoengineering toward Anisotropic, Strong, and Flexible Cellulosic Hydrogel Sensors. NANO LETTERS 2024. [PMID: 39373896 DOI: 10.1021/acs.nanolett.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Achieving highly ionic conductive hydrogels from natural wood remains challenging owing to their insufficient surface area and low number of active sites on the cell wall. This study proposes a viable strategy to design a strong and anisotropic wood-based hydrogel through cell wall nanoengineering. By manipulating the microstructure of the wood cell wall, a flexible cellulosic hydrogel is achieved through Schiff base bonding via the polyacrylamide and cellulose molecular chains. This results in excellent flexibility and mechanical properties of the wood hydrogel with tensile strengths of 22.3 and 6.1 MPa in the longitudinal and transverse directions, respectively. Moreover, confining aqueous salt electrolytes within the porous structure gives anisotropic ionic conductivities (19.5 and 6.02 S/m in the longitudinal and transverse directions, respectively). The wood-based hydrogel sensor has a favorable sensitivity and a stable working performance at a low temperature of -25 °C in monitoring human motions, thereby demonstrating great potential applications in wearable sensor devices.
Collapse
Affiliation(s)
- Shuang Liang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiuling Ji
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Gangzheng Hu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei He
- Institute of Forest Products, Jiangxi Academy of Forestry, No. 1629, Fenglin West Street, Nanchang Economic and Technological Development Zone, Jiangxi 330013, China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tripti Singh
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
- National Centre for Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hongfei Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiyin Wang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Scion, 49 Sala Street, Te Papa Tipu Innovation Park, Rotorua 3046, New Zealand
| | - Wen He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Li M, Wang F, Ouyang S, Liu Y, Hu Z, Wu Y, Qian J, Li Z, Wang L, Ma S. A comprehensive review on preparation and functional application of the wood aerogel with natural cellulose framework. Int J Biol Macromol 2024; 275:133340. [PMID: 38925195 DOI: 10.1016/j.ijbiomac.2024.133340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Wang T, Xu J, Zhan YJ, He L, Fu ZC, Deng JN, An WL, Zhao HB, Chen MJ. Organic solvents-free and ambient-pressure drying melamine formaldehyde resin aerogels with homogeneous structures, outstanding mechanical strength and flame retardancy. Int J Biol Macromol 2024; 273:132811. [PMID: 38825282 DOI: 10.1016/j.ijbiomac.2024.132811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Atmospheric drying method for fabricating aerogels is considered the most promising way for casting aerogels on a large scale. However, the organic solvent exchange, remaining environmental pollution risk, is a crucial step in mitigating the impact of surface tension during the atmospheric drying process, especially for wet gel formed through the alkoxy-derived sol-gel process, such as melamine-formaldehyde resin (MF) aerogel. Herein, a tough polymer-assisted in situ polymerization was proposed to fabricate MF resin aerogel with a combination of mechanical toughness and strength, enabling it to withstand the capillary force during water evaporation. The monolithic MF resin aerogel through the sol-gel method can be directly prepared without additional network strengthening or organic solvent exchange. The resulting MF resin aerogel exhibits a homogeneous as well as hierarchical structure with macropores and mesopores (~6 μm and ~5 nm), high compressive modulus of 31.8 MPa, self-extinguishing property, and high-temperature thermal insulation with 97 % heat decrease for butane flame combustion. This work presents a straightforward and environmentally friendly method for fabricating MF resin aerogels with nanostructures and excellent performance in open conditions, exhibiting various applications.
Collapse
Affiliation(s)
- Ting Wang
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jin Xu
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Ying-Jiao Zhan
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China
| | - Lei He
- State Key Laboratory of Polymer Materials Engineering, College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical and Testing Center, Sichuan University, Chengdu 610064, China
| | - Zhi-Cheng Fu
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Jin-Ni Deng
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Wen-Li An
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Hai-Bo Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical and Testing Center, Sichuan University, Chengdu 610064, China.
| | - Ming-Jun Chen
- Green Preparation and Recycling Laboratory of Functional Polymeric Materials, College of Science, Xihua University, Chengdu, Sichuan 610039, China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| |
Collapse
|
10
|
Tang J, Wen Z, Zhai M, Zhang J, Zhang S, Cui Y, Guo Q, Zhu K, Wang J, Liu Q. Environmental-friendly, flexible silk fibroin-based film as dual-responsive shape memory material. Int J Biol Macromol 2024; 269:131748. [PMID: 38670194 DOI: 10.1016/j.ijbiomac.2024.131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a β-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.
Collapse
Affiliation(s)
- Jingzhi Tang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Zhongyuan Wen
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Maomao Zhai
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingfeng Guo
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingtao Liu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
11
|
Si R, Luo H, Pu J. Construction of wood-PANI supercapacitor with high mass loading using "pore-making, active substance-filling, densification" strategy. J Colloid Interface Sci 2024; 662:58-68. [PMID: 38335740 DOI: 10.1016/j.jcis.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Wood-conducting polymer materials have been widely used as supercapacitor electrode; however, it remains challenging to achieve a simple method to improve the homogeneity of the conductive material on wood and to reach high mass loading. Herein, a novel "pore-making, active substance-filling, densification (dissolution, in-situ polymerization of polyaniline (PANI), self-shrinking)" strategy is proposed for the preparation of wood electrodes with a high mass loading (41.4 wt%) and homogeneity. Ingeniously, ZnCl2 as a dissolving agent and pore-making agent to treat delignified wood can generate more pores on the wood, which is more conducive to the penetration of aniline small molecules, besides, the dissolved fine fibers can be entangled with more PANI, which can improve the loading and homogeneity of PANI. After drying treatment, there will be shrinkage again, playing a certain physical densification effect on the large lumen. The optical electrode was RWP2 showing high electrochemical performance (2328.9 mF/cm2, 1 mA/cm2), and stability (5000 cycles, 89.3 %). Moving forward, the RWP2//RWP2 SSC showed an excellent energy density of 164.24 μwh/cm2 at a power density of 250 μw/cm2. Remarkably, the simple and versatile strategy of designing wood-based materials with high mass loading provides new research ideas for realizing multifunctional applications.
Collapse
Affiliation(s)
- Rongrong Si
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Honggang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junwen Pu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Bhardwaj S, Singh S, Dev K, Chhajed M, Maji PK. Harnessing the Flexibility of Lightweight Cellulose Nanofiber Composite Aerogels for Superior Thermal Insulation and Fire Protection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18075-18089. [PMID: 38560888 DOI: 10.1021/acsami.4c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Thermally insulating materials from renewable and readily available resources are in high demand for ecologically beneficial applications. Cellulose aerogels made from lignocellulosic waste have various advantages. However, they are fragile and breakable when bent or compressed. In addition, cellulose aerogels are flammable and weather-sensitive. Hence, to overcome these problems, this work included the preparation of polyurethane (PU)-based cellulose nanofiber (CNF) aerogels that had flexibility, flame retardancy, and thermal insulation. Methyl trimethoxysilane (MTMS) and water-soluble ammonium polyphosphate (APP) were added to improve the cross-linking, hydrophobicity, and flame-retardant properties of aerogels. The flexibility of chemically cross-linked CNF aerogels is enhanced through the incorporation of polyurethane via the wet coagulating process. The aerogels obtained during this study have exhibited low weight (density: 35.3-91.96 kg/m3) together with enhanced hydrophobic properties, flame retardancy, and decreased thermal conductivity (26.7-36.7 mW/m K at 25 °C). Additionally, the flame-retardant properties were comprehensively examined and the underlying mechanism was deduced. The aerogels prepared in this study are considered unique in the nanocellulose aerogel category due to their integrated structural and performance benefits. The invention is considered to substantially contribute to the large-scale manufacture and use of insulation in construction, automobiles, and aerospace.
Collapse
Affiliation(s)
- Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Keshav Dev
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monika Chhajed
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India
| |
Collapse
|
13
|
Geng A, Han Y, Cao J, Cai C. Strong double networked hybrid cellulosic foam for passive cooling. Int J Biol Macromol 2024; 264:130676. [PMID: 38453107 DOI: 10.1016/j.ijbiomac.2024.130676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Up to now, energy conservation, emission reduction, and environmental protection are still the goals that humanity continuously pursues. Passive radiative cooling is a zero-consumption cooling technology, which gains more and more attention. However, the contraction between mechanical strength and cooling performance of traditional radiative cooling materials still limits their scalable production. In this work, we developed a strong double-networked hybrid cellulosic foam via crosslinking recyclable CNF and PVA with a silane coupling agent in the freeze-drying process. Meanwhile, nano zinc oxide and MOF were added to improve the mechanical and solar scattering of foam. Benefiting from the synergistic solar scattering of ZnO and MOF and the stable double crosslinking network, the as-prepared hybrid cellulosic foam exhibits high solar reflectivity of 0.965, high IR emissivity of 0.94, ultrahigh mechanical strength of and low thermal conductivity. Based on above results, the hybrid cellulosic foam shows high-performance daytime cooling efficiency of 7.5 °C under direct sunlight in the hot region (Nanjing, China), which can serve as outdoor thermal-regulation materials. This work demonstrates that biomass materials possess the enormous potential of in thermal regulating materials, and also provides great possibilities for their applications in energy conservation, environmental protection and green building materials.
Collapse
Affiliation(s)
- Aobo Geng
- Research Institute of Wood Industry, Chinese Academy of Forestry, Key Laboratory of Wood Science and Technology, National Forestry and Grassland Administration, Beijing 100091, China.
| | - Yanming Han
- Research Institute of Wood Industry, Chinese Academy of Forestry, Key Laboratory of Wood Science and Technology, National Forestry and Grassland Administration, Beijing 100091, China
| | - Jingyun Cao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Key Laboratory of Wood Science and Technology, National Forestry and Grassland Administration, Beijing 100091, China
| | - Chenyang Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
14
|
Shi X, Bi R, Wan Z, Jiang F, Rojas OJ. Solid Wood Modification toward Anisotropic Elastic and Insulative Foam-Like Materials. ACS NANO 2024; 18:7959-7971. [PMID: 38501309 DOI: 10.1021/acsnano.3c10650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The methods used to date to produce compressible wood foam by top-down approaches generally involve the removal of lignin and hemicelluloses. Herein, we introduce a route to convert solid wood into a super elastic and insulative foam-like material. The process uses sequential oxidation and reduction with partial removal of lignin but high hemicellulose retention (process yield of 72.8%), revealing fibril nanostructures from the wood's cell walls. The elasticity of the material is shown to result from a lamellar structure, which provides reversible shape recovery along the transverse direction at compression strains of up to 60% with no significant axial deformation. The compressibility is readily modulated by the oxidation degree, which changes the crystallinity and mobility of the solid phase around the lumina. The performance of the highly resilient foam-like material is also ascribed to the amorphization of cellulosic fibrils, confirmed by experimental and computational (molecular dynamics) methods that highlight the role of secondary interactions. The foam-like wood is optionally hydrophobized by chemical vapor deposition of short-chained organosilanes, which also provides flame retardancy. Overall, we introduce a foam-like material derived from wood based on multifunctional nanostructures (anisotropically compressible, thermally insulative, hydrophobic, and flame retardant) that are relevant to cushioning, protection, and packaging.
Collapse
Affiliation(s)
- Xuetong Shi
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ran Bi
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry and Department of Wood Science, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Li X, Wang J, Liu Y, Zhao T, Luo B, Liu T, Zhang S, Chi M, Cai C, Wei Z, Zhang P, Wang S, Nie S. Lightweight and Strong Cellulosic Triboelectric Materials Enabled by Cell Wall Nanoengineering. NANO LETTERS 2024; 24:3273-3281. [PMID: 38427598 DOI: 10.1021/acs.nanolett.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.
Collapse
Affiliation(s)
- Xiuzhen Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Tong Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Zhiting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Puyang Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
16
|
Yan W, Qing Y, Li Z, Li L, Luo S, Wu Y, Chen D, Wu Y, Tian C. Construction of Nanofibrillar Networked Wood Aerogels Derived from Typical Softwood and Hardwood: A Comparative Study on the In Situ Formation Mechanism of Nanofibrillar Networks. Molecules 2024; 29:938. [PMID: 38474450 DOI: 10.3390/molecules29050938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
The construction of networks within natural wood (NW) lumens to produce porous wood aerogels (WAs) with fascinating characteristics of being lightweight, flexible, and porous is significant for the high value-added utilization of wood. Nonetheless, how wood species affect the structure and properties of WAs has not been comprehensively investigated. Herein, typical softwood of fir and hardwoods of poplar and balsa are employed to fabricate WAs with abundant nanofibrillar networks using the method of lignin removal and nanofibril's in situ regeneration. Benefiting from the avoidance of xylem ray restriction and the exposure of the cellulose framework, hardwood has a stronger tendency to form nanofibrillar networks compared to softwood. Specifically, a larger and more evenly distributed network structure is displayed in the lumens of balsa WAs (WA-3) with a low density (59 kg m-3), a high porosity (96%), and high compressive properties (strain = 40%; maximum stress = 0.42 MPa; height retention = 100%) because of the unique structure and properties of WA-3. Comparatively, the specific surface area (SSA) exhibits 25-, 27-, and 34-fold increments in the cases of fir WAs (WA-1), poplar WAs (WA-2), and WA-3. The formation of nanofibrillar networks depends on the low-density and thin cell walls of hardwood. This work offers a foundation for investigating the formation mechanisms of nanonetworks and for expanding the potential applications of WAs.
Collapse
Affiliation(s)
- Wenjing Yan
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yan Qing
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhihan Li
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lei Li
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Sha Luo
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ying Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Deng Chen
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yiqiang Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Cuihua Tian
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
17
|
Chang X, Wu F, Cheng X, Zhang H, He L, Li W, Yin X, Yu J, Liu YT, Ding B. Multiscale Interpenetrated/Interconnected Network Design Confers All-Carbon Aerogels with Unprecedented Thermomechanical Properties for Thermal Insulation under Extreme Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308519. [PMID: 37913824 DOI: 10.1002/adma.202308519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
With ultralight weight, low thermal conductivity, and extraordinary high-temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in-orbit operation and re-entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, a spatially confined assembly strategy of multiscale low-dimensional nanocarbons is reported to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin-film-like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all-carbon aerogels with a hierarchical cellular structure and quasi-closed cell walls achieve the best thermomechanical and insulation trade-off, exhibiting flyweight density (24 mg cm-3 ), temperature-constant compressibility (-196-1600 °C), and a low thermal conductivity of 0.04 829 W m-1 K-1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration.
Collapse
Affiliation(s)
- Xinyi Chang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaota Cheng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hao Zhang
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Lijuan He
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Wenjing Li
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Chen Z, Weng P, Song Y, Zheng L, Tan Y, Yin X. Loofah-inspired sodium alginate/carboxymethyl cellulose sodium-based porous frame for all-weather super-viscous crude oil adsorption and wastewater treatment in harsh environment. Carbohydr Polym 2024; 323:121450. [PMID: 37940312 DOI: 10.1016/j.carbpol.2023.121450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Solar-driven viscosity reduction of highly viscous crude oil has emerged as an environmentally friendly method to address large-scale oil spills. However, the challenge lies in the limited availability of sunlight during cloudy days and at night, which hinders the effectiveness of green advanced porous materials. This study developed all-weather-available advanced porous materials in the form of loofah-like structured porous frame composed of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane/MXene/carbon nanotubes (CNTs)/sodium alginate (SA)/carboxymethyl cellulose sodium (NaCMC). MXene and CNTs formed a continuous and stable network that enabled PMCSCPs to rapidly reduce crude oil viscosity for all-day based on photothermal and electrothermal conversions. Additionally, loofah-like porous structure and oriented pipeline biomass skeleton endowed PMCSCPs with stable and rapid adsorption capacity and speed. Considering the complexity of the external environment and oily wastewater composition, we verified the separation performance of PMCSCPs for metal ions and dyes and the ice-breaking ability under icy conditions. PMCSCPs provided a novel approach to achieving clean, high-efficiency, all-day remediation of ultra-viscous crude oil. This "Three birds with one stone" approach is expected to be obtained from nature and used on a large scale, replacing conventional porous adsorbent materials.
Collapse
Affiliation(s)
- Zhicheng Chen
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Puxin Weng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Yiheng Song
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Long Zheng
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xianze Yin
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
19
|
Wang Z, Sun B, Liao J, Cao S, Li L, Wang Q, Guo C. In-situ growth of electrically conductive MOFs in wood cellulose scaffold for flexible, robust and hydrophobic membranes with improved electrochemical performance. Int J Biol Macromol 2024; 255:127989. [PMID: 37977469 DOI: 10.1016/j.ijbiomac.2023.127989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Electrically conductive metal-organic frameworks (EC-MOFs) have attracted great attentions in electrochemical fields, but their practical application is limited by their hard-to-shape powder form. The aims was to integrate continuously nucleated EC-MOFs on natural wood cellulose scaffold to develop biobased EC-MOFs membrane with robust flexibility and improved electrochemical performance for wearable supercapacitors. EC-MOF materials (NiCAT or CuCAT) were successfully incorporated onto porous tempo-oxidized wood (TOW) scaffold to create ultrathin membranes through electrostatic force-mediated interfacial growth and simple room-temperature densification. The studies demonstrated the uniform and continuous EC-MOFs nanolayer on TOW scaffold and the interfacial bonding between EC-MOF and TOW. The densification of EC-MOF@TOW bulk yielded highly flexible ultrathin membranes (about 0.3 mm) with high tensile stress exceeding 180 MPa. Moreover, the 50 %-NiCAT@TOW membrane demonstrated high electrical conductivity (4.227 S·m-1) and hydrophobicity (contact angle exceeding 130°). Notably, these properties remained stable even after twisting or bending deformation. Furthermore, the electrochemical performance of EC-MOF@TOW membrane with hierarchical pores outperformed the EC-MOF powder electrode. This study innovatively anchored EC-MOFs onto wood through facile process, yielding highly flexible membranes with exceptional performance that outperforms most of reported conductive wood-based membranes. These findings would provide some references for flexible and functional EC-MOF/wood membranes for wearable devices.
Collapse
Affiliation(s)
- Zhinan Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Borong Sun
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Junqi Liao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Shuqi Cao
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liping Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Qingwen Wang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Chuigen Guo
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
20
|
Dong H, Li X, Cai Z, Wei S, Fan S, Ge Y, Li X, Wu Y. Strong, Lightweight, and Shape-Memory Bamboo-Derived All-Cellulose Aerogels for Versatile Scaffolds of Sustainable Multifunctional Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305857. [PMID: 37705126 DOI: 10.1002/smll.202305857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Strong, lightweight, and shape-memory cellulose aerogels have great potential in multifunctional applications. However, achieving the integration of these features into a cellulose aerogel without harsh chemical modifications and the addition of mechanical enhancers remains challenging. In this study, a strong, lightweight, and water-stimulated shape-memory all-cellulose aerogel (ACA) is created using a combination strategy of partial dissolution and unidirectional freezing from bamboo. Benefiting from the firm architecture of cellulose microfibers bridging cellulose nanofibers /regenerated cellulose aggregated layers and the bonding of different cellulose crystal components (cellulose Iβ and cellulose II), the ACA, with low density (60.74 mg cm-3 ), possesses high compressive modulus (radial section: 1.2 MPa, axial section: 0.96 MPa). Additionally, when stimulated with water, the ACA exhibits excellent shape-memory features, including highly reversible compression-resilience and instantaneous fold-expansion behaviors. As a versatile scaffold, ACA can be integrated with hydroxyapatite, carboxyl carbon nanotubes, and LiCl, respectively, via a simple impregnation method to yield functionalized cellulose composites for applications in thermal insulation, electromagnetic interference shielding, and piezoresistive sensors. This study provides inspiration and a reliable strategy for the elaborately structural design of functional cellulose aerogels endows application prospects in various multifunction opportunities.
Collapse
Affiliation(s)
- Hongping Dong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Xiazhen Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Zhiyong Cai
- USDA Forest Products Laboratory, Madison, WI, 53726-2398, USA
| | - Song Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Shutong Fan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Yanglin Ge
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Xianjun Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, 410004, P. R. China
| |
Collapse
|
21
|
Atinafu DG, Kim YU, Kim S, Kang Y, Kim S. Advances in Biocarbon and Soft Material Assembly for Enthalpy Storage: Fundamentals, Mechanisms, and Multimodal Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305418. [PMID: 37967349 DOI: 10.1002/smll.202305418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/24/2023] [Indexed: 11/17/2023]
Abstract
High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.
Collapse
Affiliation(s)
- Dimberu G Atinafu
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young Uk Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|