1
|
Guo HB, Huntington B, Perminov A, Smith K, Hastings N, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 modeling and molecular dynamics simulations of an intrinsically disordered protein. PLoS One 2024; 19:e0301866. [PMID: 38739602 PMCID: PMC11090348 DOI: 10.1371/journal.pone.0301866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/23/2024] [Indexed: 05/16/2024] Open
Abstract
We use AlphaFold2 (AF2) to model the monomer and dimer structures of an intrinsically disordered protein (IDP), Nvjp-1, assisted by molecular dynamics (MD) simulations. We observe relatively rigid dimeric structures of Nvjp-1 when compared with the monomer structures. We suggest that protein conformations from multiple AF2 models and those from MD trajectories exhibit a coherent trend: the conformations of an IDP are deviated from each other and the conformations of a well-folded protein are consistent with each other. We use a residue-residue interaction network (RIN) derived from the contact map which show that the residue-residue interactions in Nvjp-1 are mainly transient; however, those in a well-folded protein are mainly persistent. Despite the variation in 3D shapes, we show that the AF2 models of both disordered and ordered proteins exhibit highly consistent profiles of the pLDDT (predicted local distance difference test) scores. These results indicate a potential protocol to justify the IDPs based on multiple AF2 models and MD simulations.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- UES Inc., Dayton, OH, United States of America
| | - Baxter Huntington
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Alexander Perminov
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Kenya Smith
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Nicholas Hastings
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Patrick Dennis
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Nancy Kelley-Loughnane
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Rajiv Berry
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| |
Collapse
|
2
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
3
|
Gabrielli V, Ferrarini A, Frasconi M. A study across scales to unveil microstructural regimes in the multivalent metal driven self-assembly of cellulose nanocrystals. NANOSCALE 2023; 15:13384-13392. [PMID: 37531168 DOI: 10.1039/d3nr01418e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Understanding the behaviour of self-assembled systems, from nanoscale building blocks to bulk materials, is a central theme for the rational design of high-performance materials. Herein, we revealed, at different length scales, how the self-assembly of TEMPO-oxidised cellulose nanocrystals (TOCNCs) into rod fractal gels is directed by the complexation of Fe3+ ions on the surface of colloidal particles. Different specificities in Fe3+ binding on the TOCNC surface and conformational changes of the nanocellulose chain were unveiled by paramagnetic NMR spectroscopy. The macroscopic properties of systems presenting different concentrations of TOCNCs and Fe3+ ions were investigated by rheology and microscopy, demonstrating the tunability of the self-assembly of cellulose nanorods driven by Fe3+ complexation. Near-atomistic coarse-grained molecular dynamics simulations were developed to gain microscopic insight into the behaviour of this colloidal system. We found that the formation of different self-assembled architectures is driven by metal-nanocellulose complexation combined with the attenuation of electrostatic repulsion and water structuration around cellulose, leading to different microstructural regimes, from isolated nanorods to disconnected rod fractal clusters and rod fractal gels. These findings lay the foundation to unlock the full potential of cellulose nanocrystals as sustainable building blocks to develop self-assembled materials with defined structural control for a range of advanced applications.
Collapse
Affiliation(s)
- Valeria Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Alberta Ferrarini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Marco Frasconi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
4
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
5
|
Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside. J Colloid Interface Sci 2023; 630:645-657. [DOI: 10.1016/j.jcis.2022.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
6
|
Bekele S, Singh K, Helton E, Farajollahi S, Naik RR, Dennis P, Kelley-Loughnane N, Berry R. Molecular Dynamics Investigation into pH Dependent Metal Binding of the Intrinsically Disordered Worm Jaw Protein, Nvjp-1. J Phys Chem B 2022; 126:6614-6623. [PMID: 36006408 PMCID: PMC9465683 DOI: 10.1021/acs.jpcb.2c02807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sclerotization of the Nereis virens jaw
is mediated
by metal binding to the histidine-rich jaw protein, Nvjp-1. Previous
studies showed that the mechanical properties of Nvjp-1 hydrogels
could be modulated with zinc binding as well as the associated anion.
Here, we show that the mechanical properties of Nvjp-1 hydrogels can
be modulated by pH and that zinc binding to Nvjp-1 is stable at both
acidic and alkaline pH conditions. To probe the mechanism of Zn2+ binding to Nvjp-1 at different pH conditions, we utilized
all atom molecular dynamics simulations employing a polarizable force
field. At low pH conditions, polar residues predominantly interacted
with Zn2+, with at most two residues interacting with a
given zinc ion. Surprisingly, little to no Zn2+ binding
was observed with the abundant Nvjp-1 acidic residues, which form
salt-bridges with the protonated histidines to effectively block their
binding to Zn2+ ions. As the pH was shifted to alkaline
conditions, Zn2+ binding residues reconfigured to form
additional coordination bonds with histidine, resulting in a reduction
in the radius of gyration that correlated with hydrogel sclerotization.
Furthermore, acetate ions were shown to facilitate the capture of
zinc ions through association with protonated histidines at low pH,
freeing acidic residues to interact with Zn2+ ions and
increasing the number of Zn2+ ions that diffuse into the
Nvjp-1 interior. Thus, these studies provide valuable molecular insights
into how amino acid residues in Nvjp-1 manage metal salt binding and
coordination in hydrogels as a function of the pH and ionic environments.
Collapse
Affiliation(s)
- Selemon Bekele
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States.,UES Inc., Dayton, Ohio 45432, United States
| | - Kristi Singh
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States.,UES Inc., Dayton, Ohio 45432, United States
| | - Evan Helton
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, United States
| | - Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States.,UES Inc., Dayton, Ohio 45432, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Patrick Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States
| | - Rajiv Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433-7131, United States
| |
Collapse
|
7
|
|
8
|
Wang Y, Wang X, Montclare JK. Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:3587-3597. [PMID: 35014444 DOI: 10.1021/acsabm.1c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate the effect of Zn2+, Cu2+, and Ni2+ coordination on the conformation, mechanical properties, contraction, and small-molecule drug encapsulation and release of a photocrosslinked protein-engineered hydrogel, CEC-D. The treatment of the CEC-D hydrogel with divalent metal (M2+) results in significant conformational changes where a loss in structure is observed with Zn2+, while both Cu2+ and Ni2+ induce a blueshift. The relationship of M2+ to mechanical properties illustrates a trend, while the CEC-D hydrogel in the presence of 2 mM Cu2+ reveals the highest increase in G' to 14.4 ± 0.7 kPa followed by 9.7 ± 0.9 kPa by addition of 2 mM Zn2+, and a decrease to 1.1 ± 0.2 kPa is demonstrated in the presence of 2 mM Ni2+. A similar observation in M2+ responsiveness emerges where CEC-D hydrogels contract into a condensed state of 2.6-fold for Cu2+, 2.4-fold for Zn2+, and 1.6-fold for Ni2+. Furthermore, CEC-D hydrogels coordinated with M2+ demonstrate control over the encapsulation and release of the small molecule curcumin. The trend of release is opposite of the mechanical and contraction properties with a 70.0 ± 5.3% release with Ni2+, 64.2 ± 1.2% release with Zn2+, and 42.3 ± 11.3 release with Cu2+. Taken together, these results indicate that the CEC-D hydrogel tuned by M2+ is a promising drug delivery platform with tunable physicochemical properties.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
9
|
Jin Y, Zhou Q, Li Z, Yang Z, Fan HJS. Calcium-cross linked polysaccharide microcapsules for controlled release and antimicrobial applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Crittenden CM, Novelli ET, Mehaffey MR, Xu GN, Giles DH, Fies WA, Dalby KN, Webb LJ, Brodbelt JS. Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1140-1150. [PMID: 32275426 PMCID: PMC7386362 DOI: 10.1021/jasms.0c00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultraviolet photodissociation (UVPD) has emerged as a promising tool to characterize proteins with regard to not only their primary sequences and post-translational modifications, but also their tertiary structures. In this study, three metal-binding proteins, Staphylococcal nuclease, azurin, and calmodulin, are used to demonstrate the use of UVPD to elucidate metal-binding regions via comparisons between the fragmentation patterns of apo (metal-free) and holo (metal-bound) proteins. The binding of staphylococcal nuclease to calcium was evaluated, in addition to a series of lanthanide(III) ions which are expected to bind in a similar manner as calcium. On the basis of comparative analysis of the UVPD spectra, the binding region for calcium and the lanthanide ions was determined to extend from residues 40-50, aligning with the known crystal structure. Similar analysis was performed for both azurin (interrogating copper and silver binding) and calmodulin (four calcium binding sites). This work demonstrates the utility of UVPD methods for determining and analyzing the metal binding sites of a variety of classes of proteins.
Collapse
Affiliation(s)
| | - Elisa T Novelli
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - M Rachel Mehaffey
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Gulan N Xu
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - David H Giles
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Whitney A Fies
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| | - Kevin N Dalby
- Division of Chemical Biology and Medicinal Chemistry, University of Texas, Austin, Texas 78712, United States
- Graduate Program in Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
- Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Farajollahi S, Dennis PB, Crosby MG, Slocik JM, Pelton AT, Hampton CM, Drummy LF, Yang SJ, Silberstein MN, Gupta MK, Naik RR. Disulfide Crosslinked Hydrogels Made From the Hydra Stinging Cell Protein, Minicollagen-1. Front Chem 2020; 7:950. [PMID: 32039158 PMCID: PMC6989532 DOI: 10.3389/fchem.2019.00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/31/2019] [Indexed: 11/28/2022] Open
Abstract
Minicollagens from cnidarian nematocysts are attractive potential building blocks for the creation of strong, lightweight and tough polymeric materials with the potential for dynamic and reconfigurable crosslinking to modulate functionality. In this study, the Hydra magnipapillata minicollagen-1 isoform was recombinantly expressed in bacteria, and a high throughput purification protocol was developed to generate milligram levels of pure protein without column chromatography. The resulting minicollagen-1 preparation demonstrated spectral properties similar to those observed with collagen and polyproline sequences as well as the ability to self-assemble into oriented fibers and bundles. Photo-crosslinking with Ru(II)( bpy ) 3 2 + was used to create robust hydrogels that were analyzed by mechanical testing. Interestingly, the minicollagen-1 hydrogels could be dissolved with reducing agents, indicating that ruthenium-mediated photo-crosslinking was able to induce disulfide metathesis to create the hydrogels. Together, this work is an important first step in creating minicollagen-based materials whose properties can be manipulated through static and reconfigurable post-translational modifications.
Collapse
Affiliation(s)
- Sanaz Farajollahi
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Marquise G. Crosby
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Joseph M. Slocik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Anthony T. Pelton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Cheri M. Hampton
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
- UES Inc., Dayton, OH, United States
| | - Lawrence F. Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Steven J. Yang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Meredith N. Silberstein
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| | - Rajesh R. Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, United States
| |
Collapse
|
12
|
Wu H, Zheng J, Kjøniksen AL, Wang W, Zhang Y, Ma J. Metallogels: Availability, Applicability, and Advanceability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806204. [PMID: 30680801 DOI: 10.1002/adma.201806204] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Introducing metal components into gel matrices provides an effective strategy to develop soft materials with advantageous properties such as: optical activity, conductivity, magnetic response activity, self-healing activity, catalytic activity, etc. In this context, a thorough overview of application-oriented metallogels is provided. Considering that many well-established metallogels start from serendipitous discoveries, insights into the structure-gelation relationship will offer a profound impact on the development of metallogels. Initially, design strategies for discovering new metallogels are discussed, then the advanced applications of metallogels are summarized. Finally, perspectives regarding the design of metallogels, the potential applications of metallogels and their derivative materials are briefly proposed.
Collapse
Affiliation(s)
- Huiqiong Wu
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Anna-Lena Kjøniksen
- Faculty of Engineering, Østfold University College, P.O. Box 700, 1757, Halden, Norway
| | - Wei Wang
- Department of Chemistry and Center for Pharmacy, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, 410082, Changsha, China
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
13
|
Gupta MK, Becknell KA, Crosby MG, Bedford NM, Wright J, Dennis PB, Naik RR. Programmable Mechanical Properties from a Worm Jaw-Derived Biopolymer through Hierarchical Ion Exposure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31928-31937. [PMID: 30165014 DOI: 10.1021/acsami.8b10107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mechanisms of biomaterial sclerotization in natural systems promise new insights into how the mechanical properties of engineered materials may be dynamically modulated. One such example involves the proteinaceous jaw of the marine sandworm, Nereis virens. Previously, the mechanical properties of the N. virens jaw were shown to be modulated by Zn binding, a property that was proposed to be enabled by the presence of the histidine-rich jaw protein, Nvjp-1. Here we demonstrate the creation of Nvjp-1-based hydrogels and show that progressive sclerotization of these hydrogels can be accomplished with hierarchical exposure to metal cations and anions. Divalent Zn cations are capable of reversibly sclerotizing the hydrogels through the formation of coordinate cross-links, an effect that is shown to be remarkably specific for Zn. Additionally, the degree of Zn-induced sclerotization is strongly influenced by the identity of the anion present in the hydrogel. Thus, the viscoelastic properties of Nvjp-1 hydrogels can be modulated through programmed, hierarchical exposure to specific cations and anions present in the sclerotizing salts. These observations have resulted in new hydrogel capabilities, such as the creation of anion-controlled shape-memory polymers, and will add to the number of control parameters that can be used to tune the properties of functional hydrogels in a dynamic manner.
Collapse
Affiliation(s)
- Maneesh K Gupta
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Kellie A Becknell
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Marquise G Crosby
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Nicholas M Bedford
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Joshua Wright
- Department of Physics , Illinois Institute of Technology , Chicago , Illinois 60616 , United States
| | - Patrick B Dennis
- Materials and Manufacturing Directorate, Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| | - Rajesh R Naik
- 711th Human Performance Wing , Air Force Research Laboratory , Wright-Patterson Air Force Base , Ohio 45433 , United States
| |
Collapse
|
14
|
Solano F. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules. Int J Mol Sci 2017; 18:E1561. [PMID: 28718807 PMCID: PMC5536049 DOI: 10.3390/ijms18071561] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
15
|
Ukmar-Godec T, Bertinetti L, Dunlop JWC, Godec A, Grabiger MA, Masic A, Nguyen H, Zlotnikov I, Zaslansky P, Faivre D. Materials Nanoarchitecturing via Cation-Mediated Protein Assembly: Making Limpet Teeth without Mineral. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701171. [PMID: 28485089 DOI: 10.1002/adma.201701171] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Teeth are designed to deliver high forces while withstanding the generated stresses. Aside from isolated mineral-free exception (e.g., marine polychaetes and squids), minerals are thought to be indispensable for tooth-hardening and durability. Here, the unmineralized teeth of the giant keyhole limpet (Megathura crenulata) are shown to attain a stiffness, which is twofold higher than any known organic biogenic structures. In these teeth, protein and chitin fibers establish a stiff compact outer shell enclosing a less compact core. The stiffness and its gradients emerge from a concerted interaction across multiple length-scales: packing of hydrophobic proteins and folding into secondary structures mediated by Ca2+ and Mg2+ together with a strong spatial control in the local fiber orientation. These results integrating nanoindentation, acoustic microscopy, and finite-element modeling for probing the tooth's mechanical properties, spatially resolved small- and wide-angle X-ray scattering for probing the material ordering on the micrometer scale, and energy-dispersive X-ray scattering combined with confocal Raman microscopy to study structural features on the molecular scale, reveal a nanocomposite structure hierarchically assembled to form a versatile damage-tolerant protein-based tooth, with a stiffness similar to mineralized mammalian bone, but without any mineral.
Collapse
Affiliation(s)
- Tina Ukmar-Godec
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - John W C Dunlop
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Aljaž Godec
- Mathematical Biophysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Michal A Grabiger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Admir Masic
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Huynh Nguyen
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| | - Igor Zlotnikov
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Paul Zaslansky
- Charite, Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, 13353, Berlin, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424, Potsdam, Germany
| |
Collapse
|