1
|
Fu S, Ding J, Lv H, Zheng Y, Liu S, Zhao K, Bai Z, Shi Y, He D, Wang R, Zhao J, Wu X, Tang D, Qiu X, Wang Y, Zhang X. Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411972. [PMID: 39828605 DOI: 10.1002/adma.202411972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe2) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy. The hybrid Wannier-Mott-Frenkel excitons exhibit a large oscillator strength and display signatures of the Frenkel excitons in CuPc and the Wannier-Mott excitons in MoSe2 simultaneously through the delocalized electrons. The density functional theory (DFT) calculations further confirm the strong hybridization between the lowest unoccupied molecular orbital (LUMO) of CuPc and the conduction band minimum (CBM) of MoSe2. The out-of-plane molecular orientation is further employed to tune the hybridization strength and tailor the hybrid exciton states. The results reveal the hybrid excitons at the CuPc/MoSe2 interface with tunability by molecular orientation, suggesting that the organic-inorganic HS constitutes a promising platform for many-body exciton physics such as exciton condensation and optoelectrical applications.
Collapse
Affiliation(s)
- Shaohua Fu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Jianwei Ding
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Zheng
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Shuangyan Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Kun Zhao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhiying Bai
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Yumeng Shi
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Rui Wang
- Beijing Information Technology College, Beijing, 100015, China
| | - Jimin Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, School of Chemistry and Materials Sciences, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Xiaohui Qiu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
2
|
Imahori H, Akiyama M. Photoinduced charge separation at heterojunctions between two-dimensional layered materials and small organic molecules. MATERIALS HORIZONS 2025; 12:92-102. [PMID: 39359189 DOI: 10.1039/d4mh01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
p-n heterojunctions are fundamental components for electronics and optoelectronics, including diodes, transistors, sensors, and solar cells. Over the past few decades, organic-inorganic p-n heterojunctions have garnered significant interest due to the diverse properties they exhibit, which are a result of the limitless combinations of organic molecules and inorganic materials. This review article concentrates on photoinduced charge separation and photocurrent generation at heterojunctions between two-dimensional layered materials and structurally well-defined organic small molecules. We highlight representative examples, including our work, and critically discuss their potential and perspectives.
Collapse
Affiliation(s)
- Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Midori Akiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
3
|
Park S, Ji J, Pillai S, Fischer H, Rouillon J, Benitez-Martin C, Andréasson J, You JH, Choi JH. Layer-number-dependent photoswitchability in 2D MoS 2-diarylethene hybrids. NANOSCALE 2024. [PMID: 39696962 DOI: 10.1039/d4nr03631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Molybdenum disulfide (MoS2) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS2 flakes and elucidate layer-number-dependent charge transfer behaviors. We fabricated hybrid structures by functionalizing MoS2 flakes with a uniform layer of photochromic diarylethene (DAE) molecules that can switch between closed- and open-form isomers under UV and visible light, respectively. We discovered that the closed-form DAE quenches the photoluminescence (PL) of monolayer MoS2 when excited at 633 nm and that the PL fully recovers after DAE isomerization into the open-form. Similarly, the electric conductivity of monolayer MoS2 is drastically enhanced when interacting with the closed-form isomers. In contrast, photoinduced isomerization did not modulate the properties of the hybrids made of MoS2 bilayers and trilayers. Density functional theory (DFT) calculations revealed that a hole transfer from monolayer MoS2 to the closed-form isomer took place due to energy level alignments, but such interactions were prohibited with open-form DAE. Computational results also indicated negligible charge transfer at the hybrid interfaces with bilayer and trilayer MoS2. These findings highlight the critical role of layer-number-dependent interactions in MoS2-DAE hybrids, offering valuable insights for the development of advanced photoswitchable devices.
Collapse
Affiliation(s)
- Sewon Park
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Srajan Pillai
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Henry Fischer
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jean Rouillon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Carlos Benitez-Martin
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-413 90 Gothenburg, Sweden
| | - Joakim Andréasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jeong Ho You
- Department of Mechanical Engineering, University of St. Thomas, St. Paul, Minnesota 55105, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
4
|
Zhu Y, Yan Y, Feng Y, Liu Y, Lin CY, Ai Q, Zhai T, Shin B, Xu R, Shen H, Fang Q, Zhang X, Bhagwandin D, Han Y, Zhu H, Glavin NR, Ajayan PM, Li Q, Lou J. A General Synthesis Method for Covalent Organic Framework and Inorganic 2D Materials Hybrids. PRECISION CHEMISTRY 2024; 2:398-405. [PMID: 39211431 PMCID: PMC11351703 DOI: 10.1021/prechem.3c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 09/04/2024]
Abstract
Two-dimensional (2D) inorganic/organic hybrids provide a versatile platform for diverse applications, including electronic, catalysis, and energy storage devices. The recent surge in 2D covalent organic frameworks (COFs) has introduced an organic counterpart for the development of advanced 2D organic/inorganic hybrids with improved electronic coupling, charge separation, and carrier mobility. However, existing synthesis methods have primarily focused on few-layered film structures, which limits scalability for practical applications. Herein, we present a general synthesis approach for a range of COF/inorganic 2D material hybrids, utilizing 2D inorganic materials as both catalysts and inorganic building blocks. By leveraging the intrinsic Lewis acid sites on the inorganic 2D materials such as hexagonal boron nitride (hBN) and transition metal dichalcogenides, COFs with diverse functional groups and topologies can grow on the surface of inorganic 2D materials. The controlled 2D morphology and excellent solution dispersibility of the resulting hybrids allow for easy processing into films through vacuum filtration. As proof of concept, hBN/COF films were employed as filters for Rhodamine 6G removal under flow-through conditions, achieving a removal rate exceeding 93%. The present work provides a simple and versatile synthesis method for the scalable fabrication of COF/inorganic 2D hybrids, offering exciting opportunities for practical applications such as water treatment and energy storage.
Collapse
Affiliation(s)
- Yifan Zhu
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yunrui Yan
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Yuren Feng
- Department
of Civil and Environmental Engineering, Rice University, MS
519, 6100 Main Street, Houston, Texas 77005, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Yifeng Liu
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Chen-Yang Lin
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Qing Ai
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Tianshu Zhai
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Bongki Shin
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Rui Xu
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Hongchen Shen
- Department
of Civil and Environmental Engineering, Rice University, MS
519, 6100 Main Street, Houston, Texas 77005, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Qiyi Fang
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Xiang Zhang
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Dayanni Bhagwandin
- UES,
Inc., Beavercreek, Ohio 45432, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Yimo Han
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Hanyu Zhu
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Nicholas R. Glavin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Pulickel M Ajayan
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qilin Li
- Department
of Civil and Environmental Engineering, Rice University, MS
519, 6100 Main Street, Houston, Texas 77005, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Jun Lou
- Department
of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- NSF
Nanosystems Engineering Research Center Nanotechnology-Enabled Water
Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Jing Y, Liang K, Muir NS, Zhou H, Li Z, Palasz JM, Sorbie J, Wang C, Cushing SK, Kubiak CP, Sofer Z, Li S, Xiong W. Ultrafast Formation of Charge Transfer Trions at Molecular-Functionalized 2D MoS 2 Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405123. [PMID: 38714495 DOI: 10.1002/anie.202405123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
Collapse
Affiliation(s)
- Yuancheng Jing
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Kangkai Liang
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Nicole S Muir
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Hao Zhou
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Zhehao Li
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Jonathan Sorbie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Chenglai Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 127-72, Pasadena, California, 91125, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| |
Collapse
|
6
|
Li M, Jiang Y, Ju H, He S, Jia C, Guo X. Electronic Devices Based on Heterostructures of 2D Materials and Self-Assembled Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402857. [PMID: 38934535 DOI: 10.1002/smll.202402857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
2D materials (2DMs), known for their atomically ultrathin structure, exhibit remarkable electrical and optical properties. Similarly, molecular self-assembled monolayers (SAMs) with comparable atomic thickness show an abundance of designable structures and properties. The strategy of constructing electronic devices through unique heterostructures formed by van der Waals assembly between 2DMs and molecular SAMs not only enables device miniaturization, but also allows for convenient adjustment of their structures and functions. In this review, the fundamental structures and fabrication methods of three different types of electronic devices dominated by 2DM-SAM heterojunctions with varying architectures are timely elaborated. Based on these heterojunctions, their fundamental functionalities and characteristics, as well as the regulation of their performance by external stimuli, are further discussed.
Collapse
Affiliation(s)
- Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Yu Jiang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P. R. China
| | - Suhang He
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Dziobek-Garrett R, Kempa TJ. Excitons at the interface of 2D TMDs and molecular semiconductors. J Chem Phys 2024; 160:200902. [PMID: 38804485 DOI: 10.1063/5.0206417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Van der Waals heterostructures (vdWHs) of vertically stacked two-dimensional (2D) atomic crystals have been used to elicit intriguing phenomena stemming from strong electronic correlations, magnetic textures, and interlayer excitons spawned at the heterointerface. However, vdWHs comprised of heterointerfaces between these 2D atomic crystal lattices and molecular assemblies are emerging as equally intriguing platforms supporting properties to be harnessed for photovoltaic energy conversion, photodetection, spin-selective charge injection, and quantum emission. In this perspective, we summarize recent research examining exciton dynamics in heterostructures between semiconducting 2D transition metal dichalcogenides and molecular organic semiconductors. We discuss methods for assembly of these heterostructures, the nature of interlayer or charge-transfer excitons at transition-metal dichalcogenide (TMD)-molecule interfaces, explicit exciton transfer between organics and TMDs, and other interfacial phenomena driven by the merger of these two material classes. We also suggest key new research directions extending the remit of these 2D atomic-molecular lattice heterointerfaces into the domains of condensed matter physics, quantum sensing, and energy conversion.
Collapse
Affiliation(s)
| | - Thomas J Kempa
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
8
|
Krumland J, Cocchi C. Ab Initio Modeling of Mixed-Dimensional Heterostructures: A Path Forward. J Phys Chem Lett 2024; 15:5350-5358. [PMID: 38728611 PMCID: PMC11129309 DOI: 10.1021/acs.jpclett.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/12/2024]
Abstract
Understanding the electronic structure of mixed-dimensional heterostructures is essential for maximizing their application potential. However, accurately modeling such interfaces is challenging due to the complex interplay between the subsystems. We employ a computational framework integrating first-principles methods, including GW, density functional theory (DFT), and the polarizable continuum model, to elucidate the electronic structure of mixed-dimensional heterojunctions formed by free-base phthalocyanines and monolayer molybdenum disulfide. We assess the impact of dielectric screening across various scenarios, from isolated molecules to organic films on a substrate-supported monolayer. Our findings show that while polarization effects cause significant renormalization of molecular energy levels, band energies and alignments in the most relevant setup can be accurately predicted through DFT simulations of the individual subsystems. Additionally, we analyze orbital hybridization, revealing potential pathways for interfacial charge transfer. This study offers new insights into hybrid inorganic/organic interfaces and provides a practical computational protocol suitable for scaled-up studies.
Collapse
Affiliation(s)
- Jannis Krumland
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Caterina Cocchi
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, 26129 Oldenburg, Germany
- Physics
Department and IRIS Adlershof, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| |
Collapse
|
9
|
Canton-Vitoria R, Kitaura R. Insulating 6,6-Phenyl-C61-butyric Acid Methyl Ester on Transition-Metal Dichalcogenides: Impact of the Hybrid Materials on the Optical and Electrical Properties. Chemistry 2024; 30:e202400150. [PMID: 38302733 DOI: 10.1002/chem.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/03/2024]
Abstract
In this study we develop a strategy to insulate 6,6 -Phenyl C61 butyric acid methyl ester (PCBM) on the basal plane of transition metal dichalcogenides (TMDs). Concretely single layers of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 and ultrathin MoO2 and WO2 were grown via chemical vapor deposition (CVD). Then, the thiol group of a PCBM modified with cysteine reacts with the chalcogen vacancies on the basal plane of TMDs, yielding PCBM-MoS2, PCBM-MoSe2, PCBM-WS2, PCBM-WSe2, PCBM-WTe2, PCBM-MoO2 and PCBM-WO2. Afterwards, all the hybrid materials were characterized using several techniques, including XPS, Raman spectroscopy, TEM, AFM, and cyclic voltammetry. Furthermore, PCBM causes a unique optical and electrical impact in every TMDs. For MoS2 devices, the conductivity and photoluminescence (PL) emission achieve a remarkable enhancement of 1700 % and 200 % in PCBM-MoS2 hybrids. Similarly, PCBM-MoTe2 hybrids exhibit a 2-fold enhancement in PL emission at 1.1 eV. On the other hand, PCBM-MoSe2, PCBM-WSe2 and PCBM-WS2 hybrids exhibited a new interlayer exciton at 1.29-1.44, 1.7 and 1.37-154 eV along with an enhancement of the photo-response by 2400, 3200 and 600 %, respectively. Additionally, PCBM-WTe2 and PCBM-WO2 showed a modest photo-response, in sharp contrast with pristine WTe2 or WO2 which archive pure metallic character.
Collapse
Affiliation(s)
- Ruben Canton-Vitoria
- Department of Chemistry, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Theoretical and Physical Chemistry Institute Department of Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greec
| | - Ryo Kitaura
- Department of Chemistry, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
10
|
Zhang Q, Li M, Li L, Geng D, Chen W, Hu W. Recent progress in emerging two-dimensional organic-inorganic van der Waals heterojunctions. Chem Soc Rev 2024; 53:3096-3133. [PMID: 38373059 DOI: 10.1039/d3cs00821e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Two-dimensional (2D) materials have attracted significant attention in recent decades due to their exceptional optoelectronic properties. Among them, to meet the growing demand for multifunctional applications, 2D organic-inorganic van der Waals (vdW) heterojunctions have become increasingly popular in the development of optoelectronic devices. These heterojunctions demonstrate impressive capability to synergistically combine the favourable characteristics of organic and inorganic materials, thereby offering a wide range of advantages. Also, they enable the creation of innovative device structures and introduce novel functionalities in existing 2D materials, avoiding the need for lattice matching in different material systems. Presently, researchers are actively working on improving the performance of devices based on 2D organic-inorganic vdW heterojunctions by focusing on enhancing the quality of 2D materials, precise stacking methods, energy band regulation, and material selection. Therefore, this review presents a thorough examination of the emerging 2D organic-inorganic vdW heterojunctions, including their classification, fabrication, and corresponding devices. Additionally, this review offers profound and comprehensive insight into the challenges in this field to inspire future research directions. It is expected to propel researchers to harness the extraordinary capabilities of 2D organic-inorganic vdW heterojunctions for a wider range of applications by further advancing the understanding of their fundamental properties, expanding the range of available materials, and exploring novel device architectures. The ongoing research and development in this field hold potential to unlock captivating advancements and foster practical applications across diverse industries.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Menghan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wei Chen
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
11
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
12
|
Jeong H, Nomenyo K, Oh HM, Gwiazda A, Yun SJ, Chevalier César C, Salas-Montiel R, Wourè-Nadiri Bayor S, Jeong MS, Lee YH, Lérondel G. Ultrahigh Photosensitivity Based on Single-Step Lay-on Integration of Freestanding Two-Dimensional Transition-Metal Dichalcogenide. ACS NANO 2024; 18:4432-4442. [PMID: 38284564 DOI: 10.1021/acsnano.3c10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.
Collapse
Affiliation(s)
- Hyun Jeong
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Komla Nomenyo
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Hye Min Oh
- Department of Physics, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Agnieszka Gwiazda
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Seok Joon Yun
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Clotaire Chevalier César
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Rafael Salas-Montiel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
| | - Sibiri Wourè-Nadiri Bayor
- Département de Génie Electrique, Ecole Nationale Supérieure d'Ingénieurs (ENSI), Université de Lomé, BP 1515 Lomé, Togo
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gilles Lérondel
- Laboratoire Lumière, nanomatériaux et nanotechnologie, CNRS UMR 7076, Université de Technologie de Troyes, BP 2060, 10010 Troyes, France
- Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
13
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|
14
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
15
|
Völzer T, Schubert A, von der Oelsnitz E, Schröer J, Barke I, Schwartz R, Watanabe K, Taniguchi T, Speller S, Korn T, Lochbrunner S. Strong quenching of dye fluorescence in monomeric perylene orange/TMDC hybrid structures. NANOSCALE ADVANCES 2023; 5:3348-3356. [PMID: 37325541 PMCID: PMC10263002 DOI: 10.1039/d3na00276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Hybrid structures with an interface between two different materials with properly aligned energy levels facilitate photo-induced charge separation to be exploited in optoelectronic applications. Particularly, the combination of 2D transition metal dichalcogenides (TMDCs) and dye molecules offers strong light-matter interaction, tailorable band level alignments, and high fluorescence quantum yields. In this work, we aim at the charge or energy transfer-related quenching of the fluorescence of the dye perylene orange (PO) when isolated molecules are brought onto monolayer TMDCs via thermal vapor deposition. Here, micro-photoluminescence spectroscopy revealed a strong intensity drop of the PO fluorescence. For the TMDC emission, in contrast, we observed a relative growth of the trion versus exciton contribution. In addition, fluorescence imaging lifetime microscopy quantified the intensity quenching to a factor of about 103 and demonstrated a drastic lifetime reduction from 3 ns to values much shorter than the 100 ps width of the instrument response function. From the ratio of the intensity quenching that is attributed to hole or energy transfer from dye to semiconductor, we deduce a time constant of several picoseconds at most, pointing to an efficient charge separation suitable for optoelectronic devices.
Collapse
Affiliation(s)
- Tim Völzer
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Alina Schubert
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Erik von der Oelsnitz
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Julian Schröer
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Ingo Barke
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Rico Schwartz
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science 1-1 Namiki Tsukuba 305-0044 Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science 1-1 Namiki Tsukuba 305-0044 Japan
| | - Sylvia Speller
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Tobias Korn
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| |
Collapse
|
16
|
Karmakar G, Dutta Pathak D, Tyagi A, Mandal BP, Wadawale AP, Kedarnath G. Molecular precursor mediated selective synthesis of phase pure cubic InSe and hexagonal In 2Se 3 nanostructures: new anode materials for Li-ion batteries. Dalton Trans 2023; 52:6700-6711. [PMID: 37128966 DOI: 10.1039/d3dt00234a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Indium selenides (InSe and In2Se3) have earned a special place among the 2D layered metal chalcogenides owing to their nontoxic nature and favourable carrier mobility. Additionally, they are also being projected as next generation battery anodes with high theoretical lithium-ion storage capacities. While the development of indium selenide-based batteries is still in its embryonic stage, a simple and easily scalable synthetic pathway to access these materials is highly desirable for energy storage applications. This study reports a controlled synthetic route to nanometric cubic InSe and hexagonal In2Se3 materials through proper choice of coordinating solvents from a structurally characterized air and moisture stable single source molecular precursor: tris(4,6-dimethyl-2-pyrimidylselenolato)indium(III). The crystal structure, phase purity, composition, morphology and band gap of the nanomaterials were thoroughly evaluated by pXRD, energy dispersive X-ray spectroscopy (EDS), electron microscopy (SEM and TEM), and diffuse reflectance spectroscopy (DRS), respectively. The pristine InSe and In2Se3 nanostructures have been employed as anode materials in lithium-ion batteries (LIBs). Both the cells deliver reasonably high initial discharge capacities with a cyclability of 200 and 620 cycles for cubic InSe and hexagonal In2Se3 respectively with ∼100% coulombic efficiency.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Dipa Dutta Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
17
|
Andleeb S, Wang X, Dong H, Valligatla S, Saggau CN, Ma L, Schmidt OG, Zhu F. Fast-Response Micro-Phototransistor Based on MoS 2/Organic Molecule Heterojunction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091491. [PMID: 37177036 PMCID: PMC10180112 DOI: 10.3390/nano13091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Over the past years, molybdenum disulfide (MoS2) has been the most extensively studied two-dimensional (2D) semiconductormaterial. With unique electrical and optical properties, 2DMoS2 is considered to be a promising candidate for future nanoscale electronic and optoelectronic devices. However, charge trapping leads to a persistent photoconductance (PPC), hindering its use for optoelectronic applications. To overcome these drawbacks and improve the optoelectronic performance, organic semiconductors (OSCs) are selected to passivate surface defects, tune the optical characteristics, and modify the doping polarity of 2D MoS2. Here, we demonstrate a fast photoresponse in multilayer (ML) MoS2 by addressing a heterojunction interface with vanadylphthalocyanine (VOPc) molecules. The MoS2/VOPc van der Waals interaction that has been established encourages the PPC effect in MoS2 by rapidly segregating photo-generated holes, which move away from the traps of MoS2 toward the VOPc molecules. The MoS2/VOPc phototransistor exhibits a fast photo response of less than 15 ms for decay and rise, which is enhanced by 3ordersof magnitude in comparison to that of a pristine MoS2-based phototransistor (seconds to tens of seconds). This work offers a means to realize high-performance transition metal dichalcogenide (TMD)-based photodetection with a fast response speed.
Collapse
Affiliation(s)
- Shaista Andleeb
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Xiaoyu Wang
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
- Department of Physics, School of Science, Hainan University, Haikou 570228, China
| | - Haiyun Dong
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
| | - Sreeramulu Valligatla
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
| | - Christian Niclaas Saggau
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
| | - Libo Ma
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
| | - Oliver G Schmidt
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107 Chemnitz, Germany
- Leibniz-Institute für Festköper- und Werkstoffforschung Dresden, 01069 Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126 Chemnitz, Germany
- School of Science, Dresden University of Technology, 01069 Dresden, Germany
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
18
|
Rijal K, Amos S, Valencia-Acuna P, Rudayni F, Fuller N, Zhao H, Peelaers H, Chan WL. Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal. ACS NANO 2023; 17:7775-7786. [PMID: 37042658 DOI: 10.1021/acsnano.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar band gaps and ionization potentials but form different lattice structures on MoS2, are investigated. The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal's unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ∼0.2 eV and ∼2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer toward the interface is observed, which demonstrates the effectiveness of these interfacial IX traps.
Collapse
Affiliation(s)
- Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie Amos
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Neno Fuller
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hartwin Peelaers
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
19
|
Varade V, Haider G, Slobodeniuk A, Korytar R, Novotny T, Holy V, Miksatko J, Plsek J, Sykora J, Basova M, Zacek M, Hof M, Kalbac M, Vejpravova J. Chiral Light Emission from a Hybrid Magnetic Molecule-Monolayer Transition Metal Dichalcogenide Heterostructure. ACS NANO 2023; 17:2170-2181. [PMID: 36652711 PMCID: PMC10017025 DOI: 10.1021/acsnano.2c08320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Hybrid layered materials assembled from atomically thin crystals and small molecules bring great promises in pushing the current information and quantum technologies beyond the frontiers. We demonstrate here a class of layered valley-spin hybrid (VSH) materials composed of a monolayer two-dimensional (2D) semiconductor and double-decker single molecule magnets (SMMs). We have materialized a VSH prototype by thermal evaporation of terbium bis-phthalocyanine onto a MoS2 monolayer and revealed its composition and stability by both microscopic and spectroscopic probes. The interaction of the VSH components gives rise to the intersystem crossing of the photogenerated carriers and moderate p-doping of the MoS2 monolayer, as corroborated by the density functional theory calculations. We further explored the valley contrast by helicity-resolved photoluminescence (PL) microspectroscopy carried out down to liquid helium temperatures and in the presence of the external magnetic field. The most striking feature of the VSH is the enhanced A exciton-related valley emission observed at the out-of-resonance condition at room temperature, which we elucidated by the proposed nonradiative energy drain transfer mechanism. Our study thus demonstrates the experimental feasibility and great promises of the ultrathin VSH materials with chiral light emission, operable by physical fields for emerging opto-spintronic, valleytronic, and quantum information concepts.
Collapse
Affiliation(s)
- Vaibhav Varade
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Golam Haider
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Artur Slobodeniuk
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Richard Korytar
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Tomas Novotny
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Vaclav Holy
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Jiri Miksatko
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Jan Plsek
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Jan Sykora
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Miriam Basova
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Martin Zacek
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| | - Martin Hof
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Martin Kalbac
- J.
Heyrovsky Institute of Physical Chemistry, Dolejskova 3, 182
23Prague 8, Czech
Republic
| | - Jana Vejpravova
- Department
of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121
16Prague 2, Czech
Republic
| |
Collapse
|
20
|
Tan C, Tao R, Yang Z, Yang L, Huang X, Yang Y, Qi F, Wang Z. Tune the photoresponse of monolayer MoS2 by decorating CsPbBr3 perovskite nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Chen Z, Hoang AT, Hwang W, Seo D, Cho M, Kim YD, Yang L, Soon A, Ahn JH, Choi HJ. Vertical Conductivity and Topography in Electrostrictive Germanium Sulfide Microribbon via Conductive Atomic Force Microscopy. NANO LETTERS 2022; 22:7636-7643. [PMID: 36106948 DOI: 10.1021/acs.nanolett.2c02763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.
Collapse
Affiliation(s)
- Zhangfu Chen
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Woohyun Hwang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dongjea Seo
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Minhyun Cho
- Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young Duck Kim
- Department of Physics, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Lianqiao Yang
- Key Laboratory of Advanced Display and System Applications Ministry of Education, Shanghai University, Yanchang Road 149, Shanghai 200072, China
| | - Aloysius Soon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
22
|
Huang J, Zhuang Z, Zhao Y, Chen J, Zhuo Z, Liu Y, Lu N, Li H, Zhai T. Back-Gated van der Waals Heterojunction Manipulates Local Charges toward Fine-Tuning Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202203522. [PMID: 35452184 DOI: 10.1002/anie.202203522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/05/2022]
Abstract
Charge redistribution plays a prominent role in interpreting the intrinsic electrocatalytic mechanism. Establishing a quantitative relationship between the local charges and electrochemical performance can fundamentally update the design philosophies beyond conventional methods. We describe exertion of an external electric field in the cobalt phthalocyanine (CoPc)/MoS2 heterojunction to finely manipulate intermolecular charge transfer. The injected charges (e- ) from CoPc to MoS2 migrate to natural S vacancies and enhance Mo-H bonding. Moreover, the band gap of MoS2 and CoPc can be readily tuned by the electric field, verifying band engineering at the heterointerface. In situ photoluminescence spectra and gate-dependent electrochemical measurement reveal a linear correlation between the charge accumulation and hydrogen evolution reaction (HER) activity. This approach provides a new strategy for the design of catalysts, enabling precise regulation of the electronic configuration to improve catalytic activity.
Collapse
Affiliation(s)
- Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jianqiang Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhiwen Zhuo
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Department of Physics, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ning Lu
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Key Laboratory of Functional Molecular Solids Ministry of Education, Department of Physics, Anhui Normal University, Wuhu, Anhui, 241002, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
23
|
Ji J, Choi JH. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: properties and applications in energy and optoelectronics fields. NANOSCALE 2022; 14:10648-10689. [PMID: 35839069 DOI: 10.1039/d2nr01358d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) present extraordinary optoelectronic, electrochemical, and mechanical properties that have not been accessible in bulk semiconducting materials. Recently, a new research field, 2D hybrid heteromaterials, has emerged upon integrating TMDs with molecular systems, including organic molecules, polymers, metal-organic frameworks, and carbonaceous materials, that can tailor the TMD properties and exploit synergetic effects. TMD-based hybrid heterostructures can meet the demands of future optoelectronics, including supporting flexible, transparent, and ultrathin devices, and energy-based applications, offering high energy and power densities with long cycle lives. To realize such applications, it is necessary to understand the interactions between the hybrid components and to develop strategies for exploiting the distinct benefits of each component. Here, we provide an overview of the current understanding of the new phenomena and mechanisms involved in TMD/organic hybrids and potential applications harnessing such valuable materials in an insightful way. We highlight recent discoveries relating to multicomponent hybrid materials. Finally, we conclude this review by discussing challenges related to hybrid heteromaterials and presenting future directions and opportunities in this research field.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
24
|
Zhu S, Kang D, Liu Z, Zhang M, Ding Y, Song P. Control and Modulation of Photoinduced Charge Transfer in a Rigid Donor-Bridge-Acceptor System by Electric Fields. J Phys Chem A 2022; 126:3669-3679. [PMID: 35650674 DOI: 10.1021/acs.jpca.2c01643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article theoretically studies the photoinduced charge transfer (CT) of rigid D-B-A molecules in two-photon absorption (TPA) adjusted by the external electric fields. Using a visualization method, the dynamic changes of light-induced CT in different channels of TPA are presented through a two-dimensional (2D) transition density matrix and a three-dimensional (3D) charge different density. Here, we prove the controllability of TPA on CT under the induction of a strong electric field. Adjusting the field direction and intensity significantly affects the position of the strong absorption peak in the TPA spectra, thereby further changing the electron-hole coherence length and the degree of dispersion. Our results can promote the recognition of the optical properties of the D-B-A system in synthetic molecules and provide an idea for increasing the proportion of excited states for CT in the molecule.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Dawei Kang
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Zhiyu Liu
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Meixia Zhang
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Yong Ding
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| | - Peng Song
- Department of Physics, Liaoning University, Shenyang 110036, People's Republic of China
| |
Collapse
|
25
|
Huang J, Zhuang Z, Zhao Y, Chen J, Zhuo Z, Liu Y, Lu N, Li H, Zhai T. Back‐gated van der Waals Heterojunction Manipulates Local Charges toward Fine‐tuning Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiazhao Huang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | | | - Yang Zhao
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Jianqiang Chen
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Zhiwen Zhuo
- Anhui Normal University Department of Physics CHINA
| | - Youwen Liu
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Ning Lu
- Anhui Normal University Department of Physics CHINA
| | - Huiqiao Li
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Tianyou Zhai
- Huazhong University of Science and Technology - Main Campus: Huazhong University of Science and Technology Luoyu Road 430074 Wuhan CHINA
| |
Collapse
|
26
|
Kong Y, Obaidulla SM, Habib MR, Wang Z, Wang R, Khan Y, Zhu H, Xu M, Yang D. Interlayer exciton emission in a MoS 2/VOPc inorganic/organic van der Waals heterostructure. MATERIALS HORIZONS 2022; 9:1253-1263. [PMID: 35099485 DOI: 10.1039/d1mh01622a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterostructures built from two-dimensional (2D) materials and organic semiconductors offer a unique platform for addressing many fundamental physics and construction of functional devices by taking advantage of both the 2D materials and organic semiconductors. We report interlayer exciton emission in the near infrared range around 1.54 eV (∼805 nm) from the heterostructure of pyramidal VOPc (p-type) and transition metal dichalcogenide monolayer MoS2 (VOPc/MoS2). This contrasts the observation of photoluminescence (PL) from the SnCl2Pc/MoS2 heterostructure despite both being type-II heterostructures. We attribute the exciton emission to the carrier transition from the generated interface mid-gap states of VOPc to the ground states of MoS2 in the heterostructure system as predicted from density functional theory (DFT) calculations. Furthermore, the observed PL signal of the VOPc/MoS2 heterostructure shows blue shift, while the PL peak of the SnCl2Pc/MoS2 heterostructure shows red shift. Our finding opens up a new avenue to tune the optoelectronic properties of the van der Waals heterojunctions consisting of 2D materials and organic semiconductors for optoelectronic applications.
Collapse
Affiliation(s)
- Yuhan Kong
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Sk Md Obaidulla
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, P. R. China.
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička cesta 46, HR-10000 Zagreb, Croatia
| | - Mohammad Rezwan Habib
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Zukun Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rong Wang
- ZJU Hangzhou Global Sci & Technol Innovat Ctr, Adv Semicond Res Inst, Hangzhou 311215, P. R. China
| | - Yahya Khan
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Mingsheng Xu
- State Key Laboratory of Silicon Materials, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
| |
Collapse
|
27
|
Thomas A, Jinesh KB. Excitons and Trions in MoS 2 Quantum Dots: The Influence of the Dispersing Medium. ACS OMEGA 2022; 7:6531-6538. [PMID: 35252649 PMCID: PMC8892661 DOI: 10.1021/acsomega.1c05432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Single-layer MoS2 has been reported to exhibit strong excitonic and trionic signatures in its photoluminescence (PL) spectra. Here, we report that the emission spectra of MoS2 QDs strongly depend on the dielectric constant of the solvent and the relative difference in the electronegativity between the solvent and QDs. Due to the difference in electronegativity, electrons are either added to the QD or withdrawn from it. Consequently, depending upon the dielectric permittivity and the electronegativity of the surrounding medium, the signature peaks of excitons and trions exhibit a significant change in the PL spectra of MoS2 QDs. Our findings are helpful to understand the effect of the surrounding environment on the optical properties of QDs and the importance of the selection of solvent since MoS2 QDs are potential candidates for valleytronics applications.
Collapse
|
28
|
Adeniran O, Liu ZF. Quasiparticle electronic structure of phthalocyanine:TMD interfaces from first-principles GW. J Chem Phys 2021; 155:214702. [PMID: 34879665 DOI: 10.1063/5.0072995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interfaces formed between monolayer transition metal dichalcogenides and (metallo)phthalocyanine molecules are promising in energy applications and provide a platform for studying mixed-dimensional molecule-semiconductor heterostructures in general. An accurate characterization of the frontier energy level alignment at these interfaces is key in the fundamental understanding of the charge transfer dynamics between the two photon absorbers. Here, we employ the first-principles substrate screening GW approach to quantitatively characterize the quasiparticle electronic structure of a series of interfaces: metal-free phthalocyanine (H2Pc) adsorbed on monolayer MX2 (M = Mo, W; X = S, Se) and zinc phthalocyanine (ZnPc) adsorbed on MoX2 (X = S, Se). Furthermore, we reveal the dielectric screening effect of the commonly used α-quartz (SiO2) substrate on the H2Pc:MoS2 interface using the dielectric embedding GW approach. Our calculations furnish a systematic set of GW results for these interfaces, providing the structure-property relationship across a series of similar systems and benchmarks for future experimental and theoretical studies.
Collapse
Affiliation(s)
- Olugbenga Adeniran
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| |
Collapse
|
29
|
Zhao Y, Gobbi M, Hueso LE, Samorì P. Molecular Approach to Engineer Two-Dimensional Devices for CMOS and beyond-CMOS Applications. Chem Rev 2021; 122:50-131. [PMID: 34816723 DOI: 10.1021/acs.chemrev.1c00497] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two-dimensional materials (2DMs) have attracted tremendous research interest over the last two decades. Their unique optical, electronic, thermal, and mechanical properties make 2DMs key building blocks for the fabrication of novel complementary metal-oxide-semiconductor (CMOS) and beyond-CMOS devices. Major advances in device functionality and performance have been made by the covalent or noncovalent functionalization of 2DMs with molecules: while the molecular coating of metal electrodes and dielectrics allows for more efficient charge injection and transport through the 2DMs, the combination of dynamic molecular systems, capable to respond to external stimuli, with 2DMs makes it possible to generate hybrid systems possessing new properties by realizing stimuli-responsive functional devices and thereby enabling functional diversification in More-than-Moore technologies. In this review, we first introduce emerging 2DMs, various classes of (macro)molecules, and molecular switches and discuss their relevant properties. We then turn to 2DM/molecule hybrid systems and the various physical and chemical strategies used to synthesize them. Next, we discuss the use of molecules and assemblies thereof to boost the performance of 2D transistors for CMOS applications and to impart diverse functionalities in beyond-CMOS devices. Finally, we present the challenges, opportunities, and long-term perspectives in this technologically promising field.
Collapse
Affiliation(s)
- Yuda Zhao
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France.,School of Micro-Nano Electronics, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, 38 Zheda Road, 310027 Hangzhou, People's Republic of China
| | - Marco Gobbi
- Centro de Fisica de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 Donostia-San Sebastián, Spain.,CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Luis E Hueso
- CIC nanoGUNE, E-20018 Donostia-San Sebastian, Basque Country, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
30
|
Karmakar G, Halankar KK, Tyagi A, Mandal BP, Wadawale AP, Kedarnath G, Srivastava AP, Singh V. Dimethyltin(IV)-4,6-dimethyl-2-pyridylselenolate: an efficient single source precursor for the preparation of SnSe nanosheets as anode material for lithium ion batteries. Dalton Trans 2021; 50:15730-15742. [PMID: 34698746 DOI: 10.1039/d1dt01312b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The air stable tin(IV) complex [Me2Sn{2-SeC5H2(Me-4,6)2N}2] has been synthesized, characterized by NMR, elemental analysis, and single crystal XRD, and employed as a single source molecular precursor (SSP) for the facile synthesis of orthorhombic SnSe nanosheets. The crystal structure, phase purity, morphology and band gap of the nanosheets were investigated by pXRD, EDS, electron microscopy and diffuse reflectance spectroscopy techniques, respectively. It was found that the preferential orientation of planes and the morphology of the nanosheets rely upon the reaction conditions. The band gaps of the nanosheets were blue shifted with respect to the bulk band gap of the material. The synthesized SnSe nanosheets have been employed as an anode material in lithium ion batteries (LIBs). The material exhibits an initial specific capacity of 1134 mA h g-1 at a current density of 50 mA g-1 and was found to retain a capacity of 380 mA h g-1 even after 70 cycles with 100% efficiency.
Collapse
Affiliation(s)
- Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Kruti K Halankar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Srivastava
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| | - Vishal Singh
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| |
Collapse
|
31
|
|
32
|
Amsterdam SH, Stanev TK, Wang L, Zhou Q, Irgen-Gioro S, Padgaonkar S, Murthy AA, Sangwan VK, Dravid VP, Weiss EA, Darancet P, Chan MKY, Hersam MC, Stern NP, Marks TJ. Mechanistic Investigation of Molybdenum Disulfide Defect Photoluminescence Quenching by Adsorbed Metallophthalocyanines. J Am Chem Soc 2021; 143:17153-17161. [PMID: 34613735 DOI: 10.1021/jacs.1c07795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.
Collapse
Affiliation(s)
- Samuel H Amsterdam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Teodor K Stanev
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Luqing Wang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Qunfei Zhou
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Shawn Irgen-Gioro
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Suyog Padgaonkar
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Akshay A Murthy
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinod K Sangwan
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Evanston, Illinois 60208, United States
| | - Emily A Weiss
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Maria K Y Chan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Northwestern Argonne Institute of Science and Engineering, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathaniel P Stern
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
Torres-Cavanillas R, Morant-Giner M, Escorcia-Ariza G, Dugay J, Canet-Ferrer J, Tatay S, Cardona-Serra S, Giménez-Marqués M, Galbiati M, Forment-Aliaga A, Coronado E. Spin-crossover nanoparticles anchored on MoS 2 layers for heterostructures with tunable strain driven by thermal or light-induced spin switching. Nat Chem 2021; 13:1101-1109. [PMID: 34621077 DOI: 10.1038/s41557-021-00795-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
In the past few years, the effect of strain on the optical and electronic properties of MoS2 layers has attracted particular attention as it can improve the performance of optoelectronic and spintronic devices. Although several approaches have been explored, strain is typically externally applied on the two-dimensional material. In this work, we describe the preparation of a reversible 'self-strainable' system in which the strain is generated at the molecular level by one component of a MoS2-based composite material. Spin-crossover nanoparticles were covalently grafted onto functionalized layers of semiconducting MoS2 to form a hybrid heterostructure. Their ability to switch between two spin states on applying an external stimulus (light irradiation or temperature change) serves to generate strain over the MoS2 layer. A volume change accompanies this spin crossover, and the created strain induces a substantial and reversible change of the electrical and optical properties of the heterostructure.
Collapse
Affiliation(s)
| | - Marc Morant-Giner
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain
| | | | - Julien Dugay
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain
| | - Josep Canet-Ferrer
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain
| | - Sergio Tatay
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain
| | | | | | - Marta Galbiati
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain
| | | | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Spain.
| |
Collapse
|
34
|
Tyagi A, Karmakar G, Mandal BP, Dutta Pathak D, Wadawale A, Kedarnath G, Srivastava AP, Jain VK. Di- tert-butyltin(IV) 2-pyridyl and 4,6-dimethyl-2-pyrimidyl thiolates: versatile single source precursors for the preparation of SnS nanoplatelets as anode material for lithium ion batteries. Dalton Trans 2021; 50:13073-13085. [PMID: 34581340 DOI: 10.1039/d1dt01142a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
New air and moisture stable di-tert-butyltin complexes derived from 2-mercaptopyridine (HSpy), [tBu2Sn(Spy)2], [tBu2Sn(Cl)(Spy)] and 4,6-dimethyl-2-mercaptopyrimidine (HSpymMe2) [tBu2Sn(Cl)(SpymMe2)], have been prepared and utilized as single-source molecular precursors for the preparation of orthorhombic SnS nanoplatelets by a hot injection method and thin films by aerosol assisted chemical vapour deposition (AACVD). The complexes were characterized by NMR (1H, 13C, 119Sn) and elemental analysis and their structures were unambiguously established by the single crystal X-ray diffraction technique. Thermolysis of these complexes in oleylamine (OAm) produced SnS nanoplatelets. The morphologies, elemental compositions, phase purity and crystal structures of the resulting Oam-capped nanoplatelets were determined by electron microscopy (SEM, TEM), energy dispersive X-ray spectroscopy (EDS) and pXRD, while the band gaps of the nanoplatelets were evaluated by diffuse reflectance spectroscopy (DRS) and were blue shifted relative to the bulk material. The morphology and preferential growth of the nanoplatelets were found to be significantly altered by the nature of the molecular precursor employed. The synthesized SnS nanoplatelets were evaluated for their performance as anode material for lithium ion batteries (LIBs). A cell comprised of an SnS electrode could be cycled for 50 cycles. The rate capability of SnS was investigated at different current densities in the range 0.1 to 0.7 A g-1 which revealed that the initial capacity could be regained.
Collapse
Affiliation(s)
- Adish Tyagi
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Gourab Karmakar
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - B P Mandal
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - Dipa Dutta Pathak
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India.
| | - G Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - A P Srivastava
- Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
| | - Vimal K Jain
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India. .,UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Mumbai-400 098, India
| |
Collapse
|
35
|
Wang Y, Iglesias D, Gali SM, Beljonne D, Samorì P. Light-Programmable Logic-in-Memory in 2D Semiconductors Enabled by Supramolecular Functionalization: Photoresponsive Collective Effect of Aligned Molecular Dipoles. ACS NANO 2021; 15:13732-13741. [PMID: 34370431 DOI: 10.1021/acsnano.1c05167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, the unrelenting growth of the digital universe calls for radically novel strategies for data processing and storage. An extremely promising and powerful approach relies on the development of logic-in-memory (LiM) devices through the use of floating gate and ferroelectric technologies to write and erase data in a memory operating as a logic gate driven by electrical bias. In this work, we report an alternative approach to realize the logic-in-memory based on two-dimensional (2D) transition metal dichalcogenides (TMDs) where multiple memorized logic output states have been established via the interface with responsive molecular dipoles arranged in supramolecular arrays. The collective dynamic molecular dipole changes of the axial ligand coordinated onto self-assembled metal phthalocyanine nanostructures on the surface of 2D TMD enables large reversible modulation of the Fermi level of both n-type molybdenum disulfide (MoS2) and p-type tungsten diselenide (WSe2) field-effect transistors (FETs), to achieve multiple memory states by programming and erasing with ultraviolet (UV) and with visible light, respectively. As a result, logic-in-memory devices were built up with our supramolecular layer/2D TMD architecture where the output logic is encoded by the motion of the molecular dipoles. Our strategy relying on the dynamic control of the 2D electronics by harnessing the functions of molecular-dipole-induced memory in a supramolecular hybrid layer represents a versatile way to integrate the functional programmability of molecular science into the next generation nanoelectronics.
Collapse
Affiliation(s)
- Ye Wang
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Daniel Iglesias
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Paolo Samorì
- University of Strasbourg,CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
36
|
Zhou HJ, Xu DH, Yang QH, Liu XY, Cui G, Li L. Rational design of monolayer transition metal dichalcogenide@fullerene van der Waals photovoltaic heterojunctions with time-domain density functional theory simulations. Dalton Trans 2021; 50:6725-6734. [PMID: 33912883 DOI: 10.1039/d1dt00291k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
van der Waals heterojunctions formed by transition metal dichalcogenides (TMDs) and fullerenes are promising candidates for novel photovoltaic devices due to the excellent optoelectronic properties of both TMDs and fullerenes. However, relevant experimental and theoretical investigations remain scarce to the best of our knowledge. Herein, we have first employed static density functional theory (DFT) calculations in combination with time-domain density functional theory (TDDFT) based nonadiabatic dynamics simulations to rationally evaluate the photovoltaic performances of four TMD@fullerene heterostructures, i.e. WSe2@C60, WSe2@C70, MoTe2@C60 and MoTe2@C70, respectively. Our simulation results indicate that the C70-based heterostructures overall have better photoinduced electron transfer efficiencies than their C60-based counterparts, among which the performance of the WSe2@C70 heterostructure is the best and the electron transfer from WSe2 to C70 almost accomplishes within 1 ps. In addition, the large build-in potential of about 0.75 eV of WSe2@C70 is beneficial for the charge separation processes. Our present work not only selects the van der Waals TMD@fullerene heterojunctions that might have excellent photovoltaic properties, but also paves the way for the rational design of novel heterojunctions with better optoelectronic performances with DFT and TDDFT simulations in the future.
Collapse
Affiliation(s)
- Hong-Jun Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, China.
| | | | | | | | | | | |
Collapse
|
37
|
Schmidt AM, Calvete MJF. Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks! Molecules 2021; 26:2823. [PMID: 34068708 PMCID: PMC8126243 DOI: 10.3390/molecules26092823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phthalocyanines have enjoyed throughout the years the benefits of being exquisite compounds with many favorable properties arising from the straightforward and diverse possibilities of their structural modulation. Last decades appreciated a steady growth in applications for phthalocyanines, particularly those dependent on their great photophysical properties, now used in several cutting-edge technologies, particularly in photonic applications. Judging by the vivid reports currently provided by many researchers around the world, the spotlight remains assured. This review deals with the use of phthalocyanine molecules in innovative materials in photo-applications. Beyond a comprehensive view on the recent discoveries, a critical review of the most acclaimed/considered reports is the driving force, providing a brief and direct insight on the latest milestones in phthalocyanine photonic-based science.
Collapse
Affiliation(s)
- Andrea M. Schmidt
- LifeEstetika, Laser Solutions, Universitätstadt Tübingen, Maria-von-Linden Strasse, 72076 Tübingen, Germany;
| | - Mário J. F. Calvete
- University of Coimbra, CQC, Department of Chemistry, Rua Larga, 3004-535 Coimbra, Portugal
| |
Collapse
|
38
|
Fluorescence on-off-on with small and charge-tunable nanoparticles enables highly sensitive intracellular microRNA imaging in living cells. Talanta 2021; 226:122114. [PMID: 33676670 DOI: 10.1016/j.talanta.2021.122114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/29/2022]
Abstract
Nanomaterial-based on-off-on fluorescence sensing strategies are significant particularly in intracellular nucleic acids imaging assay. There still remains challenge to rationally balance fluorescence quenching efficiency and recovery dynamics. We assume that the performance of on-off-on fluorescence sensing strategy can be fundamentally improved on small zero-dimensional (0D) nanomaterial with precisely modulated surface charge. For a proof-of-concept demonstration, silicon nanoparticle (SiNP) with ~4 nm was synthesized and used as the quencher model, of which the surface charge density was modulated by modification of triphenylphosphonium (TPP). The influence of particle size, surface charge and charge density of the nanomaterials on sensing performance was systematically investigated. The strategy showed a low limit of detection (LOD) as 26 pM for target model miR-494, which is one of the lowest in nanomaterial-based on-off-on sensing platforms. And the LOD is even comparable to amplification-based methods in a greatly shortened assay time (2.5 h). The miR-494 expresses in cancerous and normal living cells of human cervical carcinoma (HeLa), human lung carcinoma (A549), human breast cancer (MCF-7), and normal human mammary epithelial (MCF-10A) cells were imaged and localized with significantly improved sensitivity and specificity. These excellent performances insure it a promising candidate as convenient and non-enzymatic sensing platform for miRNA-associated disease detection and early diagnosis.
Collapse
|
39
|
Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.enmm.2020.100388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Zhao C, Tao W, Chen Z, Zhou H, Zhang C, Lin J, Zhu H. Ultrafast Electron Transfer with Long-Lived Charge Separation and Spin Polarization in WSe 2/C 60 Heterojunction. J Phys Chem Lett 2021; 12:3691-3697. [PMID: 33829780 DOI: 10.1021/acs.jpclett.1c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strong excitonic effect in monolayer transition-metal dichalcogenides (TMDs) endows them with intriguing optoelectronic properties but also short-lived population and valley polarization. Exciton dissociation by interfacial charge transfer has been shown as an effective approach to prolonging excited-state lifetimes. Herein, by ultrafast spectroscopy and building-block molecule C60, we investigated exciton and valley polarization dynamics in the prototypical WSe2/C60 inorganic-organic hybrid. We show that excitons in WSe2 can be dissociated through ultrafast (∼1 ps) electron transfer to C60, with nanosecond charge separation due to thermally activated electron diffusion in C60 film. Because of suppressed electron-hole exchange interaction after electron transfer, hole in WSe2 exhibits a spin/valley polarization lifetime of ∼60 ps at room temperature, more than 2 orders of magnitude longer than that in WSe2 monolayer. This study suggests exciton dissociation as a general approach to suppress electron-hole interaction and prolong the charge/spin/valley lifetime in TMDs.
Collapse
Affiliation(s)
- Chang Zhao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weijian Tao
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongzhi Zhou
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chi Zhang
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junyi Lin
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Fu S, Wang R, Tang D, Zhang X, He D. Directly Probing Interfacial Coupling in a Monolayer MoSe 2 and CuPc Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18372-18379. [PMID: 33830724 DOI: 10.1021/acsami.1c03779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is of great importance to develop useful methods to evaluate interfacial coupling strength noninvasively for exploring and optimizing heterointerface functionality. Recently, organic-inorganic van der Waals (vdW) heterostructures (HSs) composed of organic semiconductors and transition-metal dichalcogenides (TMD) have shown great potential for developing next-generation flexible optical, electrical, and optoelectrical devices. Since vdW coupling dominates the property of such a vdW HS, it is crucial to develop a method to evaluate its interfacial coupling strength noninvasively. In this work, by combining electrical force microscopy (EFM) and Raman and photoluminescence spectroscopic measurements, we were able to directly probe the coupling strength between monolayer MoSe2 and a copper phthalocyanine (CuPc) thin film. Especially, we also found a new Raman mode in HS due to the Davydov splitting of the CuPc thin film via strong interfacial coupling between the two materials. This new Raman mode was thus utilized as a probe to reveal the modulation of the coupling strength by changing post-treatment conditions. All of these results indicate that the method developed here is capable of evaluating the coupling strength of the MoSe2/CuPc HS effectively and innovatively, which aids in providing deep insights into such hybrid vdW HSs for future optical and optoelectrical applications.
Collapse
Affiliation(s)
- Shaohua Fu
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Rui Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Dongsheng Tang
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
42
|
Khan AR, Liu B, Lü T, Zhang L, Sharma A, Zhu Y, Ma W, Lu Y. Direct Measurement of Folding Angle and Strain Vector in Atomically Thin WS 2 Using Second-Harmonic Generation. ACS NANO 2020; 14:15806-15815. [PMID: 33179915 DOI: 10.1021/acsnano.0c06901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Structural engineering techniques such as local strain engineering and folding provide functional control over critical optoelectronic properties of 2D materials. Local strain engineering at the nanoscale level is practically achieved via permanently deformed wrinkled nanostructures, which are reported to show photoluminescence enhancement, bandgap modulation, and funneling effect. Folding in 2D materials is reported to tune optoelecronic properties via folding angle dependent interlayer coupling and symmetry variation. The accurate and efficient monitoring of local strain vector and folding angle is important to optimize the performance of optoelectronic devices. Conventionally, the accurate measurement of both strain amplitude and strain direction in wrinkled nanostructures requires the combined usage of multiple tools resulting in manufacturing lead time and cost. Here, we demonstrate the usage of a single tool, polarization-dependent second-harmonic generation (SHG), to determine the folding angle and strain vector accurately and efficiently in ultrathin WS2. The folding angle in trilayer WS2 folds exhibiting 1-9 times SHG enhancement is probed through variable approaches such as SHG enhancement factor, maxima and minima SHG phase difference, and linear dichroism. In compressive strain induced wrinkled nanostructures, strain-dependent SHG quenching and enhancement is observed parallel and perpendicular, respectively, to the direction of the compressive strain vector, allowing us to determine the local strain vector accurately using a photoelastic approach. We further demonstrate that SHG is highly sensitive to band-nesting-induced transition (C-peak), which can be significantly modulated by strain. Our results show SHG as a powerful probe to folding angle and strain vector.
Collapse
Affiliation(s)
- Ahmed Raza Khan
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College), Lahore, 54700, Pakistan
| | - Boqing Liu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Tieyu Lü
- Department of Physics and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005, China
| | - Linglong Zhang
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Ankur Sharma
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Yi Zhu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Wendi Ma
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Yuerui Lu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
43
|
Basyooni MA, Zaki SE, Shaban M, Eker YR, Yilmaz M. Efficient MoWO 3/VO 2/MoS 2/Si UV Schottky photodetectors; MoS 2 optimization and monoclinic VO 2 surface modifications. Sci Rep 2020; 10:15926. [PMID: 32985575 PMCID: PMC7522211 DOI: 10.1038/s41598-020-72990-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
The distinctive properties of strongly correlated oxides provide a variety of possibilities for modulating the properties of 2D transition metal dichalcogenides semiconductors; which represent a new class of superior optical and optoelectronic interfacing semiconductors. We report a novel approach to scaling-up molybdenum disulfide (MoS2) by combining the techniques of chemical and physical vapor deposition (CVD and PVD) and interfacing with a thin layer of monoclinic VO2. MoWO3/VO2/MoS2 photodetectors were manufactured at different sputtering times by depositing molybdenum oxide layers using a PVD technique on p-type silicon substrates followed by a sulphurization process in the CVD chamber. The high quality and the excellent structural and absorption properties of MoWO3/VO2/MoS2/Si with MoS2 deposited for 60 s enables its use as an efficient UV photodetector. The electronically coupled monoclinic VO2 layer on MoS2/Si causes a redshift and intensive MoS2 Raman peaks. Interestingly, the incorporation of VO2 dramatically changes the ratio between A-exciton (ground state exciton) and trion photoluminescence intensities of VO2/(30 s)MoS2/Si from < 1 to > 1. By increasing the deposition time of MoS2 from 60 to 180 s, the relative intensity of the B-exciton/A-exciton increases, whereas the lowest ratio at deposition time of 60 s refers to the high quality and low defect densities of the VO2/(60 s)MoS2/Si structure. Both the VO2/(60 s)MoS2/Si trion and A-exciton peaks have higher intensities compared with (60 s) MoS2/Si structure. The MoWO3/VO2/(60 s)MoS2/Si photodetector displays the highest photocurrent gain of 1.6, 4.32 × 108 Jones detectivity, and ~ 1.0 × 1010 quantum efficiency at 365 nm. Moreover, the surface roughness and grains mapping are studied and a low semiconducting-metallic phase transition is observed at ~ 40 °C.
Collapse
Affiliation(s)
- Mohamed A Basyooni
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
- Science and Technology Research and Application Center (BITAM), University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Shrouk E Zaki
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Mohamed Shaban
- Nanophotonics and Applications Laboratory, Department of Physics, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
- Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia.
| | - Yasin Ramazan Eker
- Department of Metallurgy and Material Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, 42060, Turkey
- Science and Technology Research and Application Center (BITAM), University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Mucahit Yilmaz
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
| |
Collapse
|
44
|
Rijal K, Rudayni F, Kafle TR, Chan WL. Collective Effects of Band Offset and Wave Function Dimensionality on Impeding Electron Transfer from 2D to Organic Crystals. J Phys Chem Lett 2020; 11:7495-7501. [PMID: 32812767 DOI: 10.1021/acs.jpclett.0c01796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Excited-state electron transfer (ET) across molecules/transition metal dichalcogenide crystal (TMDC) interfaces is a critical process for the functioning of various organic/TMDC hybrid optoelectronic devices. Therefore, it is important to understand the fundamental factors that can facilitate or limit the ET rate. Here it is found that an undesirable combination of the interfacial band offset and the spatial dimensionality of the delocalized electron wave function can significantly slow down the ET process. Specifically, it is found that whereas the ET rate from TMDCs (MoS2 and WSe2) to fullerenes is relative insensitive to the band offset, the ET rate from TMDCs to perylene molecules can be reduced by an order of magnitude when the band offset is large. For the perylene crystal, the sensitivity of the ET rate on the band offset is explained by the 1D nature of the electronic wave function, which limits the availability of states with the appropriate energy to accept the electron.
Collapse
Affiliation(s)
- Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Tika R Kafle
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
45
|
Liu L, Ikram M, Ma L, Zhang X, Lv H, Ullah M, Khan M, Yu H, Shi K. Edge-exposed MoS 2 nanospheres assembled with SnS 2 nanosheet to boost NO 2 gas sensing at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122325. [PMID: 32126422 DOI: 10.1016/j.jhazmat.2020.122325] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 05/13/2023]
Abstract
SnS2 nanosheets (NSs) have become an ideal candidate for high performance gas sensors due to their unique sensing properties. However, the restacking and aggregation in the process of sensor manufacturing have great influence on the gas sensing performance. In this study, we synthesized a novel heterojunction of the flower-like porous SnS2 NSs with edge exposed MoS2 nanospheres via a facile hydrothermal method and sensitive response has achieved at room temperature (27℃). After functionalization, the SMS-Ⅱ showed excellent response (Ra/Rg = 25.9-100 ppm NO2), which is 22.3 times higher than that of the pristine SnS2 NSs. The sensor also has the characteristics of short response time of 2 s, excellent base line recovery (28.2 s), long-term stability and reliability within 16 weeks, good selectivity and low detection concentration of only 50 ppb. The p-n heterojunction formed between the edge-exposed spherical MoS2 and the 3D flower-like SnS2 NSs has a synergistic effect, providing a highly active sites for the adsorption of NO2 gas, which greatly enhance the sensitivity of the sensor. Simple fabrication and excellent gas sensing performance of the SnS2/MoS2 heterostructure nanomaterials (NMs) will highly effective for commercial gas sensing application.
Collapse
Affiliation(s)
- Lujia Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Muhammad Ikram
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Laifeng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Xueyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - He Lv
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Mawaz Khan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Haitao Yu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
46
|
Tajima T, Okabe S, Takaguchi Y. Photoinduced Electron Transfer in a MoS 2/Anthracene Mixed-Dimensional Heterojunction in Aqueous Media. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tomoyuki Tajima
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Shogo Okabe
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Yutaka Takaguchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
47
|
Zhang H, Dunklin JR, Reid OG, Yun SJ, Nanayakkara SU, Lee YH, Blackburn JL, Miller EM. Disentangling oxygen and water vapor effects on optoelectronic properties of monolayer tungsten disulfide. NANOSCALE 2020; 12:8344-8354. [PMID: 32236241 DOI: 10.1039/c9nr09326e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By understanding how the environmental composition impacts the optoelectronic properties of transition metal dichalcogenide monolayers, we demonstrate that simple photoluminescence (PL) measurements of tungsten disulfide (WS2) monolayers can differentiate relative humidity environments. In this paper, we examine the PL and photoconductivity of chemical vapor deposition grown WS2 monolayers under three carefully controlled environments: inert gas (N2), dry air (O2 in N2), and humid nitrogen (H2O vapor in N2). The WS2 PL is measured as a function of 532 nm laser power and exposure time and can be decomposed into the exciton, trion, and lower energy state(s) contributions. Under continuous illumination in either O2 or H2O vapor environment, we find dramatic (and reversible) increases in PL intensity relative to the PL in an inert environment. The PL bathochromically shifts in an O2 environment and is dominated by increased trion emission and diminished exciton emission. In contrast, the WS2 PL increase in a H2O environment results from an overall increase in emission from all spectral components where the exciton contribution dominates. The drastic increases in PL are anticorrelated with corresponding decreases in photoconductivity, as measured by time-resolved microwave conductivity. The results suggest that both O2 and H2O react photochemically with the WS2 monolayer surface, modifying the optoelectronic properties, but do so via distinct pathways. Thus, we use these optoelectronic differences to differentiate the amount of humidity in the air, which we show with 0%, 40%, and 80% relative humidity environments. This deeper understanding of how ambient conditions impact WS2 monolayers enables novel humidity sensors as well as a better understanding of the correlation between TMDC surface chemistry, light emission, and photoconductivity. Moreover, these WS2 measurements highlight the importance of considering the impact of the local environment on reported results.
Collapse
Affiliation(s)
- Hanyu Zhang
- Materials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ji J, Delehey CM, Houpt DN, Heighway MK, Lee T, Choi JH. Selective Chemical Modulation of Interlayer Excitons in Atomically Thin Heterostructures. NANO LETTERS 2020; 20:2500-2506. [PMID: 32186880 DOI: 10.1021/acs.nanolett.9b05254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Strongly bound interlayer excitons (XIs) in atomically thin transition metal dichalcogenide (TMDC) heterostructures such as MoS2/WSe2 show promising optoelectronic properties for spin-valleytronics and excitonic devices. The ability to probe and control XIs is critical for the development of such applications. This Letter introduces a versatile chemical method for selectively tailoring interlayer excitons in TMDC heterostructures. We show that two organic layers form uniform layers on a WSe2/MoS2 heterostructure and that the XI photoluminescence may be either preserved or quenched. The interlayer emission can also be modulated differently by the formation of the organic layer on either side of the TMDC/TMDC heterostructure. We find that the resulting interlayer emission is dominated by selective photoinduced charge transfer over dark-state p-doping effects. These results shed critical insights on interlayer excitons at the TMDC/TMDC heterointerfaces and provide a versatile approach for selectively tailoring them for optoelectronic applications.
Collapse
Affiliation(s)
- Jaehoon Ji
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charles M Delehey
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Duncan N Houpt
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mathew K Heighway
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tonghun Lee
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
49
|
Understanding the excitation wavelength dependent spectral shift and large exciton binding energy of tungsten disulfide quantum dots and its interaction with single-walled carbon nanotubes. J Colloid Interface Sci 2020; 561:519-532. [DOI: 10.1016/j.jcis.2019.11.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/18/2019] [Accepted: 11/07/2019] [Indexed: 12/27/2022]
|
50
|
Gerkman MA, Lee JK, Li X, Zhang Q, Windley M, Fonseca MV, Lu Y, Warner JH, Han GGD. Direct Imaging of Individual Molecular Binding to Clean Nanopore Edges in 2D Monolayer MoS 2. ACS NANO 2020; 14:153-165. [PMID: 31747249 DOI: 10.1021/acsnano.9b06061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We use annular dark-field scanning transmission electron microscopy (ADF-STEM) to study how solution-deposited molecules bind to the edges and surface regions around nanopores in MoS2 monolayers. Nanopores with clean atomically flat edges and controllable mean diameter were generated by time-dependent large-area electron beam exposure during an in situ heating process, ready for subsequent molecular attachment. An organic molecule was designed to have a dithiolane end group that binds to Mo-terminated sites and a ligand structure that incorporates a single transition metal atom (Pt) marker for ADF-STEM detection. Pt atoms were used to track molecular binding around zigzag edges of MoS2 and to predict the orientations and conformations of molecules upon binding. We found that the molecules preferred to reside on the surface of the MoS2, pointing inward when attaching to the edge, rather than dangling out from the edge into free space, which is attributed to van der Waals interactions between the aromatic core of the molecule and the MoS2 basal planes. These results help us understand the way solution-deposited single molecules attach to free-standing edges of 2D crystals and the influence of van der Waals forces in guiding molecular binding.
Collapse
Affiliation(s)
- Mihael A Gerkman
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| | - Ja Kyung Lee
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Xiang Li
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| | - Qianyang Zhang
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Maurice Windley
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| | - Maria V Fonseca
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| | - Yang Lu
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Jamie H Warner
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Grace G D Han
- Department of Chemistry , Brandeis University , 415 South Street , Waltham , Massachusetts 02453 , United States
| |
Collapse
|