1
|
Sistemich L, Ebbinghaus S. Heat application in live cell imaging. FEBS Open Bio 2024. [PMID: 39489617 DOI: 10.1002/2211-5463.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024] Open
Abstract
Thermal heating of biological samples allows to reversibly manipulate cellular processes with high temporal and spatial resolution. Manifold heating techniques in combination with live-cell imaging were developed, commonly tailored to customized applications. They include Peltier elements and microfluidics for homogenous sample heating as well as infrared lasers and radiation absorption by nanostructures for spot heating. A prerequisite of all techniques is that the induced temperature changes are measured precisely which can be the main challenge considering subcellular structures or multicellular organisms as target regions. This article discusses heating and temperature sensing techniques for live-cell imaging, leading to future applications in cell biology.
Collapse
Affiliation(s)
- Linda Sistemich
- Chair of Biophysical Chemistry, Ruhr-University Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| | - Simon Ebbinghaus
- Chair of Biophysical Chemistry, Ruhr-University Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, Bochum, Germany
| |
Collapse
|
2
|
Aragon-Alberti M, Dyksik M, Brites CDS, Rouquette J, Plochocka P, Carlos LD, Long J. Rethinking Assumptions: Assessing the Impact of Strong Magnetic Fields on Luminescence Thermometry. J Am Chem Soc 2024. [PMID: 39487792 DOI: 10.1021/jacs.4c11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Luminescence (nano)thermometry has exploded in popularity, offering a remote detection way to measure temperature across diverse fields like nanomedicine, microelectronics, catalysis, and plasmonics. A key advantage is its supposed immunity to strong electromagnetic fields, a crucial feature in many environments. However, this assumption lacks comprehensive experimental verification as most of the proposed luminescent thermometers rely on magnetic ions, such as lanthanides. Here, we address this gap by critically examining the thermometric response of the luminescent molecular thermometer [Tb0.93Eu0.07(bpy)2(NO3)3] (bpy = 2,2'-bipyridine) under high magnetic fields (up to 58 T). Our findings reveal that the conventional intensity-based method for Tb/Eu luminescent thermometers fails even under weak magnetic fields. However, careful data analysis identified specific transitions with minimal magnetic correlation, enabling the thermometer to operate across the entire temperature range up to 20 T, and with larger fields for temperatures exceeding 120 K. This study highlights the strong dependence of thermometric performance on material properties, urging caution, but also offers a path forward for developing robust luminescent thermometers in such environments.
Collapse
Affiliation(s)
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Carlos D S Brites
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Rouquette
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | - Paulina Plochocka
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Luís D Carlos
- Phantom-g, CICECO-Aveiro Institute of Materials, Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jérôme Long
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier 34095, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
3
|
Yin N, Wang X, Shu Y, Wang J. A "turn-on" polymer nanothermometer based on aggregation induced emission for intracellular temperature sensing. J Colloid Interface Sci 2024; 679:519-528. [PMID: 39467363 DOI: 10.1016/j.jcis.2024.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Temperature measurements at the nanoscale facilitate the understanding of physiological processes related to heat in cells. Herein, we prepare a tetraphenylethylene-functionalized fluorophore (TPPEBr) with dual characteristics of twisted intramolecular charge transfer (TICT) and aggregation induced emission (AIE). It is polymerized with a thermo-responsive unit NIPAM to construct a fluorescent polymer nanothermometer (PNIPAM-TPPEBr). The phase transition behavior of PNIPAM from dispersed chains to dense spheres in aqueous media promotes the aggregation of TPPEBr fluorophores, which makes the fluorescence of PNIPAM-TPPEBr enhance with increasing temperature. Furthermore, the phase transition of PNIPAM is accompanied by a significant decrease in the polarity of the microenvironment, resulting in a blue shift in the emission wavelength of TPPEBr. Varying the ratio of NIPAM and TPPEBr can regulate the thermo-responsiveness of PNIPAM-TPPEBr in the physiological temperature range (31-38 °C), and the maximum relative thermal sensitivity reaches 13.2 % °C-1. The thermo-responsive performance of this nanothermometer is independent of the intracellular microenvironment, and it is successfully applied in the temperature imaging of A549 cells. Under the stimulation of ionomycin and oxidative phosphorylation inhibitor, the cell temperature increased by ca. 1.5 °C and ca. 1.0 °C, respectively.
Collapse
Affiliation(s)
- Nana Yin
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
4
|
Wang X, Song T, Wu X, Lin Y, Shi X, Qian J, Nie R, Wang H. NIR-II Responsive Fe-Doped Carbon Nanoparticles for Photothermal-Enhanced Chemodynamic Synergistic Oncotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46079-46089. [PMID: 39169850 DOI: 10.1021/acsami.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Phototherapy has demonstrated substantial development because in the second near-infrared (NIR-II) window it has a larger tissue penetration and fewer adverse consequences. In this work, a particular kind of NIR-II responsive Fe-doped carbon nanoparticles (FDCNs) is synthesized using a one-pot hydrothermal method for combined photothermal and chemodynamic therapy. The mesoporous nanostructure of FDCN, which has a size distribution that exceeds 225 nm, allows for effective acidification. The iron ions released from these nanoparticles can catalyze the decomposition of hydrogen peroxide (H2O2) into hydroxyl radical (•OH) for chemodynamic therapy (CDT). In addition to their CDT utility, FDCN can effectively adsorb and transform 1064 nm light into local heat, achieving a photothermal conversion efficacy (PCE) of 36.3%. This dual functionality not only allows for the direct eradication of cancer cells through photothermal therapy (PTT) but also enhances the chemodynamic reaction, creating a synergistic effect that amplifies the therapeutic outcome. The FDCN has demonstrated remarkable anticancer activity in both cellular and animal tests without incurring major systemic toxicity. This suggests that the compound has great promise for use in clinical cancer therapy.
Collapse
Affiliation(s)
- Xingyu Wang
- University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Tianwei Song
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, PR China
| | - Xianli Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230031, PR China
| | - Yefeng Lin
- University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Xinyi Shi
- University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Junchao Qian
- University of Science and Technology of China, Hefei 230026, China
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Rongrong Nie
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China
| | - Hui Wang
- University of Science and Technology of China, Hefei 230026, China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| |
Collapse
|
5
|
Féron A, Catrouillet S, Sene S, Félix G, Benkhaled BT, Lapinte V, Guari Y, Larionova J. Magnetic Iron Oxide Nanoparticles Coated by Coumarin-Bound Copolymer for Enhanced Magneto- and Photothermal Heating and Luminescent Thermometry. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:906. [PMID: 38869530 PMCID: PMC11173931 DOI: 10.3390/nano14110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
In this work, we report on the synthesis and investigation of new hybrid multifunctional iron oxide nanoparticles (IONPs) coated by coumarin-bound copolymer, which combine magneto- or photothermal heating with luminescent thermometry. A series of amphiphilic block copolymers, including Coum-C11-PPhOx27-PMOx59 and Coum-C11-PButOx8-PMOx42 bearing luminescent and photodimerizable coumarin moiety, as well as coumarin-free PPhOx27-PMOx57, were evaluated for their utility as luminescent thermometers and for encapsulating spherical 26 nm IONPs. The obtained IONP@Coum-C11-PPhOx27-PMOx59 nano-objects are perfectly dispersible in water and able to provide macroscopic heating remotely triggered by an alternating current magnetic field (AMF) with a specific absorption rate (SAR) value of 240 W.g-1 or laser irradiation with a photothermal conversion efficiency of η = 68%. On the other hand, they exhibit temperature-dependent emission of coumarin offering the function of luminescent thermometer, which operates in the visible region between 20 °C and 60 °C in water displaying a maximal relative thermal sensitivity (Sr) of 1.53%·°C-1 at 60 °C.
Collapse
Affiliation(s)
| | - Sylvain Catrouillet
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; (A.F.); (S.S.); (G.F.); (B.T.B.); (V.L.)
| | | | | | | | | | - Yannick Guari
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; (A.F.); (S.S.); (G.F.); (B.T.B.); (V.L.)
| | - Joulia Larionova
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; (A.F.); (S.S.); (G.F.); (B.T.B.); (V.L.)
| |
Collapse
|
6
|
Chen C, Chen H, Wang P, Wang X, Wang X, Chen C. Ca 2+ Overload Decreased Cellular Viability in Magnetic Hyperthermia without a Macroscopic Temperature Rise. ACS Biomater Sci Eng 2024; 10:2995-3005. [PMID: 38654432 DOI: 10.1021/acsbiomaterials.3c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Magnetic hyperthermia is a crucial medical engineering technique for treating diseases, which usually uses alternating magnetic fields (AMF) to interplay with magnetic substances to generate heat. Recently, it has been found that in some cases, there is no detectable temperature increment after applying an AMF, which caused corresponding effects surprisingly. The mechanisms involved in this phenomenon are not yet fully understood. In this study, we aimed to explore the role of Ca2+ overload in the magnetic hyperthermia effect without a perceptible temperature rise. A cellular system expressing the fusion proteins TRPV1 and ferritin was prepared. The application of an AMF (518 kHz, 16 kA/m) could induce the fusion protein to release a large amount of iron ions, which then participates in the production of massive reactive oxygen radicals (ROS). Both ROS and its induced lipid oxidation enticed the opening of ion channels, causing intracellular Ca2+ overload, which further led to decreased cellular viability. Taken together, Ca2+ overload triggered by elevated ROS and the induced oxidation of lipids contributes to the magnetic hyperthermia effect without a perceptible temperature rise. These findings would be beneficial for expanding the application of temperature-free magnetic hyperthermia, such as in cellular and neural regulation, design of new cancer treatment methods.
Collapse
Affiliation(s)
- Changyou Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Haitao Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Pingping Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| | - Xue Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Wang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Beijing 100190, China
| |
Collapse
|
7
|
Oggianu M, Mameli V, Hernández-Rodríguez MA, Monni N, Souto M, Brites CD, Cannas C, Manna F, Quochi F, Cadoni E, Masciocchi N, Carneiro Neto AN, Carlos LD, Mercuri ML. Insights into Nd III to Yb III Energy Transfer and Its Implications in Luminescence Thermometry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3452-3463. [PMID: 38617804 PMCID: PMC11008107 DOI: 10.1021/acs.chemmater.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
This work challenges the conventional approach of using NdIII 4F3/2 lifetime changes for evaluating the experimental NdIII → YbIII energy transfer rate and efficiency. Using near-infrared (NIR) emitting Nd:Yb mixed-metal coordination polymers (CPs), synthesized via solvent-free thermal grinding, we demonstrate that the NdIII [2H11/2 → 4I15/2] → YbIII [2F7/2 → 2F5/2] pathway, previously overlooked, dominates energy transfer due to superior energy resonance and J-level selection rule compatibility. This finding upends the conventional focus on the NdIII [4F3/2 → 4I11/2] → YbIII [2F7/2 → 2F5/2] transition pathway. We characterized Nd0.890Yb0.110(BTC)(H2O)6 as a promising cryogenic NIR thermometry system and employed our novel energy transfer understanding to perform simulations, yielding theoretical thermometric parameters and sensitivities for diverse Nd:Yb ratios. Strikingly, experimental thermometric data closely matched the theoretical predictions, validating our revised model. This novel perspective on NdIII → YbIII energy transfer holds general applicability for the NdIII/YbIII pair, unveiling an important spectroscopic feature with broad implications for energy transfer-driven materials design.
Collapse
Affiliation(s)
- Mariangela Oggianu
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Valentina Mameli
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Miguel A. Hernández-Rodríguez
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Noemi Monni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Manuel Souto
- Department
of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carlos D.S. Brites
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Cannas
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| | - Fabio Manna
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Francesco Quochi
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
- Dipartimento
di Fisica, Università degli Studi
di Cagliari, Complesso Universitario di Monserrato, Monserrato I-09042, Italy
| | - Enzo Cadoni
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
| | - Norberto Masciocchi
- Dipartimento
di Scienza e Alta Tecnologia & To.Sca.Lab., Università degli Studi dell, via Valleggio 11, Como 22100, Italy
| | - Albano N. Carneiro Neto
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luís D. Carlos
- Phantom-g,
Department of Physics, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Laura Mercuri
- Dipartimento
di Scienze Chimiche e Geologiche, Università
degli Studi di Cagliari, Monserrato I-09042, Italy
- INSTM, Via Giuseppe Giusti, 9, Firenze 50121, Italy
| |
Collapse
|
8
|
Xie G, Guo S, Li B, Hou W, Zhang Y, Pan J, Wei X, Sun SK. Nonmetallic graphite for tumor magnetic hyperthermia therapy. Biomaterials 2024; 306:122498. [PMID: 38310828 DOI: 10.1016/j.biomaterials.2024.122498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
Magnetic hyperthermia therapy (MHT) has garnered immense interest due to its exceptional spatiotemporal specificity, minimal invasiveness and remarkable tissue penetration depth. Nevertheless, the limited magnetothermal heating capability and the potential toxicity of metal ions in magnetic materials based on metallic elements significantly impede the advancement of MHT. Herein, we introduce the concept of nonmetallic materials, with graphite (Gra) as a proof of concept, as a highly efficient and biocompatible option for MHT of tumors in vivo for the first time. The Gra exhibits outstanding magnetothermal heating efficacy owing to the robust eddy thermal effect driven by its excellent electrical conductivity. Furthermore, being composed of carbon, Gra offers superior biocompatibility as carbon is an essential element for all living organisms. Additionally, the Gra boasts customizable shapes and sizes, low cost, and large-scale production capability, facilitating reproducible and straightforward manufacturing of various Gra implants. In a mouse tumor model, Gra-based MHT successfully eliminates the tumors at an extremely low magnetic field intensity, which is less than one-third of the established biosafety threshold. This study paves the way for the development of high-performance magnetocaloric materials by utilizing nonmetallic materials in place of metallic ones burdened with inherent limitations.
Collapse
Affiliation(s)
- Guangchao Xie
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Shuyue Guo
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Bingjie Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yanqi Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Jinbin Pan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
9
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
10
|
López‐Méndez R, Reguera J, Fromain A, Serea ESA, Céspedes E, Teran FJ, Zheng F, Parente A, García MÁ, Fonda E, Camarero J, Wilhelm C, Muñoz‐Noval Á, Espinosa A. X-Ray Nanothermometry of Nanoparticles in Tumor-Mimicking Tissues under Photothermia. Adv Healthc Mater 2023; 12:e2301863. [PMID: 37463675 PMCID: PMC11469036 DOI: 10.1002/adhm.202301863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Temperature plays a critical role in regulating body mechanisms and indicating inflammatory processes. Local temperature increments above 42 °C are shown to kill cancer cells in tumorous tissue, leading to the development of nanoparticle-mediated thermo-therapeutic strategies for fighting oncological diseases. Remarkably, these therapeutic effects can occur without macroscopic temperature rise, suggesting localized nanoparticle heating, and minimizing side effects on healthy tissues. Nanothermometry has received considerable attention as a means of developing nanothermosensing approaches to monitor the temperature at the core of nanoparticle atoms inside cells. In this study, a label-free, direct, and universal nanoscale thermometry is proposed to monitor the thermal processes of nanoparticles under photoexcitation in the tumor environment. Gold-iron oxide nanohybrids are utilized as multifunctional photothermal agents internalized in a 3D tumor model of glioblastoma that mimics the in vivo scenario. The local temperature under near-infrared photo-excitation is monitored by X-ray absorption spectroscopy (XAS) at the Au L3 -edge (11 919 eV) to obtain their temperature in cells, deepening the knowledge of nanothermal tumor treatments. This nanothermometric approach demonstrates its potential in detecting high nanothermal changes in tumor-mimicking tissues. It offers a notable advantage by enabling thermal sensing of any element, effectively transforming any material into a nanothermometer within biological environments.
Collapse
Affiliation(s)
| | - Javier Reguera
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science Park48940LeioaSpain
| | - Alexandre Fromain
- Laboratoire Physico Chimie CuriePCCCNRS UMR168Institut Curie, Sorbonne UniversityPSL UniversityParis75005France
| | - Esraa Samy Abu Serea
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science Park48940LeioaSpain
| | - Eva Céspedes
- Instituto de Ciencia de Materiales de MadridICMM‐CSICMadrid28049Spain
| | | | - Fangyuan Zheng
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science Park48940LeioaSpain
| | - Ana Parente
- Dpto. Física MaterialesFacultad CC. FísicasUniversidad Complutense de MadridMadrid28040Spain
| | - Miguel Ángel García
- Departamento de ElectrocerámicaInstituto de Cerámica y VidrioICV‐CSICKelsen 5Madrid28049Spain
| | - Emiliano Fonda
- Synchrotron SOLEILL'Orme des Merisiers – St. Aubin‐BP 48Gif s/ Yvette91192France
| | - Julio Camarero
- IMDEA Nanocienciac/ Faraday, 9Madrid28049Spain
- Departamento de Física de la Materia Condensada and Instituto ‘Nicolás Cabrera’Universidad Autónoma de MadridMadrid28049Spain
| | - Claire Wilhelm
- Laboratoire Physico Chimie CuriePCCCNRS UMR168Institut Curie, Sorbonne UniversityPSL UniversityParis75005France
| | - Álvaro Muñoz‐Noval
- Dpto. Física MaterialesFacultad CC. FísicasUniversidad Complutense de MadridMadrid28040Spain
| | - Ana Espinosa
- IMDEA Nanocienciac/ Faraday, 9Madrid28049Spain
- Instituto de Ciencia de Materiales de MadridICMM‐CSICMadrid28049Spain
| |
Collapse
|
11
|
Souiade L, Domingo-Diez J, Alcaide C, Gámez B, Gámez L, Ramos M, Serrano Olmedo JJ. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines. Int J Mol Sci 2023; 24:15933. [PMID: 37958913 PMCID: PMC10648011 DOI: 10.3390/ijms242115933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform's killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death. For that purpose, we used MNPs and different AMF waveforms: trapezoidal (TP), almost-square (TS), triangular (TR), and sinusoidal signal (SN). MNPs at 1 and 4 mg/mL did not affect cell viability during treatment. The exposition of B16F10 and CT2A cells to only AMF showed nonsignificant mortality. Hence, the synergetic effect of the AMF and MNPs causes the observed cell death. Among the explored cases, the nonharmonic signals demonstrated better efficacy than the SN one as an MHT treatment. This study has revealed that the application of TP, TS, or TR waveforms is more efficient and has considerable capability to increase cancer cell death compared to the traditional sinusoidal treatment. Overall, we can conclude that the application of nonharmonic signals enhances MHT treatment efficiency against tumor cells.
Collapse
Affiliation(s)
- Lilia Souiade
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Cesar Alcaide
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
| | - Berta Gámez
- Escula Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain; (B.G.); (L.G.)
| | - Linarejos Gámez
- Escula Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006 Madrid, Spain; (B.G.); (L.G.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Javier Serrano Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain; (L.S.); (J.D.-D.); (C.A.); (M.R.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
13
|
Brites CDS, Marin R, Suta M, Carneiro Neto AN, Ximendes E, Jaque D, Carlos LD. Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302749. [PMID: 37480170 DOI: 10.1002/adma.202302749] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Indexed: 07/23/2023]
Abstract
Luminescence (nano)thermometry is a remote sensing technique that relies on the temperature dependency of the luminescence features (e.g., bandshape, peak energy or intensity, and excited state lifetimes and risetimes) of a phosphor to measure temperature. This technique provides precise thermal readouts with superior spatial resolution in short acquisition times. Although luminescence thermometry is just starting to become a more mature subject, it exhibits enormous potential in several areas, e.g., optoelectronics, photonics, micro- and nanofluidics, and nanomedicine. This work reviews the latest trends in the field, including the establishment of a comprehensive theoretical background and standardized practices. The reliability, repeatability, and reproducibility of the technique are also discussed, along with the use of multiparametric analysis and artificial-intelligence algorithms to enhance thermal readouts. In addition, examples are provided to underscore the challenges that luminescence thermometry faces, alongside the need for a continuous search and design of new materials, experimental techniques, and analysis procedures to improve the competitiveness, accessibility, and popularity of the technology.
Collapse
Affiliation(s)
- Carlos D S Brites
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Riccardo Marin
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Markus Suta
- Inorganic Photoactive Materials, Institute of Inorganic Chemistry and Structural Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Albano N Carneiro Neto
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| | - Erving Ximendes
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Daniel Jaque
- Departamento de Física de Materiales, Nanomaterials for Bioimaging Group (NanoBIG), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Nanomaterials for Bioimaging Group (NanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Madrid, 28034, Spain
| | - Luís D Carlos
- Phantom-g, CICECO, Departamento de Física, Universidade de Aveiro, Campus Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
14
|
Suzuki M, Liu C, Oyama K, Yamazawa T. Trans-scale thermal signaling in biological systems. J Biochem 2023; 174:217-225. [PMID: 37461189 PMCID: PMC10464929 DOI: 10.1093/jb/mvad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biochemical reactions in cells serve as the endogenous source of heat, maintaining a constant body temperature. This process requires proper control; otherwise, serious consequences can arise due to the unwanted but unavoidable responses of biological systems to heat. This review aims to present a range of responses to heat in biological systems across various spatial scales. We begin by examining the impaired thermogenesis of malignant hyperthermia in model mice and skeletal muscle cells, demonstrating that the progression of this disease is caused by a positive feedback loop between thermally driven Ca2+ signaling and thermogenesis at the subcellular scale. After we explore thermally driven force generation in both muscle and non-muscle cells, we illustrate how in vitro assays using purified proteins can reveal the heat-responsive properties of proteins and protein assemblies. Building on these experimental findings, we propose the concept of 'trans-scale thermal signaling'.
Collapse
Key Words
- ATPase
- fluorescence microscopy
- heat-induced calcium release
- microheating
- type 1 ryanodine receptor.
Abbreviations: [Ca2+]i, intracellular Ca2+ concentration; CICR, Ca2+-induced Ca2+ release; ER, endoplasmic reticulum; FDB, flexor digitorum brevis; HEK293 cell, human embryonic kidney 293 cell; HICR, heat-induced Ca2+ release; IP3R, inositol 1,4,5-trisphosphate receptor; MH, malignant hyperthermia; RCC, rapid cooling contracture; RyR1, type 1 ryanodine receptor; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TRP, transient receptor potential; WT, wild type
Collapse
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chujie Liu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kotaro Oyama
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanukimachi, Takasaki-shi, Gunma 370-1292, Japan
| | - Toshiko Yamazawa
- Core Research Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|