1
|
Van Winkle M, Zhang K, Bediako DK. Nanoscale Structure and Interfacial Electrochemical Reactivity of Moiré-Engineered Atomic Layers. Acc Chem Res 2025; 58:415-427. [PMID: 39817845 DOI: 10.1021/acs.accounts.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices. In recent years, the application of this "twistronics" concept to interfacial electrochemistry has unveiled unique pathways for tailoring the electrochemical reactivity. This Account provides an overview of our work that leveraged a suite of structural characterization methods, such as interferometric four-dimensional scanning transmission electron microscopy, dark-field transmission electron microscopy, and scanning tunneling microscopy, along with nanoscale electrochemical measurement techniques, namely, scanning electrochemical cell microscopy (SECCM), to uncover and dissect the profound impact of electrode electronic structure, controlled by interlayer twist, on interfacial electron transfer kinetics. At the heart of our findings is the discovery that moiré engineering enables the isolation of thermodynamically unfavorable stacking configurations, or topological defects, that substantially increase the standard electron transfer rate constant at the solid-liquid interface beyond what has been measured on conventional, nontwisted two-dimensional (2D) materials. This enhancement in interfacial reactivity can be attributed to the localization of a high density of electronic states within these particular sites in the superlattice, a similar effect to that which occurs upon incorporation of physical defects or vacancies in an electrode material but instead using an atomically pristine surface with a highly tunable structure. Throughout our studies, understanding the nuances of the relationship between the preimposed moiré twist angle and the observed electron transfer kinetics has heavily relied on the interrogation of additional factors such as spontaneous superlattice reconstruction and three-dimensional localization of electronic states, illustrating the importance of combining electrochemical measurements with both nanoscale structural probes and theoretical modeling for designing and optimizing moiré-engineered electrodes. The insight afforded by our efforts in this space continues to deepen our understanding of the fundamental mechanisms governing electron transfer at electrochemical interfaces at large and also points to the revolutionary prospect of twistronics for advancing electrochemical technologies. While our electrochemical studies have, so far, focused largely on graphene-based moiré materials, we also offer a perspective on the promise of transition metal dichalcogenide (TMD)-based moirés as candidates for highly versatile (photo)electrode surfaces. Accordingly, we provide a discussion of our studies on the structural relaxation observed in moiré superlattices of TMDs, and we summarize our work combining SECCM with field-effect electrostatic gating of TMDs to deconvolute the influences of material conductivity and intrinsic electron transfer kinetics from the overall electrochemical response of a semiconducting 2D material. Overall, this body of work establishes a distinctive foundation for the design of a wide range of materials with tailored properties that can provide crucial insights into interfacial charge transfer chemistry─potentially serving as platforms for sensing, energy conversion, and electrocatalysis─in addition to the emergent exotic correlated electron physics that originally ignited intense interest in moiré twistronics.
Collapse
Affiliation(s)
- Madeline Van Winkle
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaidi Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Anupriya ES, Chen R, Kalski D, Palmer J, Shen M. Dual-channel nano-carbon-liquid/liquid junction electrodes for multi-modal analysis: redox-active (dopamine) and non-redox-active (acetylcholine). Analyst 2025; 150:414-424. [PMID: 39688537 DOI: 10.1039/d4an01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dual-channel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nano-carbon-ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.
Collapse
Affiliation(s)
- Edappalil Satheesan Anupriya
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| | - Ran Chen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Daniel Kalski
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jordynn Palmer
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Mei Shen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| |
Collapse
|
3
|
de Oliveira MAC, Brunet Cabré M, Schröder C, Nolan H, Pota F, Behan JA, Barrière F, McKelvey K, Colavita PE. Single-Entity Electrochemistry of N-Doped Graphene Oxide Nanostructures for Improved Kinetics of Vanadyl Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405220. [PMID: 39548927 PMCID: PMC11753488 DOI: 10.1002/smll.202405220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
N-doped graphene oxides (GO) are nanomaterials of interest as building blocks for 3D electrode architectures for vanadium redox flow battery applications. N- and O-functionalities have been reported to increase charge transfer rates for vanadium redox couples. However, GO synthesis typically yields heterogeneous nanomaterials, making it challenging to understand whether the electrochemical activity of conventional GO electrodes results from a sub-population of GO entities or sub-domains. Herein, single-entity voltammetry studies of vanadyl oxidation at N-doped GO using scanning electrochemical cell microscopy (SECCM) are reported. The electrochemical response is mapped at sub-domains within isolated flakes and found to display significant heterogeneity: small active sites are interspersed between relatively large inert sub-domains. Correlative Raman-SECCM analysis suggests that defect densities are not useful predictors of activity, while the specific chemical nature of defects might be a more important factor for understanding oxidation rates. Finite element simulations of the electrochemical response suggest that active sub-domains/sites are smaller than the mean inter-defect distance estimated from Raman spectra but can display very fast heterogeneous rate constants >1 cm s-1. These results indicate that N-doped GO electrodes can deliver on intrinsic activity requirements set out for the viable performance of vanadium redox flow battery devices.
Collapse
Affiliation(s)
| | | | | | - Hugo Nolan
- School of ChemistryTrinity College DublinDublin2Ireland
| | - Filippo Pota
- School of ChemistryTrinity College DublinDublin2Ireland
| | - James A. Behan
- Univ RennesCNRSInstitut des Sciences Chimiques de Rennes – UMR 6226RennesF‐35000France
| | - Frédéric Barrière
- Univ RennesCNRSInstitut des Sciences Chimiques de Rennes – UMR 6226RennesF‐35000France
| | - Kim McKelvey
- MacDiarmid Institute for Advanced Materials and NanotechnologySchool of Chemical and Physical SciencesVictoria University of WellingtonWellington6012New Zealand
| | | |
Collapse
|
4
|
Kaur R, Ghoshal A, Galav P, Mondal PC. Electrochemical Charge Transfer Kinetics of Ferrocene in the Light of Different Working Electrodes. Chem Asian J 2024; 19:e202400744. [PMID: 39136414 DOI: 10.1002/asia.202400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Indexed: 09/25/2024]
Abstract
Ferrocene is an accidentally discovered organometallic compound that serves as a crucial redox probe in investigating electrochemical charge transfer dynamics. Besides solution phase studies, ferrocene derivatives are well-explored in molecular thin films, including self-assembled monolayers on various electrodes for understanding on-surface redox behavior, molecular electronics, and charge storage applications. Heterogeneous charge transfer is an imperative parameter for efficient charge transport in spin-dependent electrochemistry, photoelectrochemistry, and molecular electronic devices. In this work, we aim to study the electrochemical charge transfer of ferrocene on various electrodes such as commercially obtained glassy carbon, graphite rod, indium tin oxide (ITO), and as-prepared gold, and nickel to determine the impact of the nature of the working electrode on the electron transfer rate, diffusion coefficient, and reversibility of the redox process. Both the direct current and alternating current-based electrochemical experiments are performed, followed by digitization of the experimental results. The kinetics of electron transfer and electrochemical reversibility reveal a strong dependence on the nature of the working electrode, as the electrochemically driven oxidation and reduction of the material of interest are directly related to the Fermi energy and electronic structure of the working electrode.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208 016, India
| | - Abhik Ghoshal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208 016, India
| | - Prachi Galav
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208 016, India
- Department of Chemistry, Janki Devi Bajaj Government Girls College, Kota, Rajasthan, 324 001, India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh, 208 016, India
| |
Collapse
|
5
|
Babar M, Viswanathan V. Modeling Scanning Electrochemical Cell Microscopy (SECCM) in Twisted Bilayer Graphene. J Phys Chem Lett 2024; 15:7371-7378. [PMID: 38995158 DOI: 10.1021/acs.jpclett.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Twisted 2D-flat band materials host exotic quantum phenomena and novel moiré patterns, showing immense promise for advanced spintronic and quantum applications. Here, we evaluate the nanostructure-activity relationship in twisted bilayer graphene by modeling it under the scanning electrochemical cell microscopy setup to resolve its spatial moiré domains. We solve the steady state ion transport inside a 3D nanopipette to isolate the current response at AA and AB domains. Interfacial reaction rates are obtained from a modified Marcus-Hush-Chidsey theory combining input from a tight binding model that describes the electronic structure of bilayer graphene. High rates of redox exchange are observed at the AA domains, an effect that reduces with diminished flat bands or a larger cross-sectional area of the nanopipette. Using voltammograms, we identify an optimal voltage that maximizes the current difference between the domains. Our study lays down the framework to electrochemically capture prominent features of the band structure that arise from spatial domains and deformations in 2D flat-band materials.
Collapse
Affiliation(s)
- Mohammad Babar
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Venkatasubramanian Viswanathan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
Metlay AS, Chyi B, Sheehan CJ, Shallenberger JR, Mallouk TE. Fast Outer-Sphere Electron Transfer and High Specific Capacitance at Covalently Modified Carbon Electrodes. J Am Chem Soc 2024; 146:20086-20091. [PMID: 38980188 DOI: 10.1021/jacs.4c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Carbon electrodes typically display sluggish electron transfer kinetics due to the adsorption of adventitious molecules that effectively insulate the surface. Here, we describe a method for rendering graphitic carbon electrodes permanently hydrophilic by functionalization with 4-(diazonium)benzenesulfonic acid. In aqueous electrolytes, these hydrophilic carbon electrodes exhibit metal-like specific capacitance (∼40 μF/cm2) as measured by cyclic voltammetry, suggesting a change in the double-layer structure at the carbon surface. Additionally, the modified electrodes show fast charge transfer kinetics to outer-sphere one-electron redox couples such as ferro-/ferricyanide as well as improved electron transfer kinetics in alkaline aqueous redox flow batteries.
Collapse
Affiliation(s)
- Amy S Metlay
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Brandon Chyi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colton J Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffrey R Shallenberger
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba Ibaraki 305-0044, Japan
| |
Collapse
|
7
|
Guo S, Ma M, Wang Y, Wang J, Jiang Y, Duan R, Lei Z, Wang S, He Y, Liu Z. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chem Rev 2024; 124:6952-7006. [PMID: 38748433 DOI: 10.1021/acs.chemrev.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the ability to maximize the exposure of nearly all active sites to reactions, two-dimensional transition metal dichalcogenide (TMD) has become a fascinating new class of materials for electrocatalysis. Recently, electrochemical microcells have been developed, and their unique spatial-confined capability enables understanding of catalytic behaviors at a single material level, significantly promoting this field. This Review provides an overview of the recent progress in microcell-based TMD electrocatalyst studies. We first introduced the structural characteristics of TMD materials and discussed their site engineering strategies for electrocatalysis. Later, we comprehensively described two distinct types of microcells: the window-confined on-chip electrochemical microcell (OCEM) and the droplet-confined scanning electrochemical cell microscopy (SECCM). Their setups, working principles, and instrumentation were elucidated in detail, respectively. Furthermore, we summarized recent advances of OCEM and SECCM obtained in TMD catalysts, such as active site identification and imaging, site monitoring, modulation of charge injection and transport, and electrostatic field gating. Finally, we discussed the current challenges and provided personal perspectives on electrochemical microcell research.
Collapse
Affiliation(s)
- Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637616, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinbo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yubin Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| |
Collapse
|
8
|
Babar M, Zhu Z, Kurchin R, Kaxiras E, Viswanathan V. Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene. J Am Chem Soc 2024; 146:16105-16111. [PMID: 38829312 PMCID: PMC11177310 DOI: 10.1021/jacs.4c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
In this work, we develop a twist-dependent electrochemical activity map, combining a low-energy continuum electronic structure model with modified Marcus-Hush-Chidsey kinetics in trilayer graphene. We identify a counterintuitive rate enhancement region spanning the magic angle curve and incommensurate twists in the system geometry. We find a broad activity peak with a ruthenium hexamine redox couple in regions corresponding to both magic angles and incommensurate angles, a result qualitatively distinct from the twisted bilayer case. Flat bands and incommensurability offer new avenues for reaction rate enhancements in electrochemical transformations.
Collapse
Affiliation(s)
- Mohammad Babar
- Department
of Mechanical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
| | - Ziyan Zhu
- Stanford
Institute of Materials and Energy Science, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Rachel Kurchin
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Efthimios Kaxiras
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
9
|
Mercer MP, Bhandari A, Peng C, Dziedzic J, Skylaris CK, Kramer D. Tuning the work function of graphite nanoparticles via edge termination. Phys Chem Chem Phys 2024; 26:16175-16183. [PMID: 38804017 DOI: 10.1039/d4cp01079e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Graphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer graphene nanoparticles can substantially modify the work function. Calculations in vacuum and in electrolyte show that manipulating the edge termination substantially modifies the potential not only around the edge, but also on the basal plane. Termination with hydrogen or oxygen completely reverses the potential distribution surrounding the basal plane and edges. The trends can be explained based on the work function differences of the edges dependent on termination, and that of the basal plane. Electronic equilibration between different surfaces at the nanoscale allows manipulation of the work function. We demonstrate a link between the area of the graphite basal plane via changing the nanoparticle size, and the work function. We expect that these insights can be utilised for local control of electrochemical functions of graphite nanoparticles prepared under oxidising or reducing conditions.
Collapse
Affiliation(s)
- Michael P Mercer
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK.
- Faculty of Mechanical Engineering, Helmut-Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
| | - Arihant Bhandari
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jacek Dziedzic
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Chris K Skylaris
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, UK
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Denis Kramer
- Faculty of Mechanical Engineering, Helmut-Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| |
Collapse
|
10
|
Wright S, Brea C, Baxter JS, Saini S, Alsaç EP, Yoon SG, Boebinger MG, Hu G, McDowell MT. Epitaxial Metal Electrodeposition Controlled by Graphene Layer Thickness. ACS NANO 2024; 18:13866-13875. [PMID: 38751199 PMCID: PMC11140832 DOI: 10.1021/acsnano.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Control over material structure and morphology during electrodeposition is necessary for material synthesis and energy applications. One approach to guide crystallite formation is to take advantage of epitaxy on a current collector to facilitate crystallographic control. Single-layer graphene on metal foils can promote "remote epitaxy" during Cu and Zn electrodeposition, resulting in growth of metal that is crystallographically aligned to the substrate beneath graphene. However, the substrate-graphene-deposit interactions that allow for epitaxial electrodeposition are not well understood. Here, we investigate how different graphene layer thicknesses (monolayer, bilayer, trilayer, and graphite) influence the electrodeposition of Zn and Cu. Scanning transmission electron microscopy and electron backscatter diffraction are leveraged to understand metal morphology and structure, demonstrating that remote epitaxy occurs on mono- and bilayer graphene but not trilayer or thicker. Density functional theory (DFT) simulations reveal the spatial electronic interactions through thin graphene that promote remote epitaxy. This work advances our understanding of electrochemical remote epitaxy and provides strategies for improving control over electrodeposition.
Collapse
Affiliation(s)
- Salem
C. Wright
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Courtney Brea
- Department
of Chemistry and Biochemistry, Queens College
of the City University of New York, New York, New York 11367, United States
| | - Jefferey S. Baxter
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sonakshi Saini
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Elif Pınar Alsaç
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sun Geun Yoon
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew G. Boebinger
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Guoxiang Hu
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew T. McDowell
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- George
W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Jayamaha G, Maleki M, Bentley CL, Kang M. Practical guidelines for the use of scanning electrochemical cell microscopy (SECCM). Analyst 2024; 149:2542-2555. [PMID: 38632960 DOI: 10.1039/d4an00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) has emerged as a transformative technology for electrochemical materials characterisation and the study of single entities, garnering global adoption by numerous research groups. While details on the instrumentation and operational principles of SECCM are readily available, the growing need for practical guidelines, troubleshooting strategies, and a systematic overview of applications and trends has become increasingly evident. This tutorial review addresses this gap by offering a comprehensive guide to the practical application of SECCM. The review begins with a discussion of recent developments and trends in the application of SECCM, before providing systematic approaches to (and the associated troubleshooting associated with) instrumental set up, probe fabrication, substrate preparation and the deployment of environmental (e.g., atmosphere and humidity) control. Serving as an invaluable resource, this tutorial review aims to equip researchers and practitioners entering the field with a comprehensive guide to essential considerations for conducting successful SECCM experiments.
Collapse
Affiliation(s)
- Gunani Jayamaha
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| | - Mahin Maleki
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia
| | - Minkyung Kang
- School of Chemistry, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
12
|
Kang M, Bentley CL, Mefford JT, Chueh WC, Unwin PR. Multiscale Analysis of Electrocatalytic Particle Activities: Linking Nanoscale Measurements and Ensemble Behavior. ACS NANO 2023; 17:21493-21505. [PMID: 37883688 PMCID: PMC10655184 DOI: 10.1021/acsnano.3c06335] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Nanostructured electrocatalysts exhibit variations in electrochemical properties across different length scales, and the intrinsic catalytic characteristics measured at the nanoscale often differ from those at the macro-level due to complexity in electrode structure and/or composition. This aspect of electrocatalysis is addressed herein, where the oxygen evolution reaction (OER) activity of β-Co(OH)2 platelet particles of well-defined structure is investigated in alkaline media using multiscale scanning electrochemical cell microscopy (SECCM). Microscale SECCM probes of ∼50 μm diameter provide voltammograms from small particle ensembles (ca. 40-250 particles) and reveal increasing dispersion in the OER rates for samples of the same size as the particle population within the sample decreases. This suggests the underlying significance of heterogeneous activity at the single-particle level that is confirmed through single-particle measurements with SECCM probes of ∼5 μm diameter. These measurements of multiple individual particles directly reveal significant variability in the OER activity at the single-particle level that do not simply correlate with the particle size, basal plane roughness, or exposed edge plane area. In combination, these measurements demarcate a transition from an "individual particle" to an "ensemble average" response at a population size of ca. 130 particles, above which the OER current density closely reflects that measured in bulk at conventional macroscopic particle-modified electrodes. Nanoscale SECCM probes (ca. 120 and 440 nm in diameter) enable measurements at the subparticle level, revealing that there is selective OER activity at the edges of particles and highlighting the importance of the three-phase boundary where the catalyst, electrolyte, and supporting carbon electrode meet, for efficient electrocatalysis. Furthermore, subparticle measurements unveil heterogeneity in the OER activity among particles that appear superficially similar, attributable to differences in defect density within the individual particles, as well as to variations in electrical and physical contact with the support material. Overall this study provides a roadmap for the multiscale analysis of nanostructured electrocatalysts, directly demonstrating the importance of multilength scale factors, including particle structure, particle-support interaction, presence of defects, etc., in governing the electrochemical activities of β-Co(OH)2 platelet particles and ultimately guiding the rational design and optimization of these materials for alkaline water electrolysis.
Collapse
Affiliation(s)
- Minkyung Kang
- School
of Chemistry, The University of Sydney, Camperdown 2006 NSW, Australia
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| | | | - J. Tyler Mefford
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - William C. Chueh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Patrick R. Unwin
- Department
of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
13
|
Zhang K, Yu Y, Carr S, Babar M, Zhu Z, Kim BJ, Groschner C, Khaloo N, Taniguchi T, Watanabe K, Viswanathan V, Bediako DK. Anomalous Interfacial Electron-Transfer Kinetics in Twisted Trilayer Graphene Caused by Layer-Specific Localization. ACS CENTRAL SCIENCE 2023; 9:1119-1128. [PMID: 37396866 PMCID: PMC10311658 DOI: 10.1021/acscentsci.3c00326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 07/04/2023]
Abstract
Interfacial electron-transfer (ET) reactions underpin the interconversion of electrical and chemical energy. It is known that the electronic state of electrodes strongly influences ET rates because of differences in the electronic density of states (DOS) across metals, semimetals, and semiconductors. Here, by controlling interlayer twists in well-defined trilayer graphene moirés, we show that ET rates are strikingly dependent on electronic localization in each atomic layer and not the overall DOS. The large degree of tunability inherent to moiré electrodes leads to local ET kinetics that range over 3 orders of magnitude across different constructions of only three atomic layers, even exceeding rates at bulk metals. Our results demonstrate that beyond the ensemble DOS, electronic localization is critical in facilitating interfacial ET, with implications for understanding the origin of high interfacial reactivity typically exhibited by defects at electrode-electrolyte interfaces.
Collapse
Affiliation(s)
- Kaidi Zhang
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yun Yu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen Carr
- Brown
Theoretical Physics Center, Brown University, Providence, Rhode Island 02912, United States
| | - Mohammad Babar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Ziyan Zhu
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bryan Junsuh Kim
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Catherine Groschner
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nikta Khaloo
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 305-0044 Tsukuba, Japan
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 305-0044 Tsukuba, Japan
| | | | - D. Kwabena Bediako
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Kim M, Tetteh EB, Savan A, Xiao B, Ludwig A, Schuhmann W, Chung TD. Reorganization energy in a polybromide ionic liquid measured by scanning electrochemical cell microscopy. J Chem Phys 2023; 158:134707. [PMID: 37031154 DOI: 10.1063/5.0143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode–electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl- N-ethyl-pyrrolidinium polybromide (MEPBr2n+1) enabled evaluation of the reorganization energy ( λ), which reflects the solvation structure in the inner Helmholtz plane (IHP). λ was achieved by fitting the electron transfer rate-limited voltammogram at a Pt ultramicroelectrode (UME) to the Marcus–Hush–Chidsey model for heterogeneous electron transfer kinetics. However, it is time-consuming or even impossible to prepare electrode materials, including alloys of numerous compositions in the form of UME, for each experiment. Herein, we report a method to evaluate the λ of MEPBr2n+1 by scanning electrochemical cell microscopy (SECCM), which allows high throughput electrochemical measurements using a single electrode with high spatial resolution. Fast mass transport in the nanosized SECCM tip is critical for achieving heterogeneous electron transfer-limited voltammograms. Furthermore, investigating λ on a high-entropy alloy materials library composed of Pt, Pd, Ru, Ir, and Ag suggests a negative correlation between λ and the work function. Given that the potential of zero charge correlates with the work function of electrodes, this can be attributed to the surface-charge sensitive ionic structure in the IHP of MEPBr2n+1, modulating the solvation energy of the redox-active species in the IHP.
Collapse
Affiliation(s)
- Moonjoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- ZGH, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
15
|
Wert S, Iffelsberger C, K. Padinjareveetil AK, Pumera M. Edges of Layered FePSe 3 Exhibit Increased Electrochemical and Electrocatalytic Activity Compared to Basal Planes. ACS APPLIED ELECTRONIC MATERIALS 2023; 5:928-934. [PMID: 36936378 PMCID: PMC10017023 DOI: 10.1021/acsaelm.2c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Transition metal trichalcogenphosphites (MPX3), belonging to the class of 2D materials, are potentially viable electrocatalysts for the hydrogen evolution reaction (HER). Many 2D and layered materials exhibit different magnitudes of electrochemical and electrocatalytic activity at their edge and basal sites. To find out whether edges or basal planes are the primary sites for catalytic processes at these compounds, we studied the local electrochemical and electrocatalytic activity of FePSe3, an MPX3 representative that was previously found to be catalytically active. Using scanning electrochemical microscopy, we discovered that electrochemical processes and the HER are occurring at an increased rate at edge-like defects of FePSe3 crystals. We correlate our observations using optical microscopy, confocal laser scanning microscopy, scanning electron microscopy, and electron-dispersive X-ray spectroscopy. These findings have profound implications for the application of these materials for electrochemistry as well as for understanding general rules governing the electrochemical performance of layered compounds.
Collapse
Affiliation(s)
- Stefan Wert
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech
Republic
| | - Christian Iffelsberger
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech
Republic
| | - Akshay Kumar K. Padinjareveetil
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech
Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200, Czech
Republic
- Energy
Research Institute@NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level 5, 50 Nanyang Drive, Singapore 637553, Singapore
- New
Technologies—Research Centre, University
of West Bohemia, Univerzitní
8, Plzeň 30100, Czech Republic
- Department
of Medical Research, China Medical University
Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
16
|
Gaddam R, Sarbapalli D, Howard J, Curtiss LA, Assary RS, Rodríguez-López J. An SECM-Based Spot Analysis for Redoxmer-Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces. Chem Asian J 2023; 18:e202201120. [PMID: 36482038 PMCID: PMC10107689 DOI: 10.1002/asia.202201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The fundamental process in non-aqueous redox flow battery (NRFB) operation revolves around electron transfer (ET) between a current collector electrode and redox-active organic molecules (redoxmers) in solution. Here, we present an approach utilizing scanning electrochemical microscopy (SECM) to evaluate interfacial ET kinetics between redoxmers and various electrode materials of interest at desired locations. This spot-analysis method relies on the measurement of heterogeneous electron transfer rate constants (kf or kb ) as a function of applied potential (E-E0 '). As demonstrated by COMSOL simulations, this method enables the quantification of Butler-Volmer kinetic parameters, the standard heterogeneous rate constant, k0 , and the transfer coefficient, α. Our method enabled the identification of inherent asymmetries in the ET kinetics arising during the reduction of ferrocene-based redoxmers, compared to their oxidation which displayed faster rate constants. Similar behavior was observed on a wide variety of carbon electrodes such as multi-layer graphene, highly ordered pyrolytic graphite, glassy carbon, and chemical vapor deposition-grown graphite films. However, aqueous systems and Pt do not exhibit such kinetic effects. Our analysis suggests that differential adsorption of the redoxmers is insufficient to account for our observations. Displaying a greater versatility than conventional electroanalytical methods, we demonstrate the operation of our spot analysis at concentrations up to 100 mM of redoxmer over graphite films. Looking forward, our method can be used to assess non-idealities in a variety of redoxmer/electrode/solvent systems with quantitative evaluation of kinetics for applications in redox-flow battery research.
Collapse
Affiliation(s)
- Raghuram Gaddam
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| | - Dipobrato Sarbapalli
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| | - Jason Howard
- Materials Science Division, Argonne National Laboratory, Lemont, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| | - Rajeev S Assary
- Materials Science Division, Argonne National Laboratory, Lemont, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL 61801, USA.,Joint Center for Energy Storage Argonne National Laboratory, Lemont, IL 61801, USA
| |
Collapse
|
17
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
18
|
Pavlov S, Kozhevnikova E, Kislenko S. Effect of the number of graphene layers on the electron transfer kinetics at metal/graphene heterostructures. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
19
|
Pavlov SV, Kozhevnikova YO, Kislenko VA, Kislenko SA. Modulation of the kinetics of outer-sphere electron transfer at graphene by a metal substrate. Phys Chem Chem Phys 2022; 24:25203-25213. [PMID: 36254968 DOI: 10.1039/d2cp03771h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Solid-supported graphene is a typical configuration of electrochemical devices based on single-layer graphene. Therefore, it is necessary to understand the electrochemical features of such heterostructures. In this work, we theoretically investigated the effect of the metal type on the nonadiabatic electron transfer (ET) at the metal-supported graphene using DFT calculations. We considered five metals Au, Ag, Pt, Cu, and Al on which graphene is physically adsorbed. It is shown that all metals catalyze the ET. The electrocatalytic effect increases in the following series Al < Au ≲ Ag ≈ Cu < Pt. The enhanced ET in the presence of the metal substrate is explained by the hybridization of metal and graphene states, due to which the coupling between the reactant in an electrolyte and metal is increased. Metal-dependent electrocatalytic effect is explained both by different densities of states at the Fermi level of the systems and by differences in the behaviour of the tails of hybridized wave functions in the electrolyte region. The shift of the Fermi level with respect to the Dirac point in graphene when charging at the metal/graphene/electrolyte interface does not affect the kinetics due to the small contribution of graphene states to the electron transfer.
Collapse
Affiliation(s)
- Sergey V Pavlov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Yekaterina O Kozhevnikova
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Vitaliy A Kislenko
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel Str. 3, Moscow, 143026, Russian Federation.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| | - Sergey A Kislenko
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13/2, Moscow, 125412, Russian Federation.
| |
Collapse
|
20
|
Scanning gel electrochemical microscopy: Combination with quartz crystal microbalance for studying the electrolyte residue. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Schumacher S, Madauß L, Liebsch Y, Tetteh EB, Varhade S, Schuhmann W, Schleberger M, Andronescu C. Revealing the Heterogeneity of Large-Area MoS 2 Layers in the Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2022; 9:e202200586. [PMID: 36246850 PMCID: PMC9544614 DOI: 10.1002/celc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The electrocatalytic activity concerning the hydrogen evolution reaction (HER) of micrometer-sized MoS2 layers transferred on a glassy carbon surface was evaluated by scanning electrochemical cell microscopy (SECCM) in a high-throughput approach. Multiple areas on single or multiple MoS2 layers were assessed using a hopping mode nanocapillary positioning with a hopping distance of 500 nm and a nanopipette size of around 55 nm. The locally recorded linear sweep voltammograms revealed a high lateral heterogeneity over the MoS2 sheet regarding their HER activity, with currents between -40 and -60 pA recorded at -0.89 V vs. reversible hygrogen electrode over about 4400 different measured areas on the MoS2 sheet. Stacked MoS2 layers did not show different electrocatalytic activity than the single MoS2 sheet, suggesting that the interlayer resistance influences the electrocatalytic activity less than the resistances induced by possible polymer residues or water layers formed between the transferred MoS2 sheet and the glassy carbon electrode.
Collapse
Affiliation(s)
- Simon Schumacher
- Chemical Technology IIIFaculty of Chemistry and CENIDEUniversity of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Lukas Madauß
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Yossarian Liebsch
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Swapnil Varhade
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marika Schleberger
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDEUniversity of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
22
|
Inozemtseva AI, Sergeev AV, Napolskii KS, Kushnir SE, Belov V, Itkis DM, Usachov DY, Yashina LV. Graphene electrochemistry: ‘Adiabaticity’ of electron transfer. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Wang Y, Li M, Ren H. Voltammetric Mapping of Hydrogen Evolution Reaction on Pt Locally via Scanning Electrochemical Cell Microscopy. ACS MEASUREMENT SCIENCE AU 2022; 2:304-308. [PMID: 36785572 PMCID: PMC9836041 DOI: 10.1021/acsmeasuresciau.2c00012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The advancement in nanoscale electrochemical tools has offered the opportunity to better understand heterogeneity at electrochemical interfaces. Scanning electrochemical cell microscopy (SECCM) has been increasingly used for revealing local kinetics and the distribution of active sites in electrocatalysis. Constant-contact scanning and hopping scanning are the two commonly used modes. The former is intrinsically faster, whereas the latter enables full voltammetry at individual locations. Herein, we revisit a less used mode that combines the advantages of hopping and constant-contact scan, resulting in a faster voltammetric mapping. In this mode, the nanodroplet cell in SECCM maintains contact with the surface during the scanning and makes intermittent pauses for local voltammetry. The elimination of frequent retraction and approach greatly increases the speed of mapping. In addition, iR correction can be readily applied to the voltammetry, resulting in more accurate measurements of the electrode kinetics. This scanning mode is demonstrated in the oxidation of a ferrocene derivative on HOPG and hydrogen evolution reaction (HER) on polycrystalline Pt, serving as model systems for outer-sphere and inner-sphere electron transfer reactions, respectively. While the kinetics of the inner-sphere reaction is consistent spatially, heterogeneity is observed for the kinetics of HER, which is correlated with the crystal orientation of Pt.
Collapse
|
24
|
Direct measuring of single-heterogeneous bubble nucleation mediated by surface topology. Proc Natl Acad Sci U S A 2022; 119:e2205827119. [PMID: 35858338 PMCID: PMC9303989 DOI: 10.1073/pnas.2205827119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
25
|
Kawabe Y, Miyakoshi Y, Tang R, Fukuma T, Nishihara H, Takahashi Y. Nanoscale characterization of the site‐specific degradation of electric double‐layer capacitor using scanning electrochemical cell microscopy. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yusuke Kawabe
- Division of Electrical Engineering and Computer Science Kanazawa University Kanazawa Kakuma‐machi Japan
| | - Yosuke Miyakoshi
- Division of Electrical Engineering and Computer Science Kanazawa University Kanazawa Kakuma‐machi Japan
| | - Rui Tang
- Advanced Institute for Materials Research / Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science Kanazawa University Kanazawa Kakuma‐machi Japan
- WPI Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Kanazawa Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research / Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Miyagi Japan
| | - Yasufumi Takahashi
- Division of Electrical Engineering and Computer Science Kanazawa University Kanazawa Kakuma‐machi Japan
- WPI Nano Life Science Institute (WPI‐NanoLSI) Kanazawa University Kanazawa Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) Saitama Japan
| |
Collapse
|
26
|
Bentley CL, Kang M, Bukola S, Creager SE, Unwin PR. High-Resolution Ion-Flux Imaging of Proton Transport through Graphene|Nafion Membranes. ACS NANO 2022; 16:5233-5245. [PMID: 35286810 PMCID: PMC9047657 DOI: 10.1021/acsnano.1c05872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/29/2021] [Indexed: 05/18/2023]
Abstract
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (e.g., cracks, holes, etc.) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm2 area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
Collapse
Affiliation(s)
- Cameron L. Bentley
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Saheed Bukola
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Stephen E. Creager
- Department
of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
27
|
Let’s twist electrochem. Nat Chem 2022; 14:248-250. [DOI: 10.1038/s41557-022-00900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat Chem 2022; 14:267-273. [PMID: 35177786 DOI: 10.1038/s41557-021-00865-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022]
Abstract
Tailoring electron transfer dynamics across solid-liquid interfaces is fundamental to the interconversion of electrical and chemical energy. Stacking atomically thin layers with a small azimuthal misorientation to produce moiré superlattices enables the controlled engineering of electronic band structures and the formation of extremely flat electronic bands. Here, we report a strong twist-angle dependence of heterogeneous charge transfer kinetics at twisted bilayer graphene electrodes with the greatest enhancement observed near the 'magic angle' (~1.1°). This effect is driven by the angle-dependent tuning of moiré-derived flat bands that modulate electron transfer processes with the solution-phase redox couple. Combined experimental and computational analysis reveals that the variation in electrochemical activity with moiré angle is controlled by a structural relaxation of the moiré superlattice at twist angles of <2°, and 'topological defect' AA stacking regions, where flat bands are localized, produce a large anomalous local electrochemical enhancement that cannot be accounted for by the elevated local density of states alone.
Collapse
|
29
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
30
|
Liu DQ, Kang M, Perry D, Chen CH, West G, Xia X, Chaudhuri S, Laker ZPL, Wilson NR, Meloni GN, Melander MM, Maurer RJ, Unwin PR. Adiabatic versus non-adiabatic electron transfer at 2D electrode materials. Nat Commun 2021; 12:7110. [PMID: 34876571 PMCID: PMC8651748 DOI: 10.1038/s41467-021-27339-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Dan-Qing Liu
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.13402.340000 0004 1759 700XSchool of Materials Science and Engineering, Zhejiang University, Hangzhou, 310007 China
| | - Minkyung Kang
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.1021.20000 0001 0526 7079Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 Australia
| | - David Perry
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Chang-Hui Chen
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Geoff West
- grid.7372.10000 0000 8809 1613Warwick Manufacturing Group, University of Warwick, Coventry, CV4 7AL UK
| | - Xue Xia
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Shayantan Chaudhuri
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK ,grid.7372.10000 0000 8809 1613Centre for Doctoral Training in Diamond Science and Technology, University of Warwick, Coventry, CV4 7AL UK
| | - Zachary P. L. Laker
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Neil R. Wilson
- grid.7372.10000 0000 8809 1613Department of Physics, University of Warwick, Coventry, CV4 7AL UK
| | - Gabriel N. Meloni
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Marko M. Melander
- grid.9681.60000 0001 1013 7965Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, (YN) FI-40014 Jyväskylä, Finland
| | - Reinhard J. Maurer
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| | - Patrick R. Unwin
- grid.7372.10000 0000 8809 1613Department of Chemistry, University of Warwick, Coventry, CV4 7AL UK
| |
Collapse
|
31
|
Yamamoto T, Ando T, Kawabe Y, Fukuma T, Enomoto H, Nishijima Y, Matsui Y, Kanamura K, Takahashi Y. Characterization of the Depth of Discharge-Dependent Charge Transfer Resistance of a Single LiFePO 4 Particle. Anal Chem 2021; 93:14448-14453. [PMID: 34668693 DOI: 10.1021/acs.analchem.1c02851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discharged state affects the charge transfer resistance of lithium-ion secondary batteries (LIBs), which is referred to as the depth of discharge (DOD). To understand the intrinsic charge/discharge property of LIBs, the DOD-dependent charge transfer resistance at the solid-liquid interface is required. However, in a general composite electrode, the conductive additive and organic polymeric binder are unevenly distributed, resulting in a complicated electron conduction/ion conduction path. As a result, estimating the DOD-dependent rate-determining factor of LIBs is difficult. In contrast, in micro/nanoscale electrochemical measurements, the primary or secondary particle is evaluated without using a conductive additive and providing an ideal mass transport condition. To control the DOD state of a single LiFePO4 active material and evaluate the DOD-dependent charge transfer kinetic parameters, we use scanning electrochemical cell microscopy (SECCM), which uses a micropipette to form an electrochemical cell on a sample surface. The difference in charge transfer resistance at the solid-liquid interface depending on the DOD state and electrolyte solution could be confirmed using SECCM.
Collapse
Affiliation(s)
| | - Tomohiro Ando
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yusuke Kawabe
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
| | - Hiroshi Enomoto
- Mechanical Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshiaki Nishijima
- Faculty of Engineering Department of Electrical and Electronics Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan
| | | | | | - Yasufumi Takahashi
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| |
Collapse
|
32
|
Nie W, Zhu Q, Gao Y, Wang Z, Liu Y, Wang X, Chen R, Fan F, Li C. Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism. NANO LETTERS 2021; 21:8901-8909. [PMID: 34647747 DOI: 10.1021/acs.nanolett.1c03529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The involvement between electron transfer (ET) and catalytic reaction at the electrocatalyst surface makes the electrochemical process challenging to understand and control. Even ET process, a primary step, is still ambiguous because it is unclear how the ET process is related to the nanostructured electrocatalyst. Herein, locally enhanced ET current dominated by mass transport effect at corner and edge sites bounded by {111} facets on single Au triangular nanoplates was clearly imaged. After decoupling mass transport effect, the ET rate constant of corner sites was measured to be about 2-fold that of basal {111} plane. Further, we demonstrated that spatial heterogeneity of local inner potential differences of Au nanoplates/solution interfaces plays a key role in the ET process, supported by the linear correlation between the logarithm of rate constants and the potential differences of different sites. These results provide direct images for heterogeneous ET, which helps to understand and control the nanoscopic electrochemical process and electrode design.
Collapse
Affiliation(s)
- Wei Nie
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianhong Zhu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ziyuan Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Xun Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Centre of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
33
|
Bentley CL. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub‐particle to ensemble level. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
34
|
Mirbagheri N, Campos R, Ferapontova EE. Electrocatalytic Oxidation of Water by OH
−
‐ and H
2
O‐Capped IrO
x
Nanoparticles Electrophoretically Deposited on Graphite and Basal Plane HOPG: Effect of the Substrate Electrode**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naghmehalsadat Mirbagheri
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
- Department of Microsystems Engineering – IMTEK University of Freiburg Georges-Koehler-Allee 103 79110 Freiburg Germany
| | - Rui Campos
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
- AXES research group and NANOlab Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerpen Belgium
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 1590-14 DK-8000 Aarhus C Denmark
| |
Collapse
|
35
|
Tsujiguchi T, Kawabe Y, Jeong S, Ohto T, Kukunuri S, Kuramochi H, Takahashi Y, Nishiuchi T, Masuda H, Wakisaka M, Hu K, Elumalai G, Fujita JI, Ito Y. Acceleration of Electrochemical CO2 Reduction to Formate at the Sn/Reduced Graphene Oxide Interface. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04887] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Takuya Tsujiguchi
- Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yusuke Kawabe
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa 920-1192, Japan
| | - Samuel Jeong
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531, Japan
| | - Suresh Kukunuri
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Hirotaka Kuramochi
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Yasufumi Takahashi
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Masuda
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Mitsuru Wakisaka
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Kailong Hu
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Ganesan Elumalai
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Jun-ichi Fujita
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| |
Collapse
|
36
|
Hill JW, Hill CM. Directly visualizing carrier transport and recombination at individual defects within 2D semiconductors. Chem Sci 2021; 12:5102-5112. [PMID: 34163749 PMCID: PMC8179556 DOI: 10.1039/d0sc07033e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Two-dimensional semiconductors (2DSCs) are promising materials for a wide range of optoelectronic applications. While the fabrication of 2DSCs with thicknesses down to the monolayer limit has been demonstrated through a variety of routes, a robust understanding of carrier transport within these materials is needed to guide the rational design of improved practical devices. In particular, the influence of different types of structural defects on transport is critical, but difficult to interrogate experimentally. Here, a new approach to visualizing carrier transport within 2DSCs, Carrier Generation-Tip Collection Scanning Electrochemical Cell Microscopy (CG-TC SECCM), is described which is capable of providing information at the single-defect level. In this approach, carriers are locally generated within a material using a focused light source and detected as they drive photoelectrochemical reactions at a spatially-offset electrolyte interface created through contact with a pipet-based probe, allowing carrier transport across well-defined, µm-scale paths within a material to be directly interrogated. The efficacy of this approach is demonstrated through studies of minority carrier transport within mechanically-exfoliated n-type WSe2 nanosheets. CG-TC SECCM imaging experiments carried out within pristine basal planes revealed highly anisotropic hole transport, with in-plane and out-of-plane hole diffusion lengths of 2.8 µm and 5.8 nm, respectively. Experiments were also carried out to probe recombination across individual step edge defects within n-WSe2 which suggest a significant surface charge (∼5 mC m-2) exists at these defects, significantly influencing carrier transport. Together, these studies demonstrate a powerful new approach to visualizing carrier transport and recombination within 2DSCs, down to the single-defect level.
Collapse
Affiliation(s)
- Joshua W Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 E University Ave Laramie WY 82071 USA
| |
Collapse
|
37
|
Daviddi E, Shkirskiy V, Kirkman PM, Robin MP, Bentley CL, Unwin PR. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem Sci 2020; 12:3055-3069. [PMID: 34164075 PMCID: PMC8179364 DOI: 10.1039/d0sc06516a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Practically important metal electrodes are usually polycrystalline, comprising surface grains of many different crystallographic orientations, as well as grain boundaries. In this study, scanning electrochemical cell microscopy (SECCM) is applied in tandem with co-located electron backscattered diffraction (EBSD) to give a holistic view of the relationship between the surface structure and the electrochemical activity and corrosion susceptibility of polycrystalline Cu. An unusual aqueous nanodroplet/oil (dodecane)/metal three-phase configuration is employed, which opens up new prospects for fundamental studies of multiphase electrochemical systems, and mimics the environment of corrosion in certain industrial and automotive applications. In this configuration, the nanodroplet formed at the end of the SECCM probe (nanopipette) is surrounded by dodecane, which acts as a reservoir for oil-soluble species (e.g., O2) and can give rise to enhanced flux(es) across the immiscible liquid–liquid interface, as shown by finite element method (FEM) simulations. This unique three-phase configuration is used to fingerprint nanoscale corrosion in a nanodroplet cell, and to analyse the interrelationship between the Cu oxidation, Cu2+ deposition and oxygen reduction reaction (ORR) processes, together with nanoscale open circuit (corrosion) potential, in a grain-by-grain manner. Complex patterns of surface reactivity highlight the important role of grains of high-index orientation and microscopic surface defects (e.g., microscratches) in modulating the corrosion-properties of polycrystalline Cu. This work provides a roadmap for in-depth surface structure–function studies in (electro)materials science and highlights how small variations in surface structure (e.g., crystallographic orientation) can give rise to large differences in nanoscale reactivity. Probing Cu corrosion in an aqueous nanodroplet/oil/metal three-phase environment revealed unique patterns of surface reactivity. The electrochemistry of high-index facets cannot be predicted simply from the low-index {001}, {011} and {111} responses.![]()
Collapse
Affiliation(s)
- Enrico Daviddi
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | | | | | | - Cameron L Bentley
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK .,School of Chemistry, Monash University Clayton Victoria 3800 Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
38
|
Neubert TJ, Wehrhold M, Kaya NS, Balasubramanian K. Faradaic effects in electrochemically gated graphene sensors in the presence of redox active molecules. NANOTECHNOLOGY 2020; 31:405201. [PMID: 32485689 DOI: 10.1088/1361-6528/ab98bc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field-effect transistors (FETs) based on graphene are promising devices for the direct sensing of a range of analytes in solution. We show here that the presence of redox active molecules in the analyte solution leads to the occurrence of heterogeneous electron transfer with graphene generating a Faradaic current (electron transfer) in a FET configuration resulting in shifts of the Dirac point. Such a shift occurs if the Faradaic current is significantly high, e.g. due to a large graphene area. Furthermore, the redox shift based on the Faradaic current, reminiscent of a doping-like effect, is found to be non-Nernstian and dependent on parameters known from electrode kinetics in potentiodynamic methods, such as the electrode area, the standard potential of the redox probes and the scan rate of the gate voltage modulation. This behavior clearly differentiates this effect from other transduction mechanisms based on electrostatic interactions or molecular charge transfer doping effects, which are usually behind a shift of the Dirac point. These observations suggest that large-area unmodified/pristine graphene in field-effect sensors behaves as a non-polarized electrode in liquid. Strategies for ensuring a polarized interface are discussed.
Collapse
Affiliation(s)
- Tilmann J Neubert
- School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof and Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany. Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Pan Z, Yu F, Li L, Liu M, Song C, Yang J, Li H, Wang C, Pan Y, Wang T. Electrochemical filtration carbon membrane derived from coal for wastewater treatment: Insights into the evolution of electrical conductivity and electrochemical performance during carbonization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Bentley CL, Kang M, Unwin PR. Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications. Anal Chem 2020; 92:11673-11680. [PMID: 32521997 DOI: 10.1021/acs.analchem.0c01540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage of the "tunable" physicochemical properties (e.g., proton availability and/or electrochemical stability) of nonaqueous (e.g., aprotic) electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) in aprotic solvent electrolyte media to address contemporary structure-electrochemical activity problems. Using the simple outer-sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipitation/crystallization on the scanning (minutes to hours) time scale. When applied to perform microfabrication-specifically the electrosynthesis of the conductive polymer, polypyrrole-the optimized SECCM set up produces highly reproducible arrays of synthesized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic activity-specifically the electro-oxidation of iodide at polycrystalline platinum-reveals unique (i.e., structure-dependent) patterns of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation identified as potential electrocatalytic "hot spots". The work herein further cements SECCM as a premier technique for structure-function-activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion, and beyond.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
41
|
Takahashi Y, Yamashita T, Takamatsu D, Kumatani A, Fukuma T. Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chem Commun (Camb) 2020; 56:9324-9327. [PMID: 32671368 DOI: 10.1039/d0cc02865g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To visualize the electrochemical reactivity and obtain the diffusion coefficient of the anode of lithium-ion batteries, we used scanning electrochemical cell microscopy (SECCM) in a glovebox. SECCM provided the facet-dependent diffusion coefficient on a Li4Ti5O12 (LTO) thin-film electrode and detected the metastable crystal phase of LixFePO4.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | |
Collapse
|
42
|
Paschoalino WJ, Payne NA, Pessanha TM, Gateman SM, Kubota LT, Mauzeroll J. Charge Storage in Graphene Oxide: Impact of the Cation on Ion Permeability and Interfacial Capacitance. Anal Chem 2020; 92:10300-10307. [DOI: 10.1021/acs.analchem.0c00218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Waldemir J. Paschoalino
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Nicholas A. Payne
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Tatiana M. Pessanha
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Samantha M. Gateman
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| | - Lauro T. Kubota
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP Brazil
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec, Canada
| |
Collapse
|
43
|
Nano-engineering the material structure of preferentially oriented nano-graphitic carbon for making high-performance electrochemical micro-sensors. Sci Rep 2020; 10:9444. [PMID: 32523076 PMCID: PMC7286892 DOI: 10.1038/s41598-020-66408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022] Open
Abstract
Direct synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure. First, we introduce a variant of the metal-induced graphitization technique that generates micron-scale islands of nano-graphitic carbon materials directly on oxide-coated silicon substrates. A novel feature of our material synthesis is that, through substrate engineering, the orientation of graphitic planes within the film aligns preferentially with the silicon substrate. This feature allows us to use the Raman spectroscopy for quantifying structural properties of the sensor surface, where the electrochemical processes occur. Second, we find phenomenological models for predicting the amplitudes of the redox current and the sensor capacitance from the material structure, quantified by Raman. Our results indicate that the key to achieving high-performance micro-sensors from nano-graphitic carbon is to increase both the density of point defects and the size of the graphitic crystallites. Our study offers a viable strategy for building planar electrochemical micro-sensors with high-performance.
Collapse
|
44
|
Influence of defects in graphene on electron transfer kinetics: The role of the surface electronic structure. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Thompson AC, Simpson BH, Lewis NS. Macroscale and Nanoscale Photoelectrochemical Behavior of p-Type Si(111) Covered by a Single Layer of Graphene or Hexagonal Boron Nitride. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11551-11561. [PMID: 32040911 DOI: 10.1021/acsami.9b21134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) materials may enable a general approach to the introduction of a dipole at a semiconductor surface as well as control over other properties of the double layer at a semiconductor/liquid interface. Vastly different properties can be found in the 2D materials currently studied due in part to the range of the distribution of density-of-states. In this work, the open-circuit voltage (Voc) of p-Si-H, p-Si/Gr (graphene), and p-Si/h-BN (hexagonal boron nitride) in contact with a series of one-electron outer-sphere redox couples was investigated by macroscale measurements as well as by scanning electrochemical cell microscopy (SECCM). The band gaps of Gr and h-BN (0-5.97 eV) encompass the wide range of band gaps for 2D materials, so these interfaces (p-Si/Gr and p-Si/h-BN) serve as useful references to understand the behavior of 2D materials more generally. The value of Voc shifted with respect to the effective potential of the contacting solution, with slopes (ΔVoc/ΔEEff) of -0.27 and -0.38 for p-Si/Gr and p-Si/h-BN, respectively, indicating that band bending at the p-Si/h-BN and p-Si/Gr interfaces responds at least partially to changes in the electrochemical potential of the contacting liquid electrolyte. Additionally, SECCM is shown to be an effective method to interrogate the nanoscale photoelectrochemical behavior of an interface, showing little spatial variance over scales exceeding the grain size of the CVD-grown 2D materials in this work. The measurements demonstrated that the polycrystalline nature of the 2D materials had little effect on the results and confirmed that the macroscale measurements reflected the junction behavior at the nanoscale.
Collapse
Affiliation(s)
- Annelise C Thompson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Burton H Simpson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathan S Lewis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
46
|
Takahashi Y, Kobayashi Y, Wang Z, Ito Y, Ota M, Ida H, Kumatani A, Miyazawa K, Fujita T, Shiku H, Korchev YE, Miyata Y, Fukuma T, Chen M, Matsue T. High-Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition-Metal Dichalcogenide Nanosheets. Angew Chem Int Ed Engl 2020; 59:3601-3608. [PMID: 31777142 DOI: 10.1002/anie.201912863] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 11/10/2022]
Abstract
High-resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H-MoS2 nanosheets, MoS2 , and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.
Collapse
Affiliation(s)
- Yasufumi Takahashi
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Precursory Research for Embryonic Science and Technology, (PRESTO) (Japan), Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Yu Kobayashi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Ziqian Wang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yoshikazu Ito
- Precursory Research for Embryonic Science and Technology, (PRESTO) (Japan), Science and Technology Agency (JST), Saitama, 332-0012, Japan.,Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Masato Ota
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Akichika Kumatani
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan.,WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1-509, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Keisuke Miyazawa
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, Kochi, 782-8502, Japan
| | - Hitoshi Shiku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Yuri E Korchev
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.,Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (NanoLSI, WPI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1-509, Katahira, Aoba-ku, Sendai, 980-8577, Japan.,Core Research for Evolutional Science and Technology (CREST) (Japan), Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11-604, Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan.,WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1-509, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
47
|
Synchronous Electrical Conductance‐ and Electron Tunnelling‐Scanning Electrochemical Microscopy Measurements. ChemElectroChem 2020. [DOI: 10.1002/celc.201901721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Takahashi Y, Kobayashi Y, Wang Z, Ito Y, Ota M, Ida H, Kumatani A, Miyazawa K, Fujita T, Shiku H, Korchev YE, Miyata Y, Fukuma T, Chen M, Matsue T. High‐Resolution Electrochemical Mapping of the Hydrogen Evolution Reaction on Transition‐Metal Dichalcogenide Nanosheets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yasufumi Takahashi
- WPI Nano Life Science Institute (NanoLSI, WPI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Precursory Research for Embryonic Science and Technology, (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Yu Kobayashi
- Department of Physics Tokyo Metropolitan University, Hachioji Tokyo 192-0397 Japan
| | - Ziqian Wang
- Department of Materials Science and Engineering Johns Hopkins University Baltimore MD 21218 USA
| | - Yoshikazu Ito
- Precursory Research for Embryonic Science and Technology, (PRESTO) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
- Institute of Applied Physics Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
| | - Masato Ota
- WPI Nano Life Science Institute (NanoLSI, WPI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Hiroki Ida
- Graduate School of Environmental Studies Tohoku University 6-6-11-604, Aramaki Aoba Aoba-ku Sendai 980-8579 Japan
| | - Akichika Kumatani
- Graduate School of Environmental Studies Tohoku University 6-6-11-604, Aramaki Aoba Aoba-ku Sendai 980-8579 Japan
- WPI-Advanced Institute for Materials Research (AIMR) Tohoku University 2-1-1-509, Katahira Aoba-ku Sendai 980-8577 Japan
| | - Keisuke Miyazawa
- WPI Nano Life Science Institute (NanoLSI, WPI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering Kochi University of Technology Kochi 782-8502 Japan
| | - Hitoshi Shiku
- Department of Applied Chemistry Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Yuri E. Korchev
- WPI Nano Life Science Institute (NanoLSI, WPI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Department of Medicine Imperial College London London W12 0NN UK
| | - Yasumitsu Miyata
- Department of Physics Tokyo Metropolitan University, Hachioji Tokyo 192-0397 Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (NanoLSI, WPI) Kanazawa University, Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Mingwei Chen
- Department of Materials Science and Engineering Johns Hopkins University Baltimore MD 21218 USA
- WPI-Advanced Institute for Materials Research (AIMR) Tohoku University 2-1-1-509, Katahira Aoba-ku Sendai 980-8577 Japan
- Core Research for Evolutional Science and Technology (CREST) (Japan) Science and Technology Agency (JST) Saitama 332-0012 Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies Tohoku University 6-6-11-604, Aramaki Aoba Aoba-ku Sendai 980-8579 Japan
- WPI-Advanced Institute for Materials Research (AIMR) Tohoku University 2-1-1-509, Katahira Aoba-ku Sendai 980-8577 Japan
| |
Collapse
|
49
|
Liu X, Sartin MM, Liu Y, Tian ZQ, Zhan D. Optimizing the interfacial electron transfer capability of single layer graphene by thermal annealing. Chem Commun (Camb) 2019; 56:253-256. [PMID: 31803874 DOI: 10.1039/c9cc08150j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial electron transfer capability of Si/SiO2 wafer supported single layer graphene is optimized by thermal annealing in an inert gas environment, which facilitates its applications in both electrochemical and electronic devices.
Collapse
Affiliation(s)
- Xuan Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, and Graphene Industry and Engineering Research Institute, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
50
|
Payne NA, Mauzeroll J. Identifying Nanoscale Pinhole Defects in Nitroaryl Layers with Scanning Electrochemical Cell Microscopy. ChemElectroChem 2019. [DOI: 10.1002/celc.201901394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicholas A. Payne
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal, QC Canada H3 A 0B8
| | - Janine Mauzeroll
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal, QC Canada H3 A 0B8
| |
Collapse
|