1
|
Zhang X, Liu B, Xu F, Ning L, Zhou Q, Zhang Q, Mai Y, Gong Q, Huang Y. pH-Modulated 1D Hierarchical Self-Assembly of a Brush-Like Poly-Para-Phenylene Homopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400220. [PMID: 38366315 DOI: 10.1002/smll.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Dacha P, Hambsch M, Pohl D, Haase K, Löffler M, Lan T, Feng X, Rellinghaus B, Mannsfeld SCB. Tailoring the Morphology of a Diketopyrrolopyrrole-based Polymer as Films or Wires for High-Performance OFETs using Solution Shearing. SMALL METHODS 2024; 8:e2300842. [PMID: 38009770 DOI: 10.1002/smtd.202300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/29/2023]
Abstract
Conjugated polymers often show efficient charge carrier transport along their backbone which is a primary factor in the electrical behavior of Organic Field Effect Transistor (OFETs) devices fabricated from these materials. Herein, a solution shearing procedure is reported to fabricate micro/nano wires from a diketopyrrolopyrrole (DPP)-based polymer. Millimeter to nanometer long polymer wires orientated in the coating direction are developed after a thorough analysis of the deposition conditions. It shows several morphological regimes-film, transition, and wires and experimentally derive a phase diagram for the parameters coating speed and surface energy of the substrate. The as-fabricated wires are isolated, which is confirmed by optical, atomic force, and scanning electron microscopy. Beside the macroscopic alignment of wires, cross-polarized optical microscopy images show strong birefringence suggesting a high degree of molecular orientation. This is further substantiated by polarized UV-Vis-NIR spectroscopy, selected area electron diffraction transmission electron microscopy, and grazing-incidence wide-angle X-ray scattering. Finally, an enhanced electrical performance of single wire OFETs is observed with a 15-fold increase in effective charge carrier mobility to 1.57 cm2 V-1 s-1 over devices using films (0.1 cm2 V-1 s-1 ) with similar values for on/off current ratio and threshold voltage.
Collapse
Affiliation(s)
- Preetam Dacha
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Katherina Haase
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Bernd Rellinghaus
- Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01069, Dresden, Germany
| |
Collapse
|
3
|
Zhang W, Shi K, Lai J, Zhou Y, Wei X, Che Q, Wei J, Wang L, Yu G. Record-High Electron Mobility Exceeding 16 cm 2 V - 1 s - 1 in Bisisoindigo-Based Polymer Semiconductor with a Fully Locked Conjugated Backbone. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300145. [PMID: 36849648 DOI: 10.1002/adma.202300145] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Indexed: 05/17/2023]
Abstract
Polymer semiconductors with mobilities exceeding 10 cm2 V- 1 s- 1 , especially ambipolar and n-type polymer semiconductors, are still rare, although they are of great importance for fabricating polymer field-effect transistors (PFETs) toward commercial high-grade electronics. Herein, two novel donor-acceptor copolymers, PNFFN-DTE and PNFFN-FDTE, are designed and synthesized based on the electron-deficient bisisoindigo (NFFN) and electron-rich dithienylethylenes (DTE or FDTE). The copolymer PNFFN-DTE, containing NFFN and DTE, possesses a partially locked polymeric conjugated backbone, whereas PNFFN-FDTE, containing NFFN and FDTE, has a fully locked one. Fluorine atoms in FDTE not only induce the formation of additional CH∙∙∙F hydrogen bonds, but also lower frontier molecular orbitals for PNFFN-FDTE. Both PNFFN-DTE and PNFFN-FDTE form more ordered molecular packing in thin films prepared from a polymer solution in bicomponent solvent containing 1,2-dichlorobenzene (DCB) and 1-chloronaphthalene (with volume ratio of 99.2/0.8) than pure DCB. The two copolymers-based flexible PFETs exhibit ambipolar charge-transport properties. Notably, the bicomponent solvent-processed PNFFN-FDTE-based PFETs afford a high electron mobility of 16.67 cm2 V-1 s-1 , which is the highest electron-transport mobility for PFETs reported so far. The high electron mobility of PNFFN-FDTE is attributed to its fully locked conjugated backbone, dense molecular packing, and much matched LUMO energy level.
Collapse
Affiliation(s)
- Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Keli Shi
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Jing Lai
- College of Physics and Electronic Information Engineering, Zhejiang Normal University, Zhejiang, 321004, P. R. China
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Che
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Li YF, Guo YL, Liu YQ. Recent Progress in Donor-Acceptor Type Conjugated Polymers for Organic Field-effect Transistors. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Crystallization of D-A Conjugated Polymers: A Review of Recent Research. Polymers (Basel) 2022; 14:polym14214612. [DOI: 10.3390/polym14214612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
D-A conjugated polymers are key materials for organic solar cells and organic thin-film transistors, and their film structure is one of the most important factors in determining device performance. The formation of film structure largely depends on the crystallization process, but the crystallization of D-A conjugated polymers is not well understood. In this review, we attempted to achieve a clearer understanding of the crystallization of D-A conjugated polymers. We first summarized the features of D-A conjugated polymers, which can affect their crystallization process. Then, the crystallization process of D-A conjugated polymers was discussed, including the possible chain conformations in the solution as well as the nucleation and growth processes. After that, the crystal structure of D-A conjugated polymers, including the molecular orientation and polymorphism, was reviewed. We proposed that the nucleation process and the orientation of the nuclei on the substrate are critical for the crystal structure. Finally, we summarized the possible crystal morphologies of D-A conjugated polymers and explained their formation process in terms of nucleation and growth processes. This review provides fundamental knowledge on how to manipulate the crystallization process of D-A conjugated polymers to regulate their film structure.
Collapse
|
6
|
Guan YS, Qiao J, Liang Y, Bisoyi HK, Wang C, Xu W, Zhu D, Li Q. A high mobility air-stable n-type organic small molecule semiconductor with high UV-visible-to-NIR photoresponse. LIGHT, SCIENCE & APPLICATIONS 2022; 11:236. [PMID: 35896540 PMCID: PMC9329299 DOI: 10.1038/s41377-022-00936-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 05/06/2023]
Abstract
An organic semiconductor with high carrier mobility and efficient light absorption over a wide spectral range is of the most important yet challenging material for constructing a broadband responsive organic photodetector. However, the development of such organic semiconductors, especially for air-stable n-type organic small molecule semiconductors, is still at an early stage. Here we report the fabrication of high-performance n-type semiconducting crystalline nanosheets and the development of air-stable field-effect transistors, phototransistors, with high response over a broad spectrum. The n-type small molecule semiconductor is assembled into a crystalline nanosheet based on the solvent-phase interfacial self-assembly method. N-type field-effect transistors with high electron mobility are fabricated and their electrical performances exhibit excellent air stability. Impressively, the demonstrated phototransistors exhibit an ultrahigh responsivity over a wide spectral range from 365 to 940 nm, with a maximum photoresponsivity of 9.2 × 105 A W-1 and specific detectivity of 5.26 × 1013 Jones, which is the best performance among the reported n-type organic small molecule-based phototransistors.
Collapse
Affiliation(s)
- Ying-Shi Guan
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Jing Qiao
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Yingying Liang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Chao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
7
|
Cao X, Fan H. Formation of D-A conjugated polymer crystals: Diffusion and conformational transition theory. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yang J, Kang F, Wang X, Zhang Q. Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. MATERIALS HORIZONS 2022; 9:121-146. [PMID: 34842260 DOI: 10.1039/d1mh00809a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Highly crystalline covalent organic frameworks (COFs) or conjugated polymers (CPs) are very important and highly desirable because these materials would display better performance in diverse devices and provide more structure-property related information. However, how to achieve highly crystalline or single-crystal COFs and CPs is very challenging. Recently, many research studies have demonstrated the possibility of enhancing the crystallinity of COFs and CPs. Thus, it is timely to offer an overview of the important progress in improving the crystallinity of COFs and CPs from the viewpoint of design strategies. These strategies include polycondensation reaction optimization, improving the planarity, fluorine substitution, side chain engineering, and so on. Furthermore, the challenges and perspectives are also discussed to promote the realization of highly crystalline or single-crystal COFs and CPs.
Collapse
Affiliation(s)
- Jie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
9
|
Liu K, Bian Y, Kuang J, Huang X, Li Y, Shi W, Zhu Z, Liu G, Qin M, Zhao Z, Li X, Guo Y, Liu Y. Ultrahigh-Performance Optoelectronic Skin Based on Intrinsically Stretchable Perovskite-Polymer Heterojunction Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107304. [PMID: 34796569 DOI: 10.1002/adma.202107304] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The optoelectronic skin is acknowledged as the world's current cutting-edge technology in the fields of wearable healthcare monitoring, soft robotics, artificial retinas, and so on. However, the difficulty in preparing stretchable photosensitive polymers and the high-crystallization nature of most reported photosensitive materials (such as perovskites) severely restrict the development of skin-like optoelectronic devices. Herein, a surface energy-induced self-assembly methodology is proposed to form easily transferrable and flexible perovskite quantum dot (PQD) films with a worm-like morphology. Furthermore, intrinsically stretchable phototransistors (ISTPTs) are fabricated based on a stretchable photosensitive layer heterojunction consisting of worm-like PQD films and hybrid polymer semiconductors. The obtained ISTPTs display highly sensitive response to high-energy photons of X-ray (with a detection limit of 79 nGy s-1 , that is 560 times lower than commercial medical chest X-ray diagnosis) and ultraviolet (with photosensitivity of 5 × 106 and detectable light intensity of 50 nW cm-2 among the highest performance of reported photodetectors). In addition, these ISTPTs demonstrate desirable e-skin characteristics with high strain tolerance, high sensing specificity, high optical transparency, and good skin conformability. The surface energy-induced self-assembly methodology for the preparation of ISTPTs is a critical demonstration to enable low-cost and high-performance optoelectronic skins.
Collapse
Affiliation(s)
- Kai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yangshuang Bian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Kuang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Li
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Wei Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiheng Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guocai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mingcong Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xifeng Li
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Jin SM, Hwang JH, Lim JA, Lee E. Precrystalline P3HT nanowires: growth-controllable solution processing and effective molecular packing transfer to thin-film. CrystEngComm 2022. [DOI: 10.1039/d1ce01536b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-processable precrystalline nanowires (NWs) of conjugated polymers (CPs) have garnered significant attention in fundamental research based on crystallization-driven self-assembly and in the roll-to-roll fabrication of optoelectronic devices such as organic...
Collapse
|
11
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side‐Chain‐Dependent Ordering Transition of Highly Crystalline Double‐Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Amelia C. Y. Liu
- School of Physics and Astronomy Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy Monash University Clayton Victoria 3800 Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials College of Materials Science and Engineering Donghua University Shanghai 201620 P. R. China
| | - Long Ye
- School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Science Tianjin University Tianjin 300350 P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST) KAUST Solar Center (KSC) Physical Sciences and Engineering Division (PSE) Material Science and Engineering Program (MSE) Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Christopher R. McNeill
- Department of Materials Science and Engineering Monash University Wellington Road Clayton Victoria 3800 Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
12
|
Feng G, Tan W, Karuthedath S, Li C, Jiao X, Liu ACY, Venugopal H, Tang Z, Ye L, Laquai F, McNeill CR, Li W. Revealing the Side-Chain-Dependent Ordering Transition of Highly Crystalline Double-Cable Conjugated Polymers. Angew Chem Int Ed Engl 2021; 60:25499-25507. [PMID: 34546627 DOI: 10.1002/anie.202111192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/06/2022]
Abstract
We developed a series of highly crystalline double-cable conjugated polymers for application in single-component organic solar cells (SCOSCs). These polymers contain conjugated backbones as electron donor and pendant perylene bisimide units (PBIs) as electron acceptor. PBIs are connected to the backbone via alkyl units varying from hexyl (C6 H12 ) to eicosyl (C20 H40 ) as flexible linkers. For double-cable polymers with short linkers, the PBIs tend to stack in a head-to-head fashion, resulting in large d-spacings (e.g. 64 Å for the polymer P12 with C12 H24 linker) along the lamellar stacking direction. When the length of the linker groups is longer than a certain length, the PBIs instead adopt a more ordered packing likely via H-aggregation, resulting in short d-spacings (e.g. 50 Å for the polymer P16 with C16 H32 linker). This work highlights the importance of linker length on the molecular packing of the acceptor units and the influences on the photovoltaic performance of SCOSCs.
Collapse
Affiliation(s)
- Guitao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenliang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Safakath Karuthedath
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuechen Jiao
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Amelia C Y Liu
- School of Physics and Astronomy, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Hariprasad Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, 3800, Australia
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300350, P. R. China
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
13
|
Wu FC, Li PR, Lin BR, Wu RJ, Cheng HL, Chou WY. Ultraviolet Light-Activated Charge Modulation Heterojunction for Versatile Organic Thin Film Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45822-45832. [PMID: 34520181 DOI: 10.1021/acsami.1c12390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic thin film transistors (OTFTs) are a promising technology for the application of photosensors in smart wearable devices. Light-induced electrical behavior of OTFTs is explored to achieve diverse functional requirements. In most studies, OTFTs show an increased drain current (ID) under light irradiation. Here, we use an ultraviolet (UV) light absorption top layer, tris(8-hydroxyquinoline) aluminum (Alq3), to improve the UV light response of poly(3-hexylthiophene-2,5-diyl) (P3HT)-based OTFTs. Unexpectedly, the Alq3-covered device operated at the accumulation mode demonstrates a decreased ID during the UV light irradiation. N,N'-Ditridecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI, electron acceptor), pentacene (electron donor), and lithium fluoride (LiF, insulator) as an interlayer were inserted between the P3HT and the Alq3 layers. The PTCDI/Alq3-covered device also shows an unusual decrease in ID under the UV light but an increase in ID under the green light. The pentacene/Alq3-covered device shows an increased ID during the UV light irradiation and, unexpectedly, a memory effect in ID after removing the UV light. The LiF/Alq3-covered device exhibits an electrical behavior similar to the bare P3HT-based device under the UV light. Results of spectroscopic analyses and theoretical calculations have shown that the occurrence of charge transfer at heterojunctions during the UV light irradiation causes charge modulation in the multilayered P3HT-based OTFTs and then results in an unusual decrease or memory effect in ID. In addition, the unexpected ID reduction can be observed in the Alq3-covered poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene]-based OTFTs under UV light. The features, including opposite electrical responses to different wavelengths of light and optical memory effect, provide the multilayered P3HT-based OTFTs with potential for various optical applications, such as image recognition devices, optical logic gates, light dosimeters, and optical synapses.
Collapse
Affiliation(s)
- Fu-Chiao Wu
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Rong Li
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Bo-Ren Lin
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Ren-Jie Wu
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Yang Chou
- Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
14
|
Xu XH, Jiang ZQ, Xu L, Zhou L, Liu N, Wu ZQ. Precise Synthesis of π-Conjugated Block Copolymers and Polymerization-Induced Chiral Self-Assembly toward Helical Nanofibers with Circularly Polarized Luminescence. ACS APPLIED BIO MATERIALS 2021; 4:7213-7221. [PMID: 35006953 DOI: 10.1021/acsabm.1c00763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precise synthesis and efficient self-assembly of semiconducting polymers are of great interest. Herein, we report the controlled synthesis of π-conjugated poly(phenyl isocyanide)-b-poly(phenyleneethylene) (PPI-b-PPE) copolymers via chain extension of ethynyl 4-iodobenzene initiated by Pd(II)-terminated helical poly(phenyl isocyanide) (PPI). The in-situ-generated block copolymers self-assembled into various supramolecular architectures depending on the PPE length. The helical PPI segment induced the block copolymers with an appropriate PPE length self-assemble into helical nanofibers with a controlled size and defined helicity. Interestingly, the chiral assemblies of the block copolymers exhibit intense optical activity and emit clear circularly polarized luminescence.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Lei Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|
15
|
Giridharagopal R, Guo J, Kong J, Ginger DS. Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34616-34624. [PMID: 34270213 DOI: 10.1021/acsami.1c08176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors are believed to face an inherent material design tension between optimizing for ion mobility and for electronic mobility. These devices transduce ion uptake into electrical current, thereby requiring high ion mobility for efficient electrochemical doping and rapid turn-on kinetics and high electronic mobility for the maximum transconductance. Here, we explore a facile route to improve operational kinetics and volumetric capacitance in a high-mobility conjugated polymer (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)], DPP-DTT) by employing a nanowire morphology. For equivalent thicknesses, the DPP-DTT nanowire films exhibit consistently faster kinetics (∼6-10× faster) compared to a neat DPP-DTT film. The nanowire architectures show ∼4× higher volumetric capacitance, increasing from 7.1 to 27.7 F/cm3, consistent with the porous structure better enabling ion uptake throughout the film. The nanowires also exhibit a small but energetically favorable shift in a threshold voltage of ∼17 mV, making the nanostructured system both faster and energetically easier to electrochemically dope compared to neat films. We explain the variation using two atomic force microscopy methods: in situ electrochemical strain microscopy and nanoinfrared imaging via photoinduced force microscopy. These data show that the nanowire film's structure allows greater swelling and ion uptake throughout the active layer, indicating that the nanowire architecture exhibits volumetric operation, whereas the neat film is largely operating via the field effect. We propose that for higher-mobility materials, casting the active layer in a nanowire form may offer faster kinetics, enhanced volumetric capacitance, and possibly lower threshold voltage while maintaining desirable device performance.
Collapse
Affiliation(s)
- Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
16
|
Kang Y, Kwak DH, Kwon JE, Kim BG, Lee WH. NO 2-Affinitive Conjugated Polymer for Selective Sub-Parts-Per-Billion NO 2 Detection in a Field-Effect Transistor Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31910-31918. [PMID: 34197091 DOI: 10.1021/acsami.1c05681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) have provided versatile semiconducting implements for the development of soft electronic devices. When three CPs with the same conjugated framework but different side chains were adopted in the field-effect transistor (FET) sensor for NO2 detection, the response to NO2 showed an opposite tendency to the charge carrier mobility of each CP. Morphological and structural characterizations revealed that the flexible glycol side chain enhances NO2 affinity as well as prevents the formation of lamellar stacking of the CP chains, thereby providing routes for the facile diffusion of NO2. Additionally, theoretical calculations for CP-NO2 complex formation at the molecular level support the relatively low energy barrier for inter-chain transition of NO2 between the glycol-based conjugated frameworks, which implies the spontaneous internal diffusion of NO2 to the semiconductor-dielectric interface in the FET-based sensor. As a result, the CP with a NO2-affinitive morphology exhibited an exceptional sensitivity of 13.8%/ppb upon NO2 (100 ppb) exposure for 50 s and provided excellent selectivity to the FET-based sensor toward other environmentally abundant harmful gases, such as SO2, CO2, and NH3. In particular, the theoretic limit of detection reached down to 0.24 ppb, which is the lowest value ever reported for organic FET-based NO2 gas sensors.
Collapse
Affiliation(s)
- Yeongkwon Kang
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hun Kwak
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Eon Kwon
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Li QY, Yao ZF, Wang JY, Pei J. Multi-level aggregation of conjugated small molecules and polymers: from morphology control to physical insights. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:076601. [PMID: 33887704 DOI: 10.1088/1361-6633/abfaad] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Aggregation of molecules is a multi-molecular phenomenon occurring when two or more molecules behave differently from discrete molecules due to their intermolecular interactions. Moving beyond single molecules, aggregation usually demonstrates evolutive or wholly emerging new functionalities relative to the molecular components. Conjugated small molecules and polymers interact with each other, resulting in complex solution-state aggregates and solid-state microstructures. Optoelectronic properties of conjugated small molecules and polymers are sensitively determined by their aggregation states across a broad range of spatial scales. This review focused on the aggregation ranging from molecular structure, intermolecular interactions, solution-state assemblies, and solid-state microstructures of conjugated small molecules and polymers. We addressed the importance of such aggregation in filling the gaps from the molecular level to device functions and highlighted the multi-scale structures and properties at different scales. From the view of multi-level aggregation behaviors, we divided the whole process from the molecule to devices into several parts: molecular design, solvation, solution-state aggregation, crystal engineering, and solid-state microstructures. We summarized the progress and challenges of relationships between optoelectronic properties and multi-level aggregation. We believe aggregation science will become an interdisciplinary research field and serves as a general platform to develop future materials with the desired functions.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
18
|
Cao X, Hu Y, Wang R, Lu Y, Ou B, Liao B, Fan H, Guo Y, Liu Q. Understanding the crystallization process of a diketopyrrolopyrrole‐based conjugated polymer in blend films. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiu Cao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yibo Hu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Ruiyuan Wang
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
| | - Yi Lu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Baoli Ou
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Bo Liao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Hui Fan
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yan Guo
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Qingquan Liu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| |
Collapse
|
19
|
Finely Tuned Electron/Hole Transport Preference of Thiazoloisoindigo-based Conjugated Polymers by Incorporation of Heavy Chalcogenophenes. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2552-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Yao ZF, Zheng YQ, Dou JH, Lu Y, Ding YF, Ding L, Wang JY, Pei J. Approaching Crystal Structure and High Electron Mobility in Conjugated Polymer Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006794. [PMID: 33501736 DOI: 10.1002/adma.202006794] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Conjugated polymers usually form crystallized and amorphous regions in the solid state simultaneously, making it difficult to accurately determine their precise microstructures. The lack of multiscale microstructures of conjugated polymers limits the fundamental understanding of the structure-property relationships in polymer-based optoelectronic devices. Here, crystals of two typical conjugated polymers based on four-fluorinated benzodifurandione-based oligo(p-phenylene vinylene) (F4 BDOPV) and naphthalenediimide (NDI) motifs, respectively, are obtained by a controlled self-assembly process. The strong diffractivity of the polymer crystals brings an opportunity to determine the crystal structures by combining X-ray techniques and molecular simulations. The precise polymer packing structures are useful as initial models to evaluate the charge transport properties in the ordered and disordered phases. Compared to the spin-coated thin films, the highly oriented polymer chains in crystals endow higher mobilities with a lower hopping energy barrier. Microwire crystal transistors of F4 BDOPV- and NDI-based polymers exhibit high electron mobilities of up to 5.58 and 2.56 cm2 V-1 s-1 , respectively, which are among the highest values in polymer crystals. This work presents a simple method to obtain polymer crystals and their precise microstructures, promoting a deep understanding of molecular packing and charge transport for conjugated polymers.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu-Qing Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jin-Hu Dou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Li Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
21
|
Yao ZF, Wang JY, Pei J. High-performance polymer field-effect transistors: from the perspective of multi-level microstructures. Chem Sci 2020; 12:1193-1205. [PMID: 34163881 PMCID: PMC8179153 DOI: 10.1039/d0sc06497a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 01/13/2023] Open
Abstract
The multi-level microstructure of conjugated polymers is the most critical parameter determining the charge transport property in field-effect transistors (FETs). However, controlling the hierarchical microstructures and the structural evolution remains a significant challenge. In this perspective, we discuss the key aspects of multi-level microstructures of conjugated polymers towards high-performance FETs. We highlight the recent progress in the molecular structures, solution-state aggregation, and polymer crystal structures, representing the multi-level microstructures of conjugated polymers. By tuning polymer hierarchical microstructures, we attempt to provide several guidelines for developing high-performance polymer FETs and polymer electronics.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
22
|
Shu Z, Zhang Q, Zhang P, Qin Z, Liu D, Gao X, Guan B, Qi H, Xiao M, Wei Z, Dong H, Hu W. Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. Polym Chem 2020. [DOI: 10.1039/c9py01836k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated polymer (CP) films with high molecular order are attractive in polymeric optoelectronics, but challenging.
Collapse
|
23
|
Jiang H, Hu W. The Emergence of Organic Single-Crystal Electronics. Angew Chem Int Ed Engl 2019; 59:1408-1428. [PMID: 30927312 DOI: 10.1002/anie.201814439] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Organic semiconducting single crystals are perfect for both fundamental and application-oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low-temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V-1 s-1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single-crystal electronic devices, including field-effect transistors, phototransistors, p-n heterojunctions, and circuits, are summarized. Organic two-dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state-of-the-art overview of organic single-crystal electronics, with their challenges and prospects, is also provided.
Collapse
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
24
|
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- School of Materials Science and Engineering Nanyang Technological University 639798 Singapore Singapur
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
25
|
Huang X, Ji D, Fuchs H, Hu W, Li T. Recent Progress in Organic Phototransistors: Semiconductor Materials, Device Structures and Optoelectronic Applications. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900198] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xianhui Huang
- School of Chemistry and Chemical Engineering andKey Laboratory of Thin Film and Microfabrication (Ministry of Education)Shanghai Jiao Tong University Shanghai 200240 China
| | - Deyang Ji
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 China
- Physikalisches InstitutWestfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Harald Fuchs
- Physikalisches InstitutWestfälische Wilhelms-Universität Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Wenping Hu
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 China
| | - Tao Li
- School of Chemistry and Chemical Engineering andKey Laboratory of Thin Film and Microfabrication (Ministry of Education)Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
26
|
Yao Y, Zhang L, Orgiu E, Samorì P. Unconventional Nanofabrication for Supramolecular Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900599. [PMID: 30941813 DOI: 10.1002/adma.201900599] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The scientific effort toward achieving a full control over the correlation between structure and function in organic and polymer electronics has prompted the use of supramolecular interactions to drive the formation of highly ordered functional assemblies, which have been integrated into real devices. In the resulting field of supramolecular electronics, self-assembly of organic semiconducting materials constitutes a powerful tool to generate low-dimensional and crystalline functional architectures. These include 1D nanostructures (nanoribbons, nanotubes, and nanowires) and 2D molecular crystals with tuneable and unique optical, electronic, and mechanical properties. Optimizing the (opto)electronic properties of organic semiconducting materials is imperative to harness such supramolecular structures as active components for supramolecular electronics. However, their integration in real devices currently represents a significant challenge to the advancement of (opto)electronics. Here, an overview of the unconventional nanofabrication techniques and device configurations to enable supramolecular electronics to become a real technology is provided. A particular focus is put on how single and multiple supramolecular fibers and gels as well as supramolecularly engineered 2D materials can be integrated into novel vertical or horizontal junctions to realize flexible and high-density multifunctional transistors, photodetectors, and memristors, exhibiting a set of new properties and excelling in their performances.
Collapse
Affiliation(s)
- Yifan Yao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Emanuele Orgiu
- Institut national de la recherche scientifique (INRS), EMT Center, 1650 Blvd. Lionel-Boulet, Varennes, Québec, J3X 1S2, Canada
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
27
|
Cao X, Zhao K, Chen L, Liu J, Han Y. Conjugated polymer single crystals and nanowires. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and EngineeringHunan University of Science and Technology Xiangtan P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Jiangang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| |
Collapse
|
28
|
Genene Z, Mammo W, Wang E, Andersson MR. Recent Advances in n-Type Polymers for All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807275. [PMID: 30790384 DOI: 10.1002/adma.201807275] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
All-polymer solar cells (all-PSCs) based on n- and p-type polymers have emerged as promising alternatives to fullerene-based solar cells due to their unique advantages such as good chemical and electronic adjustability, and better thermal and photochemical stabilities. Rapid advances have been made in the development of n-type polymers consisting of various electron acceptor units for all-PSCs. So far, more than 200 n-type polymer acceptors have been reported. In the last seven years, the power conversion efficiency (PCE) of all-PSCs rapidly increased and has now surpassed 10%, meaning they are approaching the performance of state-of-the-art solar cells using fullerene derivatives as acceptors. This review discusses the design criteria, synthesis, and structure-property relationships of n-type polymers that have been used in all-PSCs. Additionally, it highlights the recent progress toward photovoltaic performance enhancement of binary, ternary, and tandem all-PSCs. Finally, the challenges and prospects for further development of all-PSCs are briefly considered.
Collapse
Affiliation(s)
- Zewdneh Genene
- Department of Chemistry, Ambo University, P. O. Box 19, Ambo, Ethiopia
| | - Wendimagegn Mammo
- Department of Chemistry, Addis Ababa University, P.O Box 33658, Addis Ababa, Ethiopia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering/Applied Chemistry, Chalmers University of Technology, SE 412 96, Gothenburg, Sweden
| | - Mats R Andersson
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA, 5042, Australia
| |
Collapse
|
29
|
Wang Y, Sun L, Wang C, Yang F, Ren X, Zhang X, Dong H, Hu W. Organic crystalline materials in flexible electronics. Chem Soc Rev 2019; 48:1492-1530. [PMID: 30283937 DOI: 10.1039/c8cs00406d] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible electronics have attracted considerable attention recently given their potential to revolutionize human lives. High-performance organic crystalline materials (OCMs) are considered strong candidates for next-generation flexible electronics such as displays, image sensors, and artificial skin. They not only have great advantages in terms of flexibility, molecular diversity, low-cost, solution processability, and inherent compatibility with flexible substrates, but also show less grain boundaries with minimal defects, ensuring excellent and uniform electronic characteristics. Meanwhile, OCMs also serve as a powerful tool to probe the intrinsic electronic and mechanical properties of organics and reveal the flexible device physics for further guidance for flexible materials and device design. While the past decades have witnessed huge advances in OCM-based flexible electronics, this review is intended to provide a timely overview of this fascinating field. First, the crystal packing, charge transport, and assembly protocols of OCMs are introduced. State-of-the-art construction strategies for aligned/patterned OCM on/into flexible substrates are then discussed in detail. Following this, advanced OCM-based flexible devices and their potential applications are highlighted. Finally, future directions and opportunities for this field are proposed, in the hope of providing guidance for future research.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Xu H, Jin J, Zhang J, Sheng P, Li Y, Yi M, Huang W. Investigation of Self-Assembly and Charge-Transport Property of One-dimensional PDI₈-CN₂ Nanowires by Solvent-Vapor Annealing. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E438. [PMID: 30709000 PMCID: PMC6384653 DOI: 10.3390/ma12030438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/26/2019] [Indexed: 12/02/2022]
Abstract
One-dimensional (1D) nanowires have attracted great interest, while air-stable n-type 1D nanowires still remain scarce. Herein, we present solvent-vapor annealing (SVA) made nanowires based on perylene tetracarboxylic diimide (PDI) derivative. It was found that the spin-coated thin films reorganized into nanowires distributed all over the substrate, as a result of the following solvent-vapor annealing effect. Cooperating with the atomic force microscopy and fluorescence microscopy characterization, the PDI₈-CN₂ molecules were supposed to conduct a long-range and entire transport to form the 1D nanowires through the SVA process, which may guarantee its potential morphology tailoring ability. In addition, the nanowire-based transistors displayed air stable electron mobility reaching to 0.15 cm² V-1 s-1, attributing to effective in situ reassembly. Owing to the broader application of organic small-molecule nanowires, this work opens up an attractive approach for exploring new high-performance micro- and nanoelectronics.
Collapse
Affiliation(s)
- Haixiao Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jianqun Jin
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Jing Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Peng Sheng
- Material Laboratory of State Grid Corporation of China, State Key laboratory of Advanced Transmission Technology, Global Energy Interconnection Research Institute, Beijing 102211, China.
| | - Yu Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Mingdong Yi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, Shaanxi, China.
| |
Collapse
|
31
|
Zhang X, Dong H, Hu W. Organic Semiconductor Single Crystals for Electronics and Photonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801048. [PMID: 30039629 DOI: 10.1002/adma.201801048] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Indexed: 05/26/2023]
Abstract
Organic semiconducting single crystals (OSSCs) are ideal candidates for the construction of high-performance optoelectronic devices/circuits and a great platform for fundamental research due to their long-range order, absence of grain boundaries, and extremely low defect density. Impressive improvements have recently been made in organic optoelectronics: the charge-carrier mobility is now over 10 cm2 V-1 s-1 and the fluorescence efficiency reaches 90% for many OSSCs. Moreover, high mobility and strong emission can be integrated into a single OSSC, for example, showing a mobility of up to 34 cm2 V-1 s-1 and a photoluminescence yield of 41.2%. These achievements are attributed to the rational design and synthesis of organic semiconductors as well as improvements in preparation technology for crystals, which accelerate the application of OSSCs in devices and circuits, such as organic field-effect transistors, organic photodetectors, organic photovoltaics, organic light-emitting diodes, organic light-emitting transistors, and even electrically pumped organic lasers. In this context, an overview of these fantastic advancements in terms of the fundamental insights into developing high-performance organic semiconductors, efficient strategies for yielding desirable high-quality OSSCs, and their applications in optoelectronic devices and circuits is presented. Finally, an overview of the development of OSSCs along with current challenges and future research directions is provided.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
32
|
Jeon GG, Lee M, Nam J, Park W, Yang M, Choi JH, Yoon DK, Lee E, Kim B, Kim JH. Simple Solvent Engineering for High-Mobility and Thermally Robust Conjugated Polymer Nanowire Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29824-29830. [PMID: 30088908 DOI: 10.1021/acsami.8b07643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electron donor (D)-acceptor (A)-type conjugated polymers (CPs) have emerged as promising semiconductor candidates for organic field-effect transistors. Despite their high charge carrier mobilities, optimization of electrical properties of D-A-type CPs generally suffers from complicated post-deposition treatments such as high-temperature thermal annealing or solvent-vapor annealing. In this work, we report a high-mobility diketopyrrolopyrrole-based D-A-type CP nanowires, self-assembled by a simple but very effective solvent engineering method that requires no additional processes after film deposition. In situ grown uniform nanowires at room temperature were shown to possess distinct edge-on chain orientation that is beneficial for lateral charge transport between source and drain electrodes in FETs. FETs based on the polymer nanowire networks exhibit impressive hole mobility of up to 4.0 cm2 V-1 s-1. Moreover, nanowire FETs showed excellent operational stability in high temperature up to 200 °C because of the strong interchain interaction and alignment.
Collapse
Affiliation(s)
- Gyeong G Jeon
- Department of Molecular Science and Technology , Ajou University , Suwon 16419 , Republic of Korea
| | - Myeongjae Lee
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Jinwoo Nam
- Graduate School of Analytical Science and Technology , Chungnam National University , Daejeon 34134 , Republic of Korea
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | | | - Jong-Ho Choi
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | | | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - BongSoo Kim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology , Ajou University , Suwon 16419 , Republic of Korea
| |
Collapse
|
33
|
Lee YH, Shin DS, Kim DY, Nam D, Choe W, Hong SY, Oh JH. Organic Phototransistors Based on Self-Assembled Microwires of n
-Type Distyrylbenzene Derivative. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yoon Ho Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes; Seoul National University; 1 Gwanak-ro Seoul 08826 Republic of Korea
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro Pohang, Gyeongbuk 37673 Republic of Korea
| | - Dong-Seon Shin
- School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Dong Yeong Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes; Seoul National University; 1 Gwanak-ro Seoul 08826 Republic of Korea
| | - Dongsik Nam
- Department of Chemistry; UNIST; 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry; UNIST; 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Sung You Hong
- School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes; Seoul National University; 1 Gwanak-ro Seoul 08826 Republic of Korea
| |
Collapse
|
34
|
|
35
|
Significance of Polymeric Nanowire-Network Structures for Stable and Efficient Organic Solar Cells. Macromol Res 2018. [DOI: 10.1007/s13233-018-6088-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Kumar A, Palai AK, Shin TJ, Kwon J, Pyo S. Synthesis and structural analysis of dimethylaminophenyl-end-capped diketopyrrolopyrrole for highly stable electronic devices with polymeric gate dielectric. NEW J CHEM 2018. [DOI: 10.1039/c8nj00545a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and structural analysis of DPP(PhNMe2)2, a stable diketopyrrolopyrrole derivative end-capped with a strongly electron-donating dimethylaminophenyl moiety is reported and the origin of ambient stability is analyzed in detail.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemistry
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | | | - Tae Joo Shin
- UNIST Central Research Facilities & School of Natural Science
- UNIST
- Ulsan 689-798
- Republic of Korea
| | - Jaehyuk Kwon
- Department of Chemistry
- Konkuk University
- Seoul 143-701
- Republic of Korea
| | - Seungmoon Pyo
- Department of Chemistry
- Konkuk University
- Seoul 143-701
- Republic of Korea
| |
Collapse
|
37
|
Zhou J, Bi S, Yang S, Zhou H, Zhang Y. Ambipolar charge transport in a bis-diketopyrrolopyrrole small molecule semiconductor with tunable energetic disorder. Phys Chem Chem Phys 2018; 20:1787-1793. [DOI: 10.1039/c7cp07708d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energetic disorder and activation energy in ambipolar OFETs based on a small molecule BTDPP2 are tuned by its crystallinity.
Collapse
Affiliation(s)
- Jiyu Zhou
- HEEGER Beijing Research & Development Center, School of Chemistry, Beihang University
- Beijing 100191
- P. R. China
| | - Shiqing Bi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Shuo Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Huiqiong Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
- Beijing 100190
- P. R. China
| | - Yuan Zhang
- HEEGER Beijing Research & Development Center, School of Chemistry, Beihang University
- Beijing 100191
- P. R. China
| |
Collapse
|
38
|
Wang M, Gong Y, Alzina F, Svoboda O, Ballesteros B, Sotomayor Torres CM, Xiao S, Zhang Z, He J. Raman antenna effect from exciton-phonon coupling in organic semiconducting nanobelts. NANOSCALE 2017; 9:19328-19336. [PMID: 29199314 DOI: 10.1039/c7nr07212k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The highly anisotropic interactions in organic semiconductors together with the soft character of organic materials lead to strong coupling between nuclear vibrations and exciton dynamics, which potentially results in anomalous electrical, optical and optoelectrical properties. Here, we report on the Raman antenna effect from organic semiconducting nanobelts 6,13-dichloropentacene (DCP), resulting from the coupling of molecular excitons and intramolecular phonons. The highly ordered crystalline structure in DCP nanobelts enables the precise polarization-resolved spectroscopic measurement. The angle-dependent Raman spectroscopy under resonant excitation shows that all Raman modes from the skeletal vibrations of DCP molecule act like a nearly perfect dipole antenna IRaman ∝ cos4(θ - 90), with almost zero (maximum) Raman scattering parallel (perpendicular) to the nanobelt's long-axis. The Raman antenna effect in DCP nanobelt is originated from the coupling between molecular skeletal vibrations and intramolecular exciton and the confinement of intermolecular excitons. It dramatically enhances the Raman polarization ratio (ρ = I‖/I⊥ > 25) and amplifies the anisotropy of the angle-dependent Raman scattering (κRaman = Imax/Imin > 12) of DCP nanobelts. These findings have crucial implications for fundamental understanding on the exciton-phonon coupling and its effects on the optical properties of organic semiconductors.
Collapse
Affiliation(s)
- Mao Wang
- NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, 7491, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bae N, Park H, Yoo PJ, Shin TJ, Park J. Nanowires of amorphous conjugated polymers prepared via a surfactant-templating process using an alkylbenzoic acid. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Cao X, Du Z, Chen L, Zhao K, Li H, Liu J, Han Y. Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Pei M, Kim JH, On S, Lee HK, Cho K, Hwang DH, Yang H. Coplanar Donor-Acceptor Semiconducting Copolymers to Achieve Better Conjugated Structures: Side-Chain Engineering. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyuan Pei
- Department of Applied Organic Materials Engineering; Inha University; Incheon 22212 South Korea
| | - Ji-Hoon Kim
- Department of Chemistry; Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 South Korea
| | - Sungmin On
- Department of Applied Organic Materials Engineering; Inha University; Incheon 22212 South Korea
| | - Han-Koo Lee
- Pohang Accelerator Laboratory; Pohang 37673 South Korea
| | - Kilwon Cho
- Department of Chemical Engineering; POSTECH; Pohang 37673 South Korea
| | - Do-Hoon Hwang
- Department of Chemistry; Chemistry Institute for Functional Materials; Pusan National University; Busan 46241 South Korea
| | - Hoichang Yang
- Department of Applied Organic Materials Engineering; Inha University; Incheon 22212 South Korea
| |
Collapse
|
42
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
43
|
Lee JW, Choi YS, Ahn H, Jo WH. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10961-10967. [PMID: 27067461 DOI: 10.1021/acsami.5b12717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.
Collapse
Affiliation(s)
- Jong Won Lee
- Department of Materials and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Yoon Suk Choi
- Department of Materials and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory , Pohang, Kyungbuk 790-784, Republic of Korea
| | - Won Ho Jo
- Department of Materials and Engineering, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| |
Collapse
|
44
|
Rekab W, Stoeckel MA, El Gemayel M, Gobbi M, Orgiu E, Samorì P. High-Performance Phototransistors Based on PDIF-CN2 Solution-Processed Single Fiber and Multifiber Assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9829-9838. [PMID: 27022976 DOI: 10.1021/acsami.6b01254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we describe the fabrication of organic phototransistors based on either single or multifibers integrated in three-terminal devices. These self-assembled fibers have been produced by solvent-induced precipitation of an air stable and solution-processable perylene di-imide derivative, i.e., PDIF-CN2. The optoelectronic properties of these devices were compared to devices incorporating more disordered spin-coated PDIF-CN2 thin-films. The single-fiber devices revealed significantly higher field-effect mobilities, compared to multifiber and thin-films, exceeding 2 cm(2) V(-1) s(-1). Such an efficient charge transport is the result of strong intermolecular coupling between closely packed PDIF-CN2 molecules and of a low density of structural defects. The improved crystallinity allows efficient collection of photogenerated Frenkel excitons, which results in the highest reported responsivity (R) for single-fiber PDI-based phototransistors, and photosensitivity (P) exceeding 2 × 10(3) AW(-1), and 5 × 10(3), respectively. These findings provide unambiguous evidence for the key role played by the high degree of order at the supramolecular level to leverage the material's properties toward the fabrication of light-sensitive organic field-effect transistors combining a good operational stability, high responsivity and photosensitivity. Our results show also that the air-stability performances are superior in devices where highly crystalline supramolecularly engineered architectures serve as the active layer.
Collapse
Affiliation(s)
- Wassima Rekab
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Marc-Antoine Stoeckel
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Mirella El Gemayel
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Marco Gobbi
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Emanuele Orgiu
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Paolo Samorì
- Nanochemistry Laboratory, ISIS & icFRC, Université de Strasbourg & CNRS , 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
45
|
Solution-Processed Donor-Acceptor Polymer Nanowire Network Semiconductors For High-Performance Field-Effect Transistors. Sci Rep 2016; 6:24476. [PMID: 27091315 PMCID: PMC4835732 DOI: 10.1038/srep24476] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/30/2016] [Indexed: 12/05/2022] Open
Abstract
Organic field-effect transistors (OFETs) represent a low-cost transistor technology for creating next-generation large-area, flexible and ultra-low-cost electronics. Conjugated electron donor-acceptor (D-A) polymers have surfaced as ideal channel semiconductor candidates for OFETs. However, high-molecular weight (MW) D-A polymer semiconductors, which offer high field-effect mobility, generally suffer from processing complications due to limited solubility. Conversely, the readily soluble, low-MW D-A polymers give low mobility. We report herein a facile solution process which transformed a lower-MW, low-mobility diketopyrrolopyrrole-dithienylthieno[3,2-b]thiophene (I) into a high crystalline order and high-mobility semiconductor for OFETs applications. The process involved solution fabrication of a channel semiconductor film from a lower-MW (I) and polystyrene blends. With the help of cooperative shifting motion of polystyrene chain segments, (I) readily self-assembled and crystallized out in the polystyrene matrix as an interpenetrating, nanowire semiconductor network, providing significantly enhanced mobility (over 8 cm2V−1s−1), on/off ratio (107), and other desirable field-effect properties that meet impactful OFET application requirements.
Collapse
|
46
|
Um HA, Lee JH, Baik H, Cho MJ, Choi DH. High-performance n-type field-effect transistors based on a highly crystalline tricyanovinyldihydrofuran derivative. Chem Commun (Camb) 2016; 52:13012-13015. [DOI: 10.1039/c6cc06550c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel tricyanovinyldihydrofuran (TCF)-based molecule was designed and synthesized as an n-type organic semiconductor for application in field-effect transistors.
Collapse
Affiliation(s)
- Hyun Ah Um
- Department of Chemistry, Research Institute for Natural Sciences
- Korea University
- Sungbuk-gu
- Republic of Korea
| | - Ji Hyung Lee
- Department of Chemistry, Research Institute for Natural Sciences
- Korea University
- Sungbuk-gu
- Republic of Korea
| | - Hionsuck Baik
- Division of Analytical Research
- Korea Basic Science Institute
- Sungbuk-gu
- Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences
- Korea University
- Sungbuk-gu
- Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences
- Korea University
- Sungbuk-gu
- Republic of Korea
| |
Collapse
|
47
|
Lee JW, Ahn H, Jo WH. Conjugated Random Copolymers Consisting of Pyridine- and Thiophene-Capped Diketopyrrolopyrrole as Co-Electron Accepting Units To Enhance both JSC and VOC of Polymer Solar Cells. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01826] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jong Won Lee
- Department
of Materials and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang, Kyungbuk 790-784, Republic of Korea
| | - Won Ho Jo
- Department
of Materials and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| |
Collapse
|
48
|
Abstract
In this MiniRev, we will highlight the recent advances in polymer phototransistors.
Collapse
Affiliation(s)
- Pengcheng Gu
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Yifan Yao
- Institute of Chemistry
- Chinese Academy of Science
- Beijing 100190
- China
| | - Linlin Feng
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Shujie Niu
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| | - Huanli Dong
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing 100048
- China
| |
Collapse
|
49
|
Zhang Y, Liu S, Liu W, Liang T, Yang X, Xu M, Chen H. Two-dimensional MoS2-assisted immediate aggregation of poly-3-hexylthiophene with high mobility. Phys Chem Chem Phys 2015; 17:27565-72. [DOI: 10.1039/c5cp05011a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immediate crystallization of P3HT has been induced by two-dimensional MoS2 nanosheets under ultrasonication, which contributes to an obvious enhancement in mobility.
Collapse
Affiliation(s)
- Yingying Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Shuang Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Wenqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Tao Liang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Xi Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Mingsheng Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- State Key Laboratory of Silicon Materials
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|