1
|
Wang QH, Cheng S, Han CY, Yang S, Gao SR, Yin WZ, Song WZ. Tailoring cell-inspired biomaterials to fuel cancer therapy. Mater Today Bio 2025; 30:101381. [PMID: 39742146 PMCID: PMC11683242 DOI: 10.1016/j.mtbio.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer stands as a predominant cause of mortality across the globe. Traditional cancer treatments, including surgery, radiotherapy, and chemotherapy, are effective yet face challenges like normal tissue damage, complications, and drug resistance. Biomaterials, with their advantages of high efficacy, targeting, and spatiotemporal controllability, have been widely used in cancer treatment. However, the biocompatibility limitations of traditional synthetic materials have restricted their clinical translation and application. Natural cell-inspired biomaterials inherently possess the targeting abilities of cells, biocompatibility, and immune evasion capabilities. Therefore, cell-inspired biomaterials can be used alone or in combination with other drugs or treatment strategies for cancer therapy. In this review, we first introduce the timeline of key milestones in cell-inspired biomaterials for cancer therapy. Then, we describe the abnormalities in cancer including biophysics, cellular biology, and molecular biology aspects. Afterwards, we summarize the design strategies of cell-inspired antitumor biomaterials. Subsequently, we elaborate on the application of antitumor biomaterials inspired by various cell types. Finally, we explore the current challenges and prospects of cell-inspired antitumor materials. This review aims to provide new opportunities and references for the development of antitumor cell-inspired biomaterials.
Collapse
Affiliation(s)
- Qi-Hui Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Chun-Yu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shuang Yang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Sheng-Rui Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wan-Zhong Yin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wen-Zhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| |
Collapse
|
2
|
Liao Y, Zhang Z, Zhao Y, Zhang S, Zha K, Ouyang L, Hu W, Zhou W, Sun Y, Liu G. Glucose oxidase: An emerging multidimensional treatment option for diabetic wound healing. Bioact Mater 2025; 44:131-151. [PMID: 39484022 PMCID: PMC11525048 DOI: 10.1016/j.bioactmat.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 11/03/2024] Open
Abstract
The healing of diabetic skin wounds is a complex process significantly affected by the hyperglycemic environment. In this context, glucose oxidase (GOx), by catalyzing glucose to produce gluconic acid and hydrogen peroxide, not only modulates the hyperglycemic microenvironment but also possesses antibacterial and oxygen-supplying functions, thereby demonstrating immense potential in the treatment of diabetic wounds. Despite the growing interest in GOx-based therapeutic strategies in recent years, a systematic summary and review of these efforts have been lacking. To address this gap, this review article outlines the advancements in the application of GOx and GOx-like nanozymes in the treatment of diabetic wounds, including reaction mechanisms, the selection of carrier materials, and synergistic therapeutic strategies such as multi-enzyme combinations, microneedle structures, and gas therapy. Finally, the article looks forward to the application prospects of GOx in aiding the healing of diabetic wounds and the challenges faced in translating these innovations to clinical practice. We sincerely hope that this review can provide readers with a comprehensive understanding of GOx-based diabetic treatment strategies, facilitate the rigorous construction of more robust multifunctional therapeutic systems, and ultimately benefit patients with diabetic wounds.
Collapse
Affiliation(s)
| | | | | | | | - Kangkang Zha
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Lizhi Ouyang
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Weixian Hu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Wu Zhou
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Yun Sun
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| | - Guohui Liu
- Wuhan Union Hospital of Tongji Medical College of Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Jianghan District, Wuhan, Hubei, 430022, China
| |
Collapse
|
3
|
Chuang AEY, Chen YL, Chiu HJ, Nguyen HT, Liu CH. Nasal administration of polysaccharides-based nanocarrier combining hemoglobin and diferuloylmethane for managing diabetic kidney disease. Int J Biol Macromol 2024; 282:136534. [PMID: 39406330 DOI: 10.1016/j.ijbiomac.2024.136534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024]
Abstract
The management of diabetic kidney disease (DKD) faces challenges stemming from intricate pathologies and suboptimal biodistributions during drug delivery. Although clinically available anti-inflammatory agents hold considerable promise for treating DKD, their therapeutic effectiveness is limited when utilized in isolation. To address this limitation, we introduced a novel self-oriented nanocarrier termed F-GCS@Hb-DIF, designed to synergistically integrate the therapeutic diferuloylmethane (DIF), the polysaccharide fucoidan/glycol chitosan (F-GCS), and phototherapeutic hemoglobin (Hb). F-GCS@Hb-DIF demonstrated the capability to autonomously navigate toward diseased renal sites and directly release drugs into the cytoplasm of target cells following intranasal administration. This self-directed drug delivery system increased the accumulation of Hb and DIF at the target site as per biodistribution data. This enhancement allowed F-GCS@Hb-DIF to adopt a synergistic approach in treating the complex pathologies of DKD during the two-week treatment period. This approach entails modulating immunity, promoting renal functional recovery with a tissue-protective effect, and alleviating renal inflammation. These results underscore the promising therapeutic potential of F-GCS@Hb-DIF in managing DKD and other degenerative diseases associated with diabetes.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan
| | - Yo-Lin Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hung-Jui Chiu
- Graduate Institute of Biomedical Materials and Tissue Engineering, International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu T Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan.
| |
Collapse
|
4
|
Fan W, He Y, Hu P, Liu L, Yang X, Ge T, Jin K, Mou X, Cai Y. A novel acceptor-donor-acceptor structured molecule-based nanosystem for tumor mild photothermal therapy. J Colloid Interface Sci 2024; 670:762-773. [PMID: 38788443 DOI: 10.1016/j.jcis.2024.05.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Although photothermal therapy (PTT) is effective at killing tumor cells, it can inadvertently damage healthy tissues surrounding the tumor. Nevertheless, lowering the treatment temperature will reduce the therapeutic effectiveness. In this study, we employed 2,2'-((2Z,2'Z)-((4,4,9,9-Tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile (IDIC), a molecule possessing a conventional acceptor-donor-acceptor (A-D-A) structure, as a photothermal agent (PTA) to facilitate effective mild photothermal therapy (mPTT). IDIC promotes intramolecular charge transfer under laser irradiation, making it a promising candidate for mPTT. To enhance the therapeutic potential of IDIC, we incorporated quercetin (Qu) into IDIC to form IDIC-Qu nanoparticles (NPs), which can inhibit heat shock protein (HSP) activity during the process of mPTT. Moreover, IDIC-Qu NPs exhibited exceptional water dispersibility and passive targeting abilities towards tumor tissues, attributed to its enhanced permeation and retention (EPR) effect. These advantageous properties position IDIC-Qu NPs as a promising candidate for targeted tumor treatment. Importantly, the IDIC-Qu NPs demonstrated controllable photothermal effects, leading to outstanding in vitro cytotoxicity against cancer cells and effective in vivo tumor ablation through mPTT. IDIC-Qu NPs nano-system enriches the family of organic PTAs and holds significant promise for future clinical applications of mPTT.
Collapse
Affiliation(s)
- Weijiao Fan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Yichen He
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Peiyang Hu
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Hangzhou Medical College, Taizhou 317200, China
| | - Longcai Liu
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Tong Ge
- Department of Traumatology, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People's Hospital), Hangzhou Medical College, Taizhou 317200, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
5
|
He Y, Xu Z, Yan Y, Zhang X, He Y, Luo Q, Wang D, Gao D. A universal nanoreactor triggering butterfly effect for encouraging Fenton/Fenton-like reactions and chemodynamic therapy. J Colloid Interface Sci 2024; 670:297-310. [PMID: 38763026 DOI: 10.1016/j.jcis.2024.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yaqian Yan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Qingzhi Luo
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
6
|
Kang B, Wang H, Jing H, Dou Y, Krizkova S, Heger Z, Adam V, Li N. "Golgi-customized Trojan horse" nanodiamonds impair GLUT1 plasma membrane localization and inhibit tumor glycolysis. J Control Release 2024; 371:338-350. [PMID: 38789089 DOI: 10.1016/j.jconrel.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Nutrient or energy deprivation, especially glucose restriction, is a promising anticancer therapeutic approach. However, establishing a precise and potent deprivation strategy remains a formidable task. The Golgi morphology is crucial in maintaining the function of transport proteins (such as GLUT1) driving glycolysis. Thus, in this study, we present a "Golgi-customized Trojan horse" based on tellurium loaded with apigenin (4',5,7-trihydroxyflavone) and human serum albumin, which was able to induce GLUT1 plasma membrane localization disturbance via Golgi dispersal leading to the inhibition of tumor glycolysis. Diamond-shaped delivery system can efficiently penetrate into cells as a gift like Trojan horse, which decomposes into tellurite induced by intrinsically high H2O2 and GSH levels. Consequently, tellurite acts as released warriors causing up to 3.8-fold increase in Golgi apparatus area due to the down-regulation of GOLPH3. Further, this affects GLUT1 membrane localization and glucose transport disturbance. Simultaneously, apigenin hinders ongoing glycolysis and causes significant decrease in ATP level. Collectively, our "Golgi-customized Trojan horse" demonstrates a potent antitumor activity because of its capability to deprive energy resources of cancer cells. This study not only expands the applications of tellurium-based nanomaterials in the biomedicine but also provides insights into glycolysis restriction for anticancer therapy.
Collapse
Affiliation(s)
- Bei Kang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Haobo Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunsheng Dou
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Huang S, Hou Y, Tang Z, Suhail M, Cui M, Iqbal MZ, Kong X. Near-infrared-II responsive ovalbumin functionalized gold-genipin nanosystem cascading photo-immunotherapy of cancer. NANOTECHNOLOGY 2024; 35:365102. [PMID: 38861966 DOI: 10.1088/1361-6528/ad568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80μg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.
Collapse
Affiliation(s)
- Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Muhamamd Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Mingyue Cui
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
8
|
Ye Y, Chen Z, Zhang S, Slezak P, Lu F, Xie R, Lee D, Lan G, Hu E. pH-Responsive Theranostic Colloidosome Drug Carriers Enable Real-Time Imaging of Targeted Thrombolytic Process with Near-Infrared-II for Deep Venous Thrombosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0388. [PMID: 38812529 PMCID: PMC11136571 DOI: 10.34133/research.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/21/2024] [Indexed: 05/31/2024]
Abstract
Thrombosis can cause life-threatening disorders. Unfortunately, current therapeutic methods for thrombosis using injecting thrombolytic medicines systemically resulted in unexpected bleeding complications. Moreover, the absence of practical imaging tools for thrombi raised dangers of undertreatment and overtreatment. This study develops a theranostic drug carrier, Pkr(IR-Ca/Pda-uPA)-cRGD, that enables real-time monitoring of the targeted thrombolytic process of deep vein thrombosis (DVT). Pkr(IR-Ca/Pda-uPA)-cRGD, which is prepared from a Pickering-emulsion-like system, encapsulates both near-infrared-II (NIR-II) contrast agent (IR-1048 dye, loading capacity: 28%) and urokinase plasminogen activators (uPAs, encapsulation efficiency: 89%), pioneering the loading of multiple drugs with contrasting hydrophilicity into one single-drug carrier. Upon intravenous injection, Pkr(IR-Ca/Pda-uPA)-cRGD considerably targets to thrombi selectively (targeting rate: 91%) and disintegrates in response to acidic thrombi to release IR-1048 dye and uPA for imaging and thrombolysis, respectively. Investigations indicate that Pkr(IR-Ca/Pda-uPA)-cRGD enabled real-time visualization of targeted thrombolysis using NIR-II imaging in DVT models, in which thrombi were eliminated (120 min after drug injection) without bleeding complications. This may be the first study using convenient NIR-II imaging for real-time visualization of targeted thrombolysis. It represents the precision medicine that enables rapid response to acquire instantaneous medical images and make necessary real-time adjustments to diagnostic and therapeutic protocols during treatment.
Collapse
Affiliation(s)
- Yaxin Ye
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Zhechang Chen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Shengzhang Zhang
- Department of Cardiovascular Medicine,
Yueqing People's Hospital, Wenzhou 325699, China
| | - Paul Slezak
- Ludwig Boltzmann Institute for Traumatology,
AUVA Research Center, 1200 Vienna, Austria
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Ludwig Boltzmann Institute for Traumatology,
AUVA Research Center, 1200 Vienna, Austria
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering and Department of Polymer·Nano Science and Technology,
Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences,
Southwest University, Chongqing 400715, China
- School of Fashion and Textiles,
The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
9
|
Li H, Wang Z, Chu X, Zhao Y, He G, Hu Y, Liu Y, Wang ZL, Jiang P. Free Radicals Generated in Perfluorocarbon-Water (Liquid-Liquid) Interfacial Contact Electrification and Their Application in Cancer Therapy. J Am Chem Soc 2024; 146:12087-12099. [PMID: 38647488 DOI: 10.1021/jacs.4c02149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.
Collapse
Affiliation(s)
- Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| | - Zichen Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Chu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Zhao
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Guangqin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Hu P, Xu J, Li Q, Sha J, Zhou H, Wang X, Xing Y, Wang Y, Gao K, Xu K, Zheng S. Tumor microenvironment-activated theranostic nanozymes for trimodal imaging-guided combined therapy. J Colloid Interface Sci 2024; 660:585-596. [PMID: 38266340 DOI: 10.1016/j.jcis.2024.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Synergistic therapy is expected to be a promising strategy for highly effective cancer treatment. However, the rational design of a simple and multifunctional nanoplatform still remains a grand challenge. Considering the nature of weak acidic, hypoxic, and H2O2 abundant tumor microenvironment, we constructed an indocyanine green (ICG) modified platinum nanoclusters (Pt NCs) decorated gold nanobipyramids (Au NBPs) to form the multifunctional nanocomposites (Au NBPs@Pt NCs-ICG) for multimodal imaging mediated phototherapy and chemodynamic cancer therapy. The photosensitizer ICG was covalently linked to Au NBPs@Pt NCs by bridging molecules of SH-PEG-NH2 for both photodynamic therapy (PDT) and fluorescence imaging. Besides, Au NBPs@Pt NCs-ICG nanocomposites exhibited catalase- and peroxidase-like activities to generate O2 and ·OH, which relieved the tumor hypoxia and upregulated antitumoral ROS level. Moreover, the combination of Au NBPs and ICG endowed the Au NBPs@Pt NCs-ICG with super photothermal conversion for effective photothermal imaging and therapy. In addition, the Au NBPs@Pt NCs-ICG nanoplatform displayed excellent X-ray computed tomography (CT) imaging ability due to the presence of high-Z elements (Au and Pt). Overall, our results demonstrated that Au NBPs@Pt NCs-ICG nanoplatform exhibited a multimodal imaging guided synergistic PTT/PDT/CDT therapeutic manners and held great potential as an efficient treatment for breast cancer.
Collapse
Affiliation(s)
- Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Jie Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qiushi Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jingyun Sha
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemeng Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272002, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
11
|
Yang Q, Zhou X, Lou B, Zheng N, Chen J, Yang G. An F OF 1-ATPase motor-embedded chromatophore as a nanorobot for overcoming biological barriers and targeting acidic tumor sites. Acta Biomater 2024; 179:207-219. [PMID: 38513724 DOI: 10.1016/j.actbio.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.
Collapse
Affiliation(s)
- Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xuhui Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Bang Lou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiale Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
12
|
Liu Y, Li Q, Zhou Y. Comment on "Engineered Enzyme-Loaded Erythrocyte Vesicles Precisely Deprive Tumoral Nutrients to Induce Synergistic Near-Infrared-II Photothermal Therapy and Immune Activation". ACS NANO 2024; 18:6731-6732. [PMID: 38440994 DOI: 10.1021/acsnano.3c06499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Affiliation(s)
- Yi Liu
- Medical Cosmetic Center, Chengdu Second People's Hospital, No. 10 Qingyun South Street, Chengdu 610017, Sichuan, China
| | - Qing Li
- Department of Orthopedics, Chengdu Second People's Hospital, No. 10 Qingyun South Street, Chengdu 610017, Sichuan, China
| | - Yin Zhou
- Medical Cosmetic Center, Chengdu Second People's Hospital, No. 10 Qingyun South Street, Chengdu 610017, Sichuan, China
| |
Collapse
|