1
|
Devnath A, Bae J, Alimkhanuly B, Lee G, Lee S, Kadyrov A, Patil S, Lee DS. Ultralow-Power Circuit and Sensing Applications Based on Subthermionic Threshold Switching Transistors. ACS NANO 2024; 18:30497-30511. [PMID: 39451007 DOI: 10.1021/acsnano.4c08650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The most recent breakthrough in state-of-the-art electronics and optoelectronics involves the adoption of steep-slope field-effect transistors (FETs), promoting sub-60 mV/dec subthreshold swing (SS) at ambient temperature, effectively overcoming "Boltzmann limit" to minimize power consumption. Here, a series integration of nanoscale copper-based resistive-filamentary threshold switch (TS) with the IGZO channel-based FET is used to develop a TS-FET, in which the turn-on characteristics exhibit an abrupt transition over five decades, with an extremely low SS of 7 mV/dec, a high on/off ratio (>109), and ultralow leakage current (40-fold decrease), ensuring excellent repeatability and device yield. Unlike previous device-centric studies, this work highlights potential circuit applications (logic-inverter, pulse-sensor amplification, and photodetector) based on TS-FET. The sharp transition behavior of TS-FET enables the establishment of logic inverters with a high voltage gain of ≈800, with a circuit-level demonstration achieving a bias-independent record-high intrinsic gain (>1000). A wearable pulse sensor integrated with an amplifier circuit ensured the precise amplification of electrophysical signals by 450 times. In addition, the application of a TS-FET-based photodetector features high responsivity (1.08 × 104 mA/W) and detectivity (1.03 × 1020 Jones). The low-power strategy of TS-FETs is promising for the development of energy-efficient integrated circuits alongside sensor-interconnected biomedical applications in wearable technology.
Collapse
Affiliation(s)
- Anupom Devnath
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Junseong Bae
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Batyrbek Alimkhanuly
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Gisung Lee
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seunghyun Lee
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Arman Kadyrov
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shubham Patil
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dr Seunghyun Lee
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
2
|
Liu L, Ai Z, Zhang X, Tang K, Pei Y. Flexible and robust polyaniline/cross-linked collagen sponge with fibrils network structure as a piezoresistive sensing material. Int J Biol Macromol 2024; 279:135305. [PMID: 39236961 DOI: 10.1016/j.ijbiomac.2024.135305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The polyaniline/cross-linked collagen sponge (PANI/CCS) was synthesized by polymerizing PANI onto the collagen skeleton using mesoscopic collagen fibrils (CFs) as building blocks, serving as a piezoresistive sensing material. The structure and morphology of PANI/CCS were characterized using scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TA). The mechanical properties of PANI/CCS could be controlled by adjusting the CFs content and polymerization conditions. PANI/CCS treated with pure water exhibited exceptional compressive elasticity under 1000 compression cycles, demonstrating a wide strain range (0-85 %), rapid response time (200 ms), recovery time (90 ms), and high sensitivity (6.72 at 40-50 % strain). The treatment of the ionic liquid further improved the elasticity and the strain sensing range (0-95 %). The presence of PANI nanoparticles and mesoscopic collagen fibrils imparted antibacterial properties, stability in solvents, and biodegradability to PANI/CCS. Utilizing PANI/CCS as a piezoresistive sensing material enabled monitoring human movement behavior through the assembled sensor, showing significant potential for flexible wearable devices.
Collapse
Affiliation(s)
- Lele Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Ai
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyuan Zhang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Lu J, Zhu G, Wang S, Wu C, Qu X, Dong X, Pang H, Zhang Y. 3D Printed MXene-Based Wire Strain Sensors with Enhanced Sensitivity and Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401565. [PMID: 38745539 DOI: 10.1002/smll.202401565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Stretchable strain sensors play a crucial role in intelligent wearable systems, serving as the interface between humans and environment by translating mechanical strains into electrical signals. Traditional fiber strain sensors with intrinsic uniform axial strain distribution face challenges in achieving high sensitivity and anisotropy. Moreover, existing micro/nano-structure designs often compromise stretchability and durability. To address these challenges, a novel approach of using 3D printing to fabricate MXene-based flexible sensors with tunable micro and macrostructures. Poly(tetrafluoroethylene) (PTFE) as a pore-inducing agent is added into 3D printable inks to achieve controllable microstructural modifications. In addition to microstructure tuning, 3D printing is employed for macrostructural design modifications, guided by finite element modeling (FEM) simulations. As a result, the 3D printed sensors exhibit heightened sensitivity and anisotropy, making them suitable for tracking static and dynamic displacement changes. The proposed approach presents an efficient and economically viable solution for standardized large-scale production of advanced wire strain sensors.
Collapse
Affiliation(s)
- Jingqi Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Shaolong Wang
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Chunjin Wu
- State Key Laboratory of Organic Electronics and Information Displays Institute of Advanced Materials (IAM) School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| |
Collapse
|
4
|
Naz A, Meng Y, Luo J, Khan IA, Abbas R, Yu S, Wei J. Cutting-Edge Perovskite-Based Flexible Pressure Sensors Made Possible by Piezoelectric Innovation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4196. [PMID: 39274586 PMCID: PMC11395823 DOI: 10.3390/ma17174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
In the area of flexible electronics, pressure sensors are a widely utilized variety of flexible electronics that are both indispensable and prevalent. The importance of pressure sensors in various fields is currently increasing, leading to the exploration of materials with unique structural and piezoelectric properties. Perovskite-based materials are ideal for use as flexible pressure sensors (FPSs) due to their flexibility, chemical composition, strain tolerance, high piezoelectric and piezoresistive properties, and potential integration with other technologies. This article presents a comprehensive study of perovskite-based materials used in FPSs and discusses their components, performance, and applications in detecting human movement, electronic skin, and wireless monitoring. This work also discusses challenges like material instability, durability, and toxicity, the limited widespread application due to environmental factors and toxicity concerns, and complex fabrication and future directions for perovskite-based FPSs, providing valuable insights for researchers in structural health monitoring, physical health monitoring, and industrial applications.
Collapse
Affiliation(s)
- Adeela Naz
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuan Meng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Imtiaz Ahmad Khan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Rimsha Abbas
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
5
|
Wang S, Fan X, Zhang Z, Su Z, Ding Y, Yang H, Zhang X, Wang J, Zhang J, Hu P. A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness. ACS NANO 2024; 18:17175-17184. [PMID: 38875126 DOI: 10.1021/acsnano.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
High-performance tactile sensors with skin-sensing properties are crucial for intelligent perception in next-generation smart devices. However, previous studies have mainly focused on the sensitivity and response range of tactile sensation while neglecting the ability to recognize object softness. Therefore, achieving a precise perception of the softness remains a challenge. Here, we report an integrated tactile sensor consisting of a central hole gradient structure pressure sensor and a planar structure strain sensor. The recognition of softness and tactile perception is achieved through the synergistic effect of pressure sensors that sense the applied pressure and strain sensors that recognize the strain of the target object. The results indicate that the softness evaluation parameter (SC) of the integrated structural tactile sensor increases from 0.14 to 0.47 along with Young's modulus of the object decreasing from 2.74 to 0.45 MPa, demonstrating accurate softness recognition. It also exhibits a high sensitivity of 10.55 kPa-1 and an ultrawide linear range of 0-1000 kPa, showing an excellent tactile sensing capability. Further, an intelligent robotic hand system based on integrated structural tactile sensors was developed, which can identify the softness of soft foam and glass and grasp them accurately, indicating human skin-like sensing and grasping capabilities.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Xinyang Fan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
| | - Zaoxu Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - YaNan Ding
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Xin Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jia Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Bian Y, Shi H, Yuan Q, Zhu Y, Lin Z, Zhuang L, Han X, Wang P, Chen M, Wang X. Patterning Techniques Based on Metallized Electrospun Nanofibers for Advanced Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309735. [PMID: 38687841 PMCID: PMC11234419 DOI: 10.1002/advs.202309735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
Collapse
Affiliation(s)
- Yuhan Bian
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Haozhou Shi
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qunchen Yuan
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengzi Lin
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liujing Zhuang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Ping Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Mengxiao Chen
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, 311121, P. R. China
| | - Xiandi Wang
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Education Ministry, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Luo S, Zhang B, Wang X, Cheng G, Wei D, Wei D. Artificial Tactile Receptor System for Sensitive Pressure-Neural Spike Conversion. J Phys Chem Lett 2024; 15:5862-5867. [PMID: 38804506 DOI: 10.1021/acs.jpclett.4c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
An artificial tactile receptor is crucial for e-skin in next-generation robots, mimicking the mechanical sensing, signal encoding, and preprocessing functionalities of human skin. In the neural network, pressure signals are encoded in spike patterns and efficiently transmitted, exhibiting low power consumption and robust tolerance for bit error rates. Here, we introduce a highly sensitive artificial tactile receptor system integrating a pressure sensor, axon-hillock circuit, and neurotransmitter release device to achieve pressure signal coding with patterned spikes and controlled neurotransmitter release. Owing to the heightened sensitivity of the axon-hillock circuit to pressure-mediated current signals, the artificial tactile receptor achieves a detection limit of 10 Pa that surpasses the human tactile receptors, with a wide response range from 10 to 5 × 105 Pa. Benefiting from the appreciable pressure-responsive performance, the potential application of an artificial tactile receptor in robotic tactile perception has been demonstrated, encompassing tasks such as finger touch and human pulse detection.
Collapse
Affiliation(s)
- Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Bingxue Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Guanyin Cheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dapeng Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Del Bosque A, Sánchez-Romate XF, Sánchez M, Ureña A. Toward flexible piezoresistive strain sensors based on polymer nanocomposites: a review on fundamentals, performance, and applications. NANOTECHNOLOGY 2024; 35:292003. [PMID: 38621367 DOI: 10.1088/1361-6528/ad3e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
The fundamentals, performance, and applications of piezoresistive strain sensors based on polymer nanocomposites are summarized herein. The addition of conductive nanoparticles to a flexible polymer matrix has emerged as a possible alternative to conventional strain gauges, which have limitations in detecting small strain levels and adapting to different surfaces. The evaluation of the properties or performance parameters of strain sensors such as the elongation at break, sensitivity, linearity, hysteresis, transient response, stability, and durability are explained in this review. Moreover, these nanocomposites can be exposed to different environmental conditions throughout their lifetime, including different temperature, humidity or acidity/alkalinity levels, that can affect performance parameters. The development of flexible piezoresistive sensors based on nanocomposites has emerged in recent years for applications related to the biomedical field, smart robotics, and structural health monitoring. However, there are still challenges to overcome in designing high-performance flexible sensors for practical implementation. Overall, this paper provides a comprehensive overview of the current state of research on flexible piezoresistive strain sensors based on polymer nanocomposites, which can be a viable option to address some of the major technological challenges that the future holds.
Collapse
Affiliation(s)
- Antonio Del Bosque
- Technology, Instruction and Design in Engineering and Education Research Group (TiDEE.rg), Catholic University of Ávila, C/Canteros s/n, E-05005 Ávila, Spain
| | - Xoan F Sánchez-Romate
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
| | - María Sánchez
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| | - Alejandro Ureña
- Materials Science and Engineering Area, Higher School of Experimental Sciences and Technology, Rey Juan Carlos University, C/Tulipán s/n, Móstoles, E-28933 Madrid, Spain
- Instituto de Tecnologías Para la Sostenibilidad, Rey Juan Carlos University, C/Tulipán s/n, E-28933 Móstoles, Madrid, Spain
| |
Collapse
|
9
|
Shukla P, Saxena P, Madhwal D, Singh Y, Bhardwaj N, Samal R, Kumar V, Jain VK. Prototyping a wearable and stretchable graphene-on-PDMS sensor for strain detection on human body physiological and joint movements. Mikrochim Acta 2024; 191:301. [PMID: 38709350 DOI: 10.1007/s00604-024-06368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.
Collapse
Affiliation(s)
- Prashant Shukla
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India.
| | - Pooja Saxena
- G. L. Bajaj Institute of Technology and Management, Greater Noida, 201306, U.P., India
| | - Devinder Madhwal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| | - Yugal Singh
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| | - Nitin Bhardwaj
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| | - Rajesh Samal
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| | - Vivek Kumar
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| | - V K Jain
- Amity Institute of Advanced Research and Studies (Materials & Devices), Amity University, Sector-125, Noida, 201303, U.P, India
| |
Collapse
|
10
|
Xiang SR, Ma Q, Dong J, Ren YF, Lin JZ, Zheng C, Xiao P, You FM. Contrasting Effects of Music Therapy and Aromatherapy on Perioperative Anxiety: A Systematic Review and Meta-Analysis. Complement Med Res 2024; 31:278-291. [PMID: 38560980 DOI: 10.1159/000538425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Music therapy and aromatherapy have been demonstrated effective for perioperative anxiety. However, the available studies have indicated discordant results about which adjunct treatment is better for perioperative anxiety. Therefore, we conducted this meta-analysis to explore the contrasting effects between them. METHODS Six electronic databases were searched for clinical trials evaluating the efficacy of music therapy compared with aromatherapy in alleviating perioperative anxiety. The primary outcome was the postintervention anxiety level. Secondary outcomes included differences in blood pressure and heart rate before and after the intervention as well as pain scores at intraoperative and postoperative time points. The study protocol was registered on PROSPERO (CRD42021249737). RESULTS Twelve studies (894 patients) were included. The anxiety level showed no statistically significant difference (SMD, 0.28; 95% CI: -0.12, 0.68; p = 0.17). The analysis of blood pressure and heart rate also did not identify statistically significant differences. Notably, the pain scores at the intraoperative time point suggested that aromatherapy was superior to music therapy (WMD, 0.29 cm; 95% CI: 0.05, 0.52; p = 0.02), while those at 4 h after surgery indicated the opposite results (WMD, -0.48 cm; 95% CI: -0.60, -0.36; p < 0.001). CONCLUSION Low-to-moderate quality evidence suggests that music therapy and aromatherapy have similar potential to relieve perioperative anxiety. The potential data indicate that the two therapies have different benefits in intervention duration and age distribution. More direct high-quality comparisons are encouraged in the future to verify this point. Einleitung Musik- und Aromatherapie haben sich bei perioperativen Angstzuständen als wirksam erwiesen. Die verfügbaren Studien zeigten jedoch widersprüchliche Ergebnisse zur Frage, welche adjuvante Therapie bei perioperativen Angstzuständen besser ist. Daher führten wir die vorliegende Metaanalyse durch, um die unterschiedlichen Effekte der beiden Therapien zu untersuchen. Methoden Sechs (6) elektronische Datenbanken wurden nach klinischen Studien zur Wirksamkeit von Musiktherapie im Vergleich zur Aromatherapie bei der Linderung perioperativer Angstzustände durchsucht. Primäres Zielkriterium war das Angstniveau nach der Intervention. Die sekundären Zielkriterien umfassten die Unterschiede bei Blutdruck und Herzfrequenz vor und nach der Intervention sowie die Schmerz-Scores zu intra- und postoperativen Zeitpunkten. Das Studienprotokoll wurde auf PROSPERO (CRD42021249737) registriert. Ergebnisse Zwölf (12) Studien (894 Patienten) wurden eingeschlossen. Das Angstniveau zeigte keinen statistisch signifikanten Unterschied (SMD, 0,28; 95%-KI: −0,12, 0,68, p = 0,17) und auch die Analyse von Blutdruck und Herzfrequenz ergab keine statistisch signifikanten Unterschiede. Insbesondere die Schmerz-Scores zum intraoperativen Zeitpunkt sprachen dafür, dass die Aromatherapie gegenüber der Musiktherapie überlegen war (WMD, 0,29 cm; 95%-KI: 0,05, 0,52; p = 0,02), während die Werte 4 Stunden nach der Operation gegenteilige Ergebnisse zeigten (WMD, −0,48 cm; 95%-KI: −0,60, −0,36, p < 0,001). Schlussfolgerung Evidenzen von geringer bis mässiger Qualität deuten darauf hin, dass Musik- und Aromatherapie ein vergleichbares Potenzial bei der Linderung perioperativer Ängste besitzen. Die potenziellen Daten zeigen, dass die beiden Therapien unterschiedliche Vorteile hinsichtlich Interventionsdauer und Altersverteilung haben. Künftig sollten mehr direkte und qualitativ hochwertige Vergleiche durchgeführt werden, um diesen Aspekt zu überprüfen.
Collapse
Affiliation(s)
- Si-Rui Xiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Feng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng-Ming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
He H, Yang T, Liu T, Gao Y, Zhang Z, Yang Z, Liang F. Soft-Hard Janus Nanoparticles Triggered Hierarchical Conductors with Large Stretchability, High Sensitivity, and Superior Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312278. [PMID: 38266185 DOI: 10.1002/adma.202312278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Indexed: 01/26/2024]
Abstract
There is a long-standing conflict between the large stretchability and high sensitivity for strain sensors, a strategy of decoupling the mechanical/electrical module by constructing the hierarchical conductor has been developed in this study. The hierarchical conductor, consisting of a mechanically stretchable layer, a conductive network layer, and a strongly bonded interface, can be produced in a simple one-step process with the aid of soft-hard Janus nanoparticles (JNPs). The introduction of JNPs in the stretchable layer can evenly distribute stress and dissipate energy due to forming the rigid-flexible homogeneous networks. Specifically, JNPs can drive graphene nanosheets (GNS) to fold or curl, creating the unique JNPs-GNS building block that can further construct the conductive network. Due to its excellent deformability to hinder crack propagation, the flexible conductive network could be stretched continuously and the local conductive pathways could be reconstructed. Consequently, the hierarchical conductor could detect both subtle strain of 0-2% and large strain of up to 370%, with a gauge factor (GF) from 66.37 to 971.70, demonstrating outstanding stretchability and sensitivity. And it also owns large tensile strength (5.28 MPa) and high deformation stability. This hierarchical design will give graphene-based sensors a major boost in emerging applications.
Collapse
Affiliation(s)
- Hailing He
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tiantian Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tianlin Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yeqi Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhaoyuan Zhang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Chen S, Liu D, Chen W, Chen H, Li J, Wang J. Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:270-278. [PMID: 38440321 PMCID: PMC10910384 DOI: 10.3762/bjnano.15.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/08/2024] [Indexed: 03/06/2024]
Abstract
The majority of crack sensors do not offer simultaneously both a significant stretchability and an ultrahigh sensitivity. In this study, we present a straightforward and cost-effective approach to fabricate metal crack sensors that exhibit exceptional performance in terms of ultrahigh sensitivity and ultrahigh stretchability. This is achieved by incorporating a helical structure into the substrate through a modeling process and, subsequently, depositing a thin film of gold onto the polydimethylsiloxane substrate via sputter deposition. The metal thin film is then pre-stretched to generate microcracks. The sensor demonstrates a remarkable stretchability of 300%, an exceptional sensitivity with a maximum gauge factor reaching 107, a rapid response time of 158 ms, minimal hysteresis, and outstanding durability. These impressive attributes are attributed to the deliberate design of geometric structures and careful selection of connection types for the sensing materials, thereby presenting a novel approach to fabricating stretchable and highly sensitive crack-strain sensors. This work offers a universal platform for constructing strain sensors with both high sensitivity and stretchability, showing a far-reaching significance and influence for developing next-generation practically applicable soft electronics.
Collapse
Affiliation(s)
- Shangbi Chen
- Shanghai Xin Yue Lian Hui Electronic Technology Co. Ltd, Shanghai, P.R. China
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai, P.R. China
| | - Dewen Liu
- Shanghai Xin Yue Lian Hui Electronic Technology Co. Ltd, Shanghai, P.R. China
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai, P.R. China
| | - Weiwei Chen
- Department of Nursing, Shanghai General Hospital, Shanghai Jiao Tong University School of Nursing, Shanghai, P.R. China
| | - Huajiang Chen
- Shanghai Xin Yue Lian Hui Electronic Technology Co. Ltd, Shanghai, P.R. China
| | - Jiawei Li
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai, P.R. China
| | - Jinfang Wang
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai, P.R. China
| |
Collapse
|
13
|
Lin Z, Duan S, Liu M, Dang C, Qian S, Zhang L, Wang H, Yan W, Zhu M. Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306880. [PMID: 38015990 DOI: 10.1002/adma.202306880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.
Collapse
Affiliation(s)
- Zhiwei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengshun Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Chao Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Luxue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hailiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
15
|
Peng Y, Peng H, Chen Z, Zhang J. Ultrasensitive Soft Sensor from Anisotropic Conductive Biphasic Liquid Metal-Polymer Gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305707. [PMID: 38053434 DOI: 10.1002/adma.202305707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Subtle vibrations, such as sound and ambient noises, are common mechanical waves that can transmit energy and signals for modern technologies such as robotics and health management devices. However, soft electronics cannot accurately distinguish ultrasmall vibrations owing to their extremely small pressure, complex vibration waveforms, and high noise susceptibility. This study successfully recognizes signals from subtle vibrations using a highly flexible anisotropic conductive gel (ACG) based on biphasic liquid metals. The relationships between the anisotropic structure, subtle vibrations, and electrical performance are investigated using rheological-electrical experiments. The refined anisotropic design successfully realized low-cost flexible electronics with ultrahigh sensitivity (Gauge Factor: 12787), extremely low detection limit (strain: 0.01%), and excellent frequency recognition accuracy (>99%), significantly surpassing those of current flexible sensors. The ultrasensitive flexible electronics in this study are beneficial for diverse advanced technologies such as acoustic engineering, wearable electronics, and intelligent robotics.
Collapse
Affiliation(s)
- Yan Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| | - Hao Peng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zixun Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China
- Center for Advanced Electronic Materials Research, Wuxi Campus, Southeast University, Wuxi, 214061, P. R. China
| |
Collapse
|
16
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
17
|
Yu X, Yang H, Ye Z, Chen K, Yuan T, Dong Y, Xiao R, Wang Z. Ultra-Tough Waterborne Polyurethane-Based Graft-Copolymerized Piezoresistive Composite Designed for Rehabilitation Training Monitoring Pressure Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303095. [PMID: 37340575 DOI: 10.1002/smll.202303095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Effective training is crucial for patients who need rehabilitation for achieving optimal recovery and reducing complications. Herein, a wireless rehabilitation training monitoring band with a highly sensitive pressure sensor is proposed and designed. It utilizes polyaniline@waterborne polyurethane (PANI@WPU) as a piezoresistive composite material, which is prepared via the in situ grafting polymerization of PANI on the WPU surface. WPU is designed and synthesized with tunable glass transition temperatures ranging from -60 to 0 °C. Dipentaerythritol (Di-PE) and ureidopyrimidinone (UPy) groups are introduced, endowing the material with good tensile strength (14.2 MPa), toughness (62 MJ-1 m-3 ), and great elasticity (low permanent deformation: 2%). Di-PE and UPy enhance the mechanical properties of WPU by increasing the cross-linking density and crystallinity. Combining the toughness of WPU and the high-density microstructure derived by hot embossing technology, the pressure sensor exhibits high sensitivity (168.1 kPa-1 ), fast response time (32 ms), and excellent stability (10 000 cycles with 3.5% decay). In addition, the rehabilitation training monitoring band is equipped with a wireless Bluetooth module, which can be easily applied to monitor the rehabilitation training effect of patients using an applet. Therefore, this work has the potential to significantly broaden the application of WPU-based pressure sensors for rehabilitation monitoring.
Collapse
Affiliation(s)
- Xu Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hua Yang
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zhihao Ye
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Kaifeng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Ting Yuan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yabo Dong
- School of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Rui Xiao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Zongrong Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Key Laboratory of Soft Machines and SmartDevices of Zhejiang Province, School of Aeronautics and Astronautics, Huanjiang Laboratory, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| |
Collapse
|
18
|
Li S, Li H, Lu Y, Zhou M, Jiang S, Du X, Guo C. Advanced Textile-Based Wearable Biosensors for Healthcare Monitoring. BIOSENSORS 2023; 13:909. [PMID: 37887102 PMCID: PMC10605256 DOI: 10.3390/bios13100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
With the innovation of wearable technology and the rapid development of biosensors, wearable biosensors based on flexible textile materials have become a hot topic. Such textile-based wearable biosensors promote the development of health monitoring, motion detection and medical management, and they have become an important support tool for human healthcare monitoring. Textile-based wearable biosensors not only non-invasively monitor various physiological indicators of the human body in real time, but they also provide accurate feedback of individual health information. This review examines the recent research progress of fabric-based wearable biosensors. Moreover, materials, detection principles and fabrication methods for textile-based wearable biosensors are introduced. In addition, the applications of biosensors in monitoring vital signs and detecting body fluids are also presented. Finally, we also discuss several challenges faced by textile-based wearable biosensors and the direction of future development.
Collapse
Affiliation(s)
- Sheng Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
| | - Huan Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Yongcai Lu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Minhao Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Sai Jiang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Xiaosong Du
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; (S.L.); (H.L.); (Y.L.); (M.Z.); (S.J.)
| | - Chang Guo
- CCZU-ARK Institute of Carbon Materials, Nanjing 210012, China
- School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
| |
Collapse
|
19
|
Liu YF, Wang W, Chen XF. Progress and prospects in flexible tactile sensors. Front Bioeng Biotechnol 2023; 11:1264563. [PMID: 37829569 PMCID: PMC10565956 DOI: 10.3389/fbioe.2023.1264563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Flexible tactile sensors have the advantages of large deformation detection, high fault tolerance, and excellent conformability, which enable conformal integration onto the complex surface of human skin for long-term bio-signal monitoring. The breakthrough of flexible tactile sensors rather than conventional tactile sensors greatly expanded application scenarios. Flexible tactile sensors are applied in fields including not only intelligent wearable devices for gaming but also electronic skins, disease diagnosis devices, health monitoring devices, intelligent neck pillows, and intelligent massage devices in the medical field; intelligent bracelets and metaverse gloves in the consumer field; as well as even brain-computer interfaces. Therefore, it is necessary to provide an overview of the current technological level and future development of flexible tactile sensors to ease and expedite their deployment and to make the critical transition from the laboratory to the market. This paper discusses the materials and preparation technologies of flexible tactile sensors, summarizing various applications in human signal monitoring, robotic tactile sensing, and human-machine interaction. Finally, the current challenges on flexible tactile sensors are also briefly discussed, providing some prospects for future directions.
Collapse
Affiliation(s)
- Ya-Feng Liu
- College of Artificial Intelligence, Southwest University, Chongqing, China
- College of Aerospace Engineering, Chongqing University, Chongqing, China
- Chongqing 2D Materials Institute, Chongqing, China
| | - Wei Wang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Xu-Fang Chen
- College of Artificial Intelligence, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Wang T, Qiu Z, Li H, Lu H, Gu Y, Zhu S, Liu GS, Yang BR. High Sensitivity, Wide Linear-Range Strain Sensor Based on MXene/AgNW Composite Film with Hierarchical Microcrack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304033. [PMID: 37649175 DOI: 10.1002/smll.202304033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Indexed: 09/01/2023]
Abstract
Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiguang Qiu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haichuan Li
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Hao Lu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yifan Gu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Simu Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Key Laboratory of Visible Light Communications of Guangzhou, Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science & Engineering, Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
21
|
Shao W, Cui T, Li D, Jian J, Li Z, Ji S, Cheng A, Li X, Liu K, Liu H, Yang Y, Ren T. Carbon-Based Textile Sensors for Physiological-Signal Monitoring. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113932. [PMID: 37297066 DOI: 10.3390/ma16113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
As the focus on physical health increases, the market demand for flexible wearable sensors increases. Textiles combined with sensitive materials and electronic circuits can form flexible, breathable high-performance sensors for physiological-signal monitoring. Carbon-based materials such as graphene, carbon nanotubes (CNTs), and carbon black (CB) have been widely utilized in the development of flexible wearable sensors due to their high electrical conductivity, low toxicity, low mass density, and easy functionalization. This review provides an overview of recent advancements in carbon-based flexible textile sensors, highlighting the development, properties, and applications of graphene, CNTs, and CB for flexible textile sensors. The physiological signals that can be monitored by carbon-based textile sensors include electrocardiogram (ECG), human body movement, pulse and respiration, body temperature, and tactile perception. We categorize and describe carbon-based textile sensors based on the physiological signals they monitor. Finally, we discuss the current challenges associated with carbon-based textile sensors and explore the future direction of textile sensors for monitoring physiological signals.
Collapse
Affiliation(s)
- Wancheng Shao
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Jinming Jian
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zhen Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Aobo Cheng
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xinyue Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Kaiyin Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Houfang Liu
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Khan B, Abdullah S, Khan S. Current Progress in Conductive Hydrogels and Their Applications in Wearable Bioelectronics and Therapeutics. MICROMACHINES 2023; 14:mi14051005. [PMID: 37241628 DOI: 10.3390/mi14051005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wearable bioelectronics and therapeutics are a rapidly evolving area of research, with researchers exploring new materials that offer greater flexibility and sophistication. Conductive hydrogels have emerged as a promising material due to their tunable electrical properties, flexible mechanical properties, high elasticity, stretchability, excellent biocompatibility, and responsiveness to stimuli. This review presents an overview of recent breakthroughs in conductive hydrogels, including their materials, classification, and applications. By providing a comprehensive review of current research, this paper aims to equip researchers with a deeper understanding of conductive hydrogels and inspire new design approaches for various healthcare applications.
Collapse
Affiliation(s)
- Bangul Khan
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
| | - Saad Abdullah
- School of Innovation, Design and Engineering, Division of Intelligent Future Technologies, Mälardalen University, P.O. Box 883, 721 26 Västerås, Sweden
| | - Samiullah Khan
- Center for Eye & Vision Research, 17W Science Park, Hong Kong SAR, China
| |
Collapse
|
23
|
Tian H, Gu W, Li XS, Ren TL. Stretchable Ink Printed Graphene Device with Weft-Knitted Fabric Substrate Based on Thermal-Acoustic Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20334-20345. [PMID: 37040205 DOI: 10.1021/acsami.3c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Thermal-acoustic devices have great potential as flexible ultrathin sound sources. However, stretchable sound sources based on a thermal-acoustic mechanism remain elusive, as realizing stable resistance in a reasonable range is challenging. In this study, a stretchable thermal-acoustic device based on graphene ink is fabricated on a weft-knitted fabric. After optimization of the graphene ink concentration, the device resistance changes by 8.94% during 4000 cycles of operation in the unstretchable state. After multiple cycles of bending, folding, prodding, and washing, the sound pressure level (SPL) change of the device is within 10%. Moreover, the SPL has an increase with the strain in a specific range, showing a phenomenon similar to the negative differential resistance (NDR) effect. This study sheds light on the use of stretchable thermal-acoustic devices for e-skin and wearable electronics.
Collapse
Affiliation(s)
- He Tian
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Wen Gu
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xiao-Shi Li
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Qiao Y, Luo J, Cui T, Liu H, Tang H, Zeng Y, Liu C, Li Y, Jian J, Wu J, Tian H, Yang Y, Ren TL, Zhou J. Soft Electronics for Health Monitoring Assisted by Machine Learning. NANO-MICRO LETTERS 2023; 15:66. [PMID: 36918452 PMCID: PMC10014415 DOI: 10.1007/s40820-023-01029-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Due to the development of the novel materials, the past two decades have witnessed the rapid advances of soft electronics. The soft electronics have huge potential in the physical sign monitoring and health care. One of the important advantages of soft electronics is forming good interface with skin, which can increase the user scale and improve the signal quality. Therefore, it is easy to build the specific dataset, which is important to improve the performance of machine learning algorithm. At the same time, with the assistance of machine learning algorithm, the soft electronics have become more and more intelligent to realize real-time analysis and diagnosis. The soft electronics and machining learning algorithms complement each other very well. It is indubitable that the soft electronics will bring us to a healthier and more intelligent world in the near future. Therefore, in this review, we will give a careful introduction about the new soft material, physiological signal detected by soft devices, and the soft devices assisted by machine learning algorithm. Some soft materials will be discussed such as two-dimensional material, carbon nanotube, nanowire, nanomesh, and hydrogel. Then, soft sensors will be discussed according to the physiological signal types (pulse, respiration, human motion, intraocular pressure, phonation, etc.). After that, the soft electronics assisted by various algorithms will be reviewed, including some classical algorithms and powerful neural network algorithms. Especially, the soft device assisted by neural network will be introduced carefully. Finally, the outlook, challenge, and conclusion of soft system powered by machine learning algorithm will be discussed.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Jinan Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Tianrui Cui
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Haidong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yingfen Zeng
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jinming Jian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jingzhi Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yi Yang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, People's Republic of China.
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
25
|
Liu Y, Feng H, Gui Y, Chen T, Xu H, Huang X, Ma X. Flexible Stretchable, Dry-Resistant MXene Nanocomposite Conductive Hydrogel for Human Motion Monitoring. Polymers (Basel) 2023; 15:polym15020250. [PMID: 36679131 PMCID: PMC9864371 DOI: 10.3390/polym15020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Conductive hydrogels with high electrical conductivity, ductility, and anti-dryness have promising applications in flexible wearable electronics. However, its potential applications in such a developing field are severely hampered by its extremely poor adaptability to cold or hot environmental conditions. In this research, an "organic solvent/water" composite conductive hydrogel is developed by introducing a binary organic solvent of EG/H2O into the system using a simple one-pot free radical polymerization method to create Ti3C2TX MXene nanosheet-reinforced polyvinyl alcohol/polyacrylamide covalently networked nanocomposite hydrogels (PAEM) with excellent flexibility and mechanical properties. The optimized PAEM contains 0.3 wt% MXene has excellent mechanical performance (tensile elongation of ~1033%) and an improved modulus of elasticity (0.14 MPa), a stable temperature tolerance from -50 to 40 °C, and a high gauge factor of 10.95 with a long storage period and response time of 110 ms. Additionally, it is worth noting that the elongation at break at -40 °C was maintained at around 50% of room temperature. This research will contribute to the development of flexible sensors for human-computer interaction, electronic skin, and human health monitoring.
Collapse
Affiliation(s)
- Yafei Liu
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Huixia Feng
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Correspondence:
| | - Yujie Gui
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ting Chen
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Haidong Xu
- School of Chemistry and Chemical Engineering, Normal College for Nationalities, Qinghai Normal University, Xining 810008, China
| | - Xiaoxue Huang
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xuemei Ma
- School of Petroleum and Chemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
26
|
Polysaccharides-Based Injectable Hydrogels: Preparation, Characteristics, and Biomedical Applications. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polysaccharides-based injectable hydrogels are a unique group of biodegradable and biocompatible materials that have shown great potential in the different biomedical fields. The biomolecules or cells can be simply blended with the hydrogel precursors with a high loading capacity by homogenous mixing. The different physical and chemical crosslinking approaches for preparing polysaccharide-based injectable hydrogels are reviewed. Additionally, the review highlights the recent work using polysaccharides-based injectable hydrogels as stimuli-responsive delivery vehicles for the controlled release of different therapeutic agents and viscoelastic matrix for cell encapsulation. Moreover, the application of polysaccharides-based injectable hydrogel in regenerative medicine as tissue scaffold and wound healing dressing is covered.
Collapse
|
27
|
Li S, Chen X, Li X, Tian H, Wang C, Nie B, He J, Shao J. Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. SCIENCE ADVANCES 2022; 8:eade0720. [PMID: 36459548 PMCID: PMC10936060 DOI: 10.1126/sciadv.ade0720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Human-like tactile perception is critical for promoting robotic intelligence. However, reproducing tangential "sliding" perception of human skin is still struggling. Inspired by the lateral gating mechanosensing mechanism of mechanosensory cells, which perceives mechanical stimuli by lateral tension-induced opening-closing of ion channels, we report a robot skin (R-skin) with mechanically gated electron channels, achieving ultrasensitive and fast-response sliding tactile perception via pyramidal artificial fingerprint-triggered opening-closing of electron gates (E-gates, namely, customized V-shaped cracks within embedded mesh electron channels). By imitating cytomembrane to modulate membrane mechanics, local strain is enhanced at E-gates to effectively regulate electron pathways for high sensitivity while weakened at other positions to suppress random cracks for robust stability. The R-skin can directly recognize ultrafine surface microstructure (5 μm) at a response frequency (485 Hz) outshining humans and achieve human-like sliding perception functions, including dexterously distinguishing texture of complex-shaped objects and providing real-time feedback for grasping.
Collapse
Affiliation(s)
- Sheng Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiaoliang Chen
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiangming Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Chunhui Wang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Bangbang Nie
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Juan He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
28
|
Chen T, Liu Z, Zhao G, Qin Z, Zheng P, Aladejana JT, Tang Z, Weng M, Peng X, Chang J. Piezoresistive Sensor Containing Lamellar MXene-Plant Fiber Sponge Obtained with Aqueous MXene Ink. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51361-51372. [PMID: 36336918 DOI: 10.1021/acsami.2c15922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sustainable biomass materials are promising for low-cost wearable piezoresistive pressure sensors, but these devices are still produced with time-consuming manufacturing processes and normally display low sensitivity and poor mechanical stability at low-pressure regimes. Here, an aqueous MXene ink obtained by simply ball-milling is developed as a conductive modifier to fabricate the multiresponsive bidirectional bending actuator and compressible MXene-plant fiber sponge (MX-PFS) for durable and wearable pressure sensors. The MX-PFS is fabricated by physically foaming MXene ink and plant fibers. It possesses a lamellar porous structure composed of one-dimensional (1D) MXene-coated plant fibers and two-dimensional (2D) MXene nanosheets, which significantly improves the compression capacity and elasticity. Consequently, the encapsulated piezoresistive sensor (PRS) exhibits large compressible strain (60%), excellent mechanical durability (10 000 cycles), low detection limit (20 Pa), high sensitivity (435.06 kPa-1), and rapid response time (40 ms) for practical wearable applications.
Collapse
Affiliation(s)
- Tingjie Chen
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
- College of Material Science and Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhiyong Liu
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Gang Zhao
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Zipeng Qin
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Peitao Zheng
- Academy for Advanced Interdisciplinary Studies, Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - John Tosin Aladejana
- College of Material Science and Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhendong Tang
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Mingcen Weng
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Xiangfang Peng
- College of Materials Science and Engineering, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou 350002, Fujian, China
| | - Jian Chang
- Academy for Advanced Interdisciplinary Studies, Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
29
|
Zhao L, Qiao J, Li F, Yuan D, Huang J, Wang M, Xu S. Laser-Patterned Hierarchical Aligned Micro-/Nanowire Network for Highly Sensitive Multidimensional Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48276-48284. [PMID: 36228148 DOI: 10.1021/acsami.2c14642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible multidirectional strain sensors capable of simultaneously detecting strain amplitudes and directions have attracted tremendous interest. Herein, we propose a flexible multidirectional strain sensor based on a newly designed single-layer hierarchical aligned micro-/nanowire (HAMN) network. The HAMN network is efficiently fabricated using a one-step femtosecond laser patterning technology based on a modulated line-shaped beam. The anisotropic performance is attributed to the significantly different morphological changes caused by an inhomogeneous strain redistribution among the HAMN network. The fabricated strain sensor exhibits high sensitivity (gauge factor of 65 under 2.5% strain and 462 under larger strains), low response/recovery time (140 and 322 ms), and good stability (over 1000 cycles). Moreover, this single-layer strain sensor with high selectivity (gauge factor differences of ∼73 between orthogonal strains) is capable of distinguishing multidimensional strains and exhibits decoupled responses under low strains (<1%). Therefore, the strain sensors enable the precise monitoring of subtle movements, including radial pulses and wrist bending, and the rectification of pen-holding posture. Benefitting from these remarkable performances, the HAMN-based strain sensors show potential applications, including healthcare and complex human motion monitoring.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jingyu Qiao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Fangmei Li
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Dandan Yuan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Jiaxu Huang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| | - Shaolin Xu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen518055, China
| |
Collapse
|
30
|
Yang Y, Wei Y, Guo Z, Hou W, Liu Y, Tian H, Ren TL. From Materials to Devices: Graphene toward Practical Applications. SMALL METHODS 2022; 6:e2200671. [PMID: 36008156 DOI: 10.1002/smtd.202200671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Graphene, as an emerging 2D material, has been playing an important role in flexible electronics since its discovery in 2004. The representative fabrication methods of graphene include mechanical exfoliation, liquid-phase exfoliation, chemical vapor deposition, redox reaction, etc. Based on its excellent mechanical, electrical, thermo-acoustical, optical, and other properties, graphene has made a great progress in the development of mechanical sensors, microphone, sound source, electrophysiological detection, solar cells, synaptic transistors, light-emitting devices, and so on. In different application fields, large-scale, low-cost, high-quality, and excellent performance are important factors that limit the industrialization development of graphene. Therefore, laser scribing technology, roll-to-roll technology is used to reduce the cost. High-quality graphene can be obtained through chemical vapor deposition processes. The performance can be improved through the design of structure of the devices, and the homogeneity and stability of devices can be achieved by mechanized machining means. In total, graphene devices show promising prospect for the practical fields of sports monitoring, health detection, voice recognition, energy, etc. There is a hot issue for industry to create and maintain the market competitiveness of graphene products through increasing its versatility and killer application fields.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yuhong Wei
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhanfeng Guo
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Weiwei Hou
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yingjie Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- School of Integrated Circuits & Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nat Commun 2022; 13:5311. [PMID: 36085341 PMCID: PMC9461448 DOI: 10.1038/s41467-022-33021-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Wearable strain sensors that detect joint/muscle strain changes become prevalent at human–machine interfaces for full-body motion monitoring. However, most wearable devices cannot offer customizable opportunities to match the sensor characteristics with specific deformation ranges of joints/muscles, resulting in suboptimal performance. Adequate wearable strain sensor design is highly required to achieve user-designated working windows without sacrificing high sensitivity, accompanied with real-time data processing. Herein, wearable Ti3C2Tx MXene sensor modules are fabricated with in-sensor machine learning (ML) models, either functioning via wireless streaming or edge computing, for full-body motion classifications and avatar reconstruction. Through topographic design on piezoresistive nanolayers, the wearable strain sensor modules exhibited ultrahigh sensitivities within the working windows that meet all joint deformation ranges. By integrating the wearable sensors with a ML chip, an edge sensor module is fabricated, enabling in-sensor reconstruction of high-precision avatar animations that mimic continuous full-body motions with an average avatar determination error of 3.5 cm, without additional computing devices. Wearable sensors with edge computing are desired for human motion monitoring. Here, the authors demonstrate a topographic design for wearable MXene sensor modules with wireless streaming or in-sensor computing models for avatar reconstruction.
Collapse
|
32
|
Srivastava R, Alsamhi SH, Murray N, Devine D. Shape Memory Alloy-Based Wearables: A Review, and Conceptual Frameworks on HCI and HRI in Industry 4.0. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22186802. [PMID: 36146151 PMCID: PMC9504003 DOI: 10.3390/s22186802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 05/10/2023]
Abstract
Ever since its discovery, the applications of Shape Memory Alloys (SMA) can be found across a range of application domains, from structural design to medical technology. This is based upon the unique and inherent characteristics such as thermal Shape Memory Effect (SME) and Superelasticity (or Pseudoelasticity). While thermal SME is used for shape morphing applications wherein temperature change can govern the shape and dimension of the SMA, Superelasticity allows the alloy to withstand a comparatively very high magnitude of loads without undergoing plastic deformation at higher temperatures. These unique properties in wearables have revolutionized the field, and from fabrics to exoskeletons, SMA has found its place in robotics and cobotics. This review article focuses on the most recent research work in the field of SMA-based smart wearables paired with robotic applications for human-robot interaction. The literature is categorized based on SMA property incorporated and on actuator or sensor-based concept. Further, use-cases or conceptual frameworks for SMA fiber in fabric for 'Smart Jacket' and SMA springs in the shoe soles for 'Smart Shoes' are proposed. The conceptual frameworks are built upon existing technologies; however, their utility in a smart factory concept is emphasized, and algorithms to achieve the same are proposed. The integration of the two concepts with the Industrial Internet of Things (IIoT) is discussed, specifically regarding minimizing hazards for the worker/user in Industry 5.0. The article aims to propel a discussion regarding the multi-faceted applications of SMAs in human-robot interaction and Industry 5.0. Furthermore, the challenges and the limitations of the smart alloy and the technological barriers restricting the growth of SMA applications in the field of smart wearables are observed and elaborated.
Collapse
Affiliation(s)
- Rupal Srivastava
- Confirm Center for Smart Manufacturing, Science Foundation Ireland, V94 C928 Limerick, Ireland
- PRISM Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, N37 HD68 Co. Westmeath, Ireland
- Correspondence:
| | - Saeed Hamood Alsamhi
- Confirm Center for Smart Manufacturing, Science Foundation Ireland, V94 C928 Limerick, Ireland
- Department of Electrical Engineering, Faculty of Engineering, IBB University, Ibb 70270, Yemen
| | - Niall Murray
- Department of Computer and Software Engineering, Technological University of the Shannon, Midlands Midwest, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Devine
- PRISM Research Institute, Technological University of the Shannon, Midlands Midwest, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
33
|
Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H. Multimodal Sensors with Decoupled Sensing Mechanisms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202470. [PMID: 35835946 PMCID: PMC9475538 DOI: 10.1002/advs.202202470] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Indexed: 05/25/2023]
Abstract
Highly sensitive and multimodal sensors have recently emerged for a wide range of applications, including epidermal electronics, robotics, health-monitoring devices and human-machine interfaces. However, cross-sensitivity prevents accurate measurements of the target input signals when a multiple of them are simultaneously present. Therefore, the selection of the multifunctional materials and the design of the sensor structures play a significant role in multimodal sensors with decoupled sensing mechanisms. Hence, this review article introduces varying methods to decouple different input signals for realizing truly multimodal sensors. Early efforts explore different outputs to distinguish the corresponding input signals applied to the sensor in sequence. Next, this study discusses the methods for the suppression of the interference, signal correction, and various decoupling strategies based on different outputs to simultaneously detect multiple inputs. The recent insights into the materials' properties, structure effects, and sensing mechanisms in recognition of different input signals are highlighted. The presence of the various decoupling methods also helps avoid the use of complicated signal processing steps and allows multimodal sensors with high accuracy for applications in bioelectronics, robotics, and human-machine interfaces. Finally, current challenges and potential opportunities are discussed in order to motivate future technological breakthroughs.
Collapse
Affiliation(s)
- Ruoxi Yang
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Wanqing Zhang
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Naveen Tiwari
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Han Yan
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
| | - Tiejun Li
- School of Mechanical EngineeringHebei University of TechnologyTianjin300401P. R. China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
34
|
Cheng X, Cai J, Xu J, Gong D. High-Performance Strain Sensors Based on Au/Graphene Composite Films with Hierarchical Cracks for Wide Linear-Range Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39230-39239. [PMID: 35988067 DOI: 10.1021/acsami.2c10226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stretchable strain sensors based on nanomaterial thin films have aroused extensive interest for the strain perception of smart skins. However, it still remains challenging to have them achieve high sensitivity over wide linear working ranges. Herein, we propose a facile strategy to fabricate stretchable strain sensors based on Au/graphene composite films (AGCFs) with hierarchical cracks and demonstrate their superior sensing performances. The polydimethylsiloxane substrates were covered with self-assembled graphene films (SAGFs) and sputtered with Au, and then prestretching was applied to introduce hierarchical cracks. The AGCF strain sensors exhibited high sensitivity (gauge factor (GF) ≈ 153) and favorable linearity (R2 ≈ 0.9975) in the wide working range (0-20%) with ultralow overshooting (∼1.7% at 20%), fast response (<42.5 ms), and also excellent cycling stability (1500 cycles). Besides, these patternable sensors could further achieve higher GF (∼320) via pattern designing. The dominant effect of the intermediate wrinkled SAGFs in forming hierarchical cracks was studied, and the linear sensing mechanism of the as-formed fractal microstructures was also revealed in detail. Moreover, the AGCF strain sensors were tested for motion monitoring of the human body and electronic bird. Due to the remarkable versatility, scalable fabrication, and integration capability, these sensors demonstrate great potential to construct smart skins.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jiahua Xu
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
35
|
Wang W, Ma Y, Wang T, Ding K, Zhao W, Jiao L, Shu D, Li C, Hua F, Jiang H, Tong S, Yang S, Ni Y, Cheng B. Double-Layered Conductive Network Design of Flexible Strain Sensors for High Sensitivity and Wide Working Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36611-36621. [PMID: 35926517 DOI: 10.1021/acsami.2c08285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For flexible strain sensors, the optimization between sensitivity and working range is a significant challenge due to the fact that high sensitivity and high working range are usually difficult to obtain at the same time. Herein, a breathable flexible strain sensor with a double-layered conductive network structure was designed and developed, which consists of a thermoplastic polyurethane (TPU)/carbon nanotube (CNT) layer (as a substrate layer) and a Ag nanowire (AgNW) layer. The TPU/CNT layer is made of electrospinning TPU with CNTs deposited onto the surface of TPU fibers, and the flexible TPU/CNT mat guarantees the integrity of the conductive path under a large strain. The AgNW layer was prepared by depositing different amounts of AgNWs on the surface of the TPU/CNT layer, and the high-conductivity AgNWs offer a low initial resistance. Benefitting from the synergistic two-layer structure, the as-obtained flexible strain sensor exhibits a very high sensitivity (up to 1477.7) and a very wide working range (up to 150%). Besides, the fabricated sensor exhibits fast response (88 ms), excellent dynamical stability (7000 cycles), and excellent breathability. The working mechanism of the strain sensor was further investigated using various techniques (microscopy, equivalent circuit, and thermal effects of current). Furthermore, the as-fabricated flexible strain sensors accurately detect the omnidirectional human motions, including subtle and large human motions. This work provides an efficient approach to achieve the optimization between high sensitivity and large working range of strain sensors, which may have great potential applications in health monitoring, body motion detection, and human-machine interactions.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuying Ma
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tianyi Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Kai Ding
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Jiao
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Dengkun Shu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenyang Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Feiguo Hua
- Zhejiang Jinjiahao Green Nanomaterial Co., Ltd., Longyou 324404, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Hong Jiang
- Jiangxi Changshuo Outdoor Leisured Articles Co.,Ltd, Shangrao 334000, China
| | - Shuhua Tong
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Shuo Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
- Zhejiang Jinchang Specialty Paper Co., Ltd., Longyou 324404, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
36
|
Muhammed Ajmal C, Cha S, Kim W, Faseela KP, Yang H, Baik S. Invariable resistance of conductive nanocomposite over 30% strain. SCIENCE ADVANCES 2022; 8:eabn3365. [PMID: 35960794 PMCID: PMC9374331 DOI: 10.1126/sciadv.abn3365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/29/2022] [Indexed: 05/25/2023]
Abstract
The dependence of the electrical resistance on materials' geometry determines the performance of conductive nanocomposites. Here, we report the invariable resistance of a conductive nanocomposite over 30% strain. This is enabled by the in situ-generated hierarchically structured silver nanosatellite particles, realizing a short interparticle distance (4.37 nm) in a stretchable silicone rubber matrix. Furthermore, the barrier height is tuned to be negligible by matching the electron affinity of silicone rubber to the work function of silver. The stretching results in the electron flow without additional scattering in the silicone rubber matrix. The transport is changed to quantum tunneling if the barrier height is gradually increased by using different matrix polymers with smaller electron affinities, such as ethyl vinyl acetates and thermoplastic polyurethane. The tunneling current decreases with increasing strain, which is accurately described by the Simmons approximation theory. The tunable transport in nanocomposites provides an advancement in the design of stretchable conductors.
Collapse
Affiliation(s)
- C. Muhammed Ajmal
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seokjae Cha
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wonjoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - K. P. Faseela
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heejun Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seunghyun Baik
- Center for Nanotubes and Nanostructured Composites, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
37
|
Zhou J, Long X, Huang J, Jiang C, Zhuo F, Guo C, Li H, Fu Y, Duan H. Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform. NPJ FLEXIBLE ELECTRONICS 2022; 6:55. [PMID: 37520266 PMCID: PMC9255543 DOI: 10.1038/s41528-022-00189-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 06/16/2023]
Abstract
Current state-of-the-art stretchable/flexible sensors have received stringent demands on sensitivity, flexibility, linearity, and wide-range measurement capability. Herein, we report a methodology of strain sensors based on graphene/Ecoflex composites by modulating multiscale/hierarchical wrinkles on flexible substrates. The sensor shows an ultra-high sensitivity with a gauge factor of 1078.1, a stretchability of 650%, a response time of ~140 ms, and a superior cycling durability. It can detect wide-range physiological signals including vigorous body motions, pulse monitoring and speech recognition, and be used for monitoring of human respirations in real-time using a cloud platform, showing a great potential for the healthcare internet of things. Complex gestures/sign languages can be precisely detected. Human-machine interface is demonstrated by using a sensor-integrated glove to remotely control an external manipulator to remotely defuse a bomb. This study provides strategies for real-time/long-range medical diagnosis and remote assistance to perform dangerous tasks in industry and military fields.
Collapse
Affiliation(s)
- Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Xinxin Long
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Jian Huang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Caixuan Jiang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Fengling Zhuo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Chen Guo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
| | - Honglang Li
- National Center for Nanoscience and Technology, Beijing, 100190 China
| | - YongQing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST United Kingdom
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082 China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300 Guangdong Province China
| |
Collapse
|
38
|
The era of nano-bionic: 2D materials for wearable and implantable body sensors. Adv Drug Deliv Rev 2022; 186:114315. [PMID: 35513130 DOI: 10.1016/j.addr.2022.114315] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022]
Abstract
Nano-bionics have the potential of revolutionizing modern medicine. Among nano-bionic devices, body sensors allow to monitor in real-time the health of patients, to achieve personalized medicine, and even to restore or enhance human functions. The advent of two-dimensional (2D) materials is facilitating the manufacturing of miniaturized and ultrathin bioelectronics, that can be easily integrated in the human body. Their unique electronic properties allow to efficiently transduce physical and chemical stimuli into electric current. Their flexibility and nanometric thickness facilitate the adaption and adhesion to human body. The low opacity permits to obtain transparent devices. The good cellular adhesion and reduced cytotoxicity are advantageous for the integration of the devices in vivo. Herein we review the latest and more significant examples of 2D material-based sensors for health monitoring, describing their architectures, sensing mechanisms, advantages and, as well, the challenges and drawbacks that hampers their translation into commercial clinical devices.
Collapse
|
39
|
Ou Y, Zhao T, Zhang Y, Zhao G, Dong L. Stretchable solvent-free ionic conductor with self-wrinkling microstructures for ultrasensitive strain sensor. MATERIALS HORIZONS 2022; 9:1679-1689. [PMID: 35362503 DOI: 10.1039/d2mh00109h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable solvent-free ionic conductors with outstanding physicochemical stability are attractive in emerging sensing devices. However, existing ionic conductors struggle to keep high strain sensitivity with a gauge factor (GF) smaller than 4 at a strain range of up to 100%, which seriously affects the reliability of the signal output. Herein, we prepared a novel solvent-free ionic conductor, consisting of a hybrid cross-linked polymer network and mobile ions. Exquisite reticular wrinkling microstructures with ion channels were formed spontaneously by utilizing modulus mismatch in shrinkage during polymerization. The ion channels promote the ionic transport in the polymer, and the reticular wrinkling microstructures dramatically reinforce the mechanical stability and enhance energy dissipation. After being carefully optimized, the as-prepared ionic conductor demonstrated many unique advantages including perfect physicochemical stability, wide operating temperature range, the high ionic conductivity of 1.17 mS cm-1 at 15 °C and excellent sensitivity with GF as high as 7.03 at 100% strain. Moreover, benefiting from the abundant hydrogen bonds and ionic interactions in the polymer network, the ionic conductor also possesses self-healable and adhesion ability. The resulting devices can be used for quantitative evaluation of human joint motion and exhibit great potential in soft electronics or iontronics.
Collapse
Affiliation(s)
- Ying Ou
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
| | - Tingting Zhao
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
| | - Yang Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
| | - Guanghui Zhao
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
| | - Lijie Dong
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, P. R. China.
| |
Collapse
|
40
|
Ma H, Zha C, Sun D, Qian Z, Shi J, Chen Z, Huang J, Gui C. A facile method combined with electroless nickel plating and carbonization to fabricate textured Ni-coated carbon tube for flexible strain sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Zeng Z, Wu N, Yang W, Xu H, Liao Y, Li C, Luković M, Yang Y, Zhao S, Su Z, Lu X. Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202047. [PMID: 35570715 DOI: 10.1002/smll.202202047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Ultralight and highly flexible aerogel sensors, composed of reduced graphene oxide cross-linked by sustainable-macromolecule-derived carbon, are prepared via facile freeze-drying and thermal annealing. The synergistic combination of cross-linked graphene nanosheets and micrometer-sized honeycomb pores gives rise to the exceptional properties of the aerogels, including superior compressibility and resilience, good mechanical strength and durability, satisfactory fire-resistance, and outstanding electromechanical sensing performances. The corresponding aerogel sensors, operated at an ultralow voltage of 0.2 V, can efficiently respond to a wide range of strains (0.1-80%) and pressures (13-2750 Pa) even at temperatures beyond 300 °C. Moreover, the ultrahigh-pressure sensitivity of 10 kPa-1 and excellent sensing stability and durability are accomplished. Strikingly, the aerogel sensors can also sense the vibration signals with ultrahigh frequencies of up to 4000 Hz for >1 000 000 cycles, significantly outperforming those of other sensors. These enable successful demonstration of the exceptional performance of the cross-linked graphene-based biomimetic aerogels for sensitive monitoring of mechanical signals, e.g., acting as wearable devices for monitoring human motions, and for nondestructive monitoring of cracks on engineering structures, showing the great potential of the aerogel sensors as next-generation electronics.
Collapse
Affiliation(s)
- Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Na Wu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, CH-8093, Switzerland
| | - Weidong Yang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
| | - Hao Xu
- School of Aeronautics and Astronautics, Dalian University of Technology, Dalian, 116024, China
| | - Yaozhong Liao
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chenwei Li
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Mirko Luković
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Yunfei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Shanyu Zhao
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Zhongqing Su
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
42
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
43
|
Luo J, Ji N, Zhang W, Ge P, Liu Y, Sun J, Wang J, Zhuo Q, Qin C, Dai L. Ultrasensitive airflow sensor prepared by electrostatic flocking for sound recognition and motion monitoring. MATERIALS HORIZONS 2022; 9:1503-1512. [PMID: 35319059 DOI: 10.1039/d2mh00064d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, airflow sensors have attracted great attention due to their unique characteristics. However, the preparation of high-performance airflow sensors via extraordinarily simple, controllable and cost-effective methods remains a great challenge. Herein, inspired by the fluff system of the spider, an ultrasensitive fluffy-like airflow sensor with carbon fibers (CFs) uniformly and firmly planted on the surface of a polyvinyl alcohol (PVA) fibrous substrate has been easily fabricated using electrostatic flocking technology. The fluffy-like structure endows the airflow sensor with superior properties including ultra-sensitivity, fast response time (0.103 s), low airflow velocity detection limit (0.068 m s-1), ultra-sensitive detection in a wide airflow range (0.068-16 m s-1), and multi-directional consistent response to airflow. This sensor can be used to accurately recognize sound waves and voiceless speech and detect human and object motions in different postures and speeds. This work presents insights into designing and preparing high-performance airflow sensors on a large-scale for sound recognition, motion monitoring, and assisting the disabled.
Collapse
Affiliation(s)
- Jin Luo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Nan Ji
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Weiwei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Pei Ge
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yixuan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jianjun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Qiqi Zhuo
- College of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China.
| | - Chuanxiang Qin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Lixing Dai
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
44
|
Shah MA, Pirzada BM, Price G, Shibiru AL, Qurashi A. Applications of nanotechnology in smart textile industry: A critical review. J Adv Res 2022; 38:55-75. [PMID: 35572402 PMCID: PMC9091772 DOI: 10.1016/j.jare.2022.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Background In recent years, nanotechnology has been playing an important role in designing smart fabrics. Nanomaterials have been employed to introduce in a sustainable manner, antimicrobial, ultraviolet resistant, electrically conductive, optical, hydrophobic and flame-retardant properties into textiles and garments. Nanomaterial based smart devices are now also being integrated with the textiles so as to perform various functions such as energy harvesting and storage, sensing, drug release and optics. These advancements have found wide applications in the fashion industry and are being developed for wider use in defence, healthcare and on-body energy harnessing applications. Aim of review The objective of this work is to provide an insight into the current trends of using nanotechnology in the modern textile industries and to inspire and anticipate further research in this field. This review provides an overview of the most current advances concerning on-body electronics research and the wonders which could be realized by nanomaterials in modern textiles in terms of total energy reliance on our clothes. Key scientific concepts of review The work underlines the various methods and techniques for the functionalization of nanomaterials and their integration into textiles with an emphasis on cost-effectiveness, comfort, wearability, energy conversion efficiency and eco-sustainability. The most recent trends of developing various nanogenerators, supercapacitors and photoelectronic devices on the fabric are highlighted, with special emphasis on the efficiency and wearability of the textile. The potential nanotoxicity associated with the processed textiles due to the tendency of these nanomaterials to leach into the environment along with possible remediation measures are also discussed. Finally, the future outlook regarding progress in the integration of smart nano-devices on textile fabrics is provided.
Collapse
Affiliation(s)
- Mudasir Akbar Shah
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Bilal Masood Pirzada
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Gareth Price
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abel L. Shibiru
- Department of Chemical Engineering, Kombolcha Institute of Technology, Wollo University, Ethiopia
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
45
|
Yang Y, Yi T, Liu Y, Zhao H, Liang C. Design of a Highly Sensitive Reduced Graphene Oxide/Graphene Oxide@Cellulose Acetate/Thermoplastic Polyurethane Flexible Sensor. SENSORS 2022; 22:s22093281. [PMID: 35590970 PMCID: PMC9099808 DOI: 10.3390/s22093281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022]
Abstract
As a substitute for rigid sensors, flexible sensing materials have been greatly developed in recent years, but maintaining the stability of conductive fillers and the stability of micro-strain sensing is still a major challenge. In this experiment, we innovatively prepared a polyurethane-based cellulose acetate composite membrane (CA/TPU) with abundant mesopores through electrospinning. Then, we reduced graphene oxide (rGO)-as a conductive filler-and graphene oxide (GO)-as an insulating layer-which were successively and firmly anchored on the CA/TPU nanofiber membrane with the ultrasonic impregnation method, to obtain an rGO/GO@CA/TPU sensor with a GF of 3.006 under a very small strain of 0.5%. The flexibility of the film and its high sensitivity under extremely low strains enables the detection of subtle human motions (such as finger bending, joint motion, etc.), making it suitable for potential application in wearable electronic devices.
Collapse
Affiliation(s)
- Yujie Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Y.Y.); (T.Y.); (H.Z.); (C.L.)
| | - Tan Yi
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Y.Y.); (T.Y.); (H.Z.); (C.L.)
| | - Yang Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Y.Y.); (T.Y.); (H.Z.); (C.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530000, China
- Correspondence: ; Tel.: +86-155-7832-3385; Fax: +86-0771-3237309
| | - Hui Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Y.Y.); (T.Y.); (H.Z.); (C.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Chen Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (Y.Y.); (T.Y.); (H.Z.); (C.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| |
Collapse
|
46
|
Wang J, Liu L, Yang C, Zhang C, Li B, Meng X, Ma G, Wang D, Zhang J, Niu S, Zhao J, Han Z, Yao Z, Ren L. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16885-16893. [PMID: 35348316 DOI: 10.1021/acsami.2c01127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For advanced flexible strain sensors, it is not difficult to achieve high sensitivity only. However, integrating high sensitivity, high stability, and high durability into one sensor still remains a great challenge. Fortunately, natural creatures with diversified excellent performances have given us a lot of ready-made solutions. Here, scorpion and spiderweb are selected as coupling bionic prototypes, which are famous for their ultrasensitive sensing capacity and excellent structural durability, respectively. Based on that, a bioinspired strain sensor is successfully fabricated. The results demonstrate that the bioinspired strain sensor has a sensitivity of 940.5 in the strain range of 0-1.5% and a sensitivity of 2742.3 between 1.5 and 2.5%. Meantime, this sensor with a spiderweb-like reticular structure has a great improvement in stability and durability. Specifically, the sensor exhibits excellent stability during bending and stretching cycles over 80,000 times. Moreover, the response time and recovery time of the sensor are 169 and 195 ms, respectively. Besides, the sensor also has functions such as vibrating frequency identification due to its low hysteresis. Based on the excellent performance, the sensor can be applied to monitor human body motions serving as wearable electronics.
Collapse
Affiliation(s)
- Jingxiang Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Linpeng Liu
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410012, China
| | - Chen Yang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Changchao Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Bo Li
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Xiancun Meng
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Guoliang Ma
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Dakai Wang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Junqiu Zhang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Shichao Niu
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Jiale Zhao
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhongwen Yao
- Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L3N6, Canada
| | - Luquan Ren
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
47
|
Li Y, Cui Y, Zhang M, Li X, Li R, Si W, Sun Q, Yu L, Huang C. Ultrasensitive Pressure Sensor Sponge Using Liquid Metal Modulated Nitrogen-Doped Graphene Nanosheets. NANO LETTERS 2022; 22:2817-2825. [PMID: 35333055 DOI: 10.1021/acs.nanolett.1c04976] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wearable pressure sensors are crucial for real-time monitoring of human activities and biomimetic robot status. Here, the ultrasensitive pressure sensor sponge is prepared by a facile method, realizing ultrasensitive pressure sensing for wearable health monitoring. Since the liquid metal in the sponge-skeleton structure under pressure is conducive to adjust the contact area with nitrogen-doped graphene nanosheets and thus facilitates the charge transfer at the interface, such sensors exhibit a fast response and recovery speed with the response/recovery time 0.41/0.12 s and a comprehensive response range with a sensitivity of up to 476 KPa-1. Notably, the liquid metal-based spongy pressure sensor can accurately monitor the human body's pulse, the pressure on the skin, throat swallowing, and other activities in real time, demonstrating a broad application prospect. Those results provide a convenient and low-cost way to fabricate easily perceptible pressure sensors, expanded the application potential of liquid metal-based composites for future electronic skin development.
Collapse
Affiliation(s)
- Yuan Li
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yanguang Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjia Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Xiaodong Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
| | - Wenyan Si
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanhu Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmin Yu
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P.R. of China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Dong H, Sun J, Liu X, Jiang X, Lu S. Highly Sensitive and Stretchable MXene/CNTs/TPU Composite Strain Sensor with Bilayer Conductive Structure for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15504-15516. [PMID: 35344347 DOI: 10.1021/acsami.1c23567] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The universal application of wearable strain sensors in various situations for human-activity monitoring is considerably limited by the contradiction between high sensitivity and broad working range. There still remains a huge challenge to design sensors featuring simultaneous broad working range and high sensitivity. Herein, a typical bilayer-conductive structure Ti3C2Tx MXene/carbon nanotubes (CNTs)/thermoplastic polyurethane (TPU) composite film was developed by a simple and scalable vacuum filtration process utilizing a porous electrospun thermoplastic polyurethane (TPU) mat as a skeleton. The MXene/CNTs/TPU strain sensor is composed of two parts: a brittle densely stacked MXene upper lamella and a flexible MXene/CNT-decorated fibrous network lower layer. Benefiting from the synergetic effect of the two parts along with hydrogen-bonding interactions between the porous TPU fiber mat and MXene sheets, the MXene/CNTs/TPU strain sensor possesses both a broad working range (up to 330%) and high sensitivity (maximum gauge factor of 2911) as well as superb long-term durability (2600 cycles under the strain of 50%). Finally, the sensor can be successfully employed for human movement monitoring, from tiny facial expressions, respiration, and pulse beat to large-scale finger and elbow bending, demonstrating a promising and attractive application for wearable devices and human-machine interaction.
Collapse
Affiliation(s)
- Hui Dong
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Jingchao Sun
- College of Science, Shenyang Aerospace University, Shenyang 110136, China
| | - Xingmin Liu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Xiaodan Jiang
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| | - Shaowei Lu
- College of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
| |
Collapse
|
49
|
Wang L, Wu L, Wang Y, Luo J, Xue H, Gao J. Drop casting based superhydrophobic and electrically conductive coating for high performance strain sensing. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Wood DS, Jensen K, Crane A, Lee H, Dennis H, Gladwell J, Shurtz A, Fullwood DT, Seeley MK, Mitchell UH, Christensen WF, Bowden AE. Accurate Prediction of Knee Angles during Open-Chain Rehabilitation Exercises Using a Wearable Array of Nanocomposite Stretch Sensors. SENSORS 2022; 22:s22072499. [PMID: 35408112 PMCID: PMC9003122 DOI: 10.3390/s22072499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/14/2023]
Abstract
In this work, a knee sleeve is presented for application in physical therapy applications relating to knee rehabilitation. The device is instrumented with sixteen piezoresistive sensors to measure knee angles during exercise, and can support at-home rehabilitation methods. The development of the device is presented. Testing was performed on eighteen subjects, and knee angles were predicted using a machine learning regressor. Subject-specific and device-specific models are analyzed and presented. Subject-specific models average root mean square errors of 7.6 and 1.8 degrees for flexion/extension and internal/external rotation, respectively. Device-specific models average root mean square errors of 12.6 and 3.5 degrees for flexion/extension and internal/external rotation, respectively. The device presented in this work proved to be a repeatable, reusable, low-cost device that can adequately model the knee's flexion/extension and internal/external rotation angles for rehabilitation purposes.
Collapse
Affiliation(s)
- David S. Wood
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Kurt Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Allison Crane
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Hyunwook Lee
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Hayden Dennis
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Joshua Gladwell
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - Anne Shurtz
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - David T. Fullwood
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
| | - Matthew K. Seeley
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - Ulrike H. Mitchell
- Department of Exercise Science, Brigham Young University, Provo, UT 84602, USA; (H.L.); (H.D.); (M.K.S.); (U.H.M.)
| | - William F. Christensen
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA; (J.G.); (A.S.); (W.F.C.)
| | - Anton E. Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA; (D.S.W.); (K.J.); (A.C.); (D.T.F.)
- Correspondence:
| |
Collapse
|