1
|
Yan J, Yin B, Zhang Q, Li C, Chen J, Huang Y, Hao J, Yi C, Zhang Y, Wong SHD, Yang M. A CRISPR-Cas12a-mediated dual-mode luminescence and colorimetric nucleic acid biosensing platform based on upconversion nanozyme. Biosens Bioelectron 2025; 270:116963. [PMID: 39603211 DOI: 10.1016/j.bios.2024.116963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
In this study, a CRISPR-Cas12a-mediated dual-mode upconversion luminescence/colorimetric nucleic acid biosensing platform is developed based on UCNP@SiO2/CeO2 (UNSC) nanozyme. Here, UNSC is conjugated with single-stranded DNA (ssDNA) probes used as both peroxidase-like nanozyme and upconversion luminescence donors. When no target nucleic acid is present, ssDNA-conjugated UNSC attaches on magnetic graphene oxide (MGO) via pi-pi stacking force, resulting in upconversion luminescence quenching (OFF) and no color change after magnetic removal of nanozymes attached on the MGO. In the presence of target nucleic acid, Cas12a is specifically activated by targeted nucleic acid and indiscriminately cleaves the ssDNA probes on UNSCs. UNSCs then detach from the MGO surface due to the weakening of binding force, leading to upconversion luminescence recovery (ON) and colorimetric change due to the existence of free nanozyme in the 3,3',5,5'-tetramethyl-benzidine assay. As a proof-of-concept, this biosensing platform shows a limit of detection of around 320 fM in the upconversion luminescence mode and ∼28.4 pM in the colorimetric mode for nucleic acid detection, respectively. This UNSC nanozyme-based CRISPR-Cas12a dual-mode biosensing system also demonstrates high selectivity, good repeatability, and facile operation, which allows easy adaption to other nucleic acid-based detection only by redesigning the sequence of CRISPR RNA.
Collapse
Affiliation(s)
- Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bohan Yin
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments Guangdong, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, 3000, Australia
| | - Siu Hong Dexter Wong
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China; Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
2
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2024. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Huang J, Wu F, Cao W, Chen Y, Yao Q, Cen P, Wang J, Hong L, Zhang X, Zhou R, Jin C, Tian M, Zhang H, Zhong Y. Ultrasmall iron-gallic acid coordination polymer nanoparticles for scavenging ROS and suppressing inflammation in tauopathy-induced Alzheimer's disease. Biomaterials 2024; 317:123042. [PMID: 39805185 DOI: 10.1016/j.biomaterials.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies. Herein, we reported ultrasmall coordination polymer nanoparticles formed by ferric ions and gallic acid (Fe-GA CPNs), which owned antioxidant and anti-inflammation properties for AD therapeutics. The facilely prepared Fe-GA CPNs exhibited remarkable superoxide dismutase-like, peroxidase-like enzyme activity, and ROS eliminating ability with great water solubility, compared with gallic acid. We demonstrated that Fe-GA CPNs effectively relieved oxidative stress, ameliorated inflammation by modulating microglial polarization towards anti-inflammation phenotype, and reduced hyperphosphorylated tau protein levels. Furthermore, Fe-GA CPNs treatment significantly improved cognitive function in tauopathy-induced AD rats, and achieved a neuroprotective effect against AD pathology. This study highlights the potential of coordination polymer nanoparticles as promising therapeutic candidates for AD and other tau-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiani Huang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Fei Wu
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Wenzhao Cao
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuhan Chen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Qiong Yao
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Lu Hong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Xiaohui Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zhang Q, Li C, Yin B, Yan J, Gu Y, Huang Y, Chen J, Lao X, Hao J, Yi C, Zhou Y, Cheung JCW, Wong SHD, Yang M. A biomimetic upconversion nanoreactors for near-infrared driven H 2 release to inhibit tauopathy in Alzheimer's disease therapy. Bioact Mater 2024; 42:165-177. [PMID: 39280581 PMCID: PMC11402069 DOI: 10.1016/j.bioactmat.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
Abnormal hyperphosphorylation of tau protein is a principal pathological hallmark in the onset of neurodegenerative disorders, such as Alzheimer's disease (AD), which can be induced by an excess of reactive oxygen species (ROS). As an antioxidant, hydrogen gas (H2) has the potential to mitigate AD by scavenging highly harmful ROS such as •OH. However, conventional administration methods of H2 face significant challenges in controlling H2 release on demand and fail to achieve effective accumulation at lesion sites. Herein, we report artificial nanoreactors that mimic natural photosynthesis to realize near-infrared (NIR) light-driven photocatalytic H2 evolution in situ. The nanoreactors are constructed by biocompatible crosslinked vesicles (CVs) encapsulating ascorbic acid and two photosensitizers, chlorophyll a (Chla) and indoline dye (Ind). In addition, platinum nanoparticles (Pt NPs) serve as photocatalysts and upconversion nanoparticles (UCNP) act as light-harvesting antennas in the nanoreacting system, and both attach to the surface of CVs. Under NIR irradiation, the nanoreactors release H2 in situ to scavenge local excess ROS and attenuate tau hyperphosphorylation in the AD mice model. Such NIR-triggered nanoreactors provide a proof-of-concept design for the great potential of hydrogen therapy against AD.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Chuanqi Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yutian Gu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jiareng Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
- Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
- Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| |
Collapse
|
5
|
Gong B, Zhang W, Cong W, Gu Y, Ji W, Yin T, Zhou H, Hu H, Zhuang J, Luo Y, Liu Y, Gao J, Yin Y. Systemic Administration of Neurotransmitter-Derived Lipidoids-PROTACs-DNA Nanocomplex Promotes Tau Clearance and Cognitive Recovery for Alzheimer's Disease Therapy. Adv Healthc Mater 2024; 13:e2400149. [PMID: 39007278 DOI: 10.1002/adhm.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) poses a significant burden on the economy and healthcare systems worldwide. Although the pathophysiology of AD remains debatable, its progression is strongly correlated with the accumulation of tau aggregates. Therefore, tau clearance from brain lesions can be a promising strategy for AD therapy. To achieve this, the present study combined proteolysis-targeting chimera (PROTAC), a novel protein-degradation technique that mediates degradation of target proteins via the ubiquitin-proteasome system, and a neurotransmitter-derived lipidoid (NT-lipidoid) nanoparticle delivery system with high blood-brain barrier-penetration activity, to generate a novel nanomedicine named NPD. Peptide 1, a cationic tau-targeting PROTAC is loaded onto the positively charged nanoparticles using DNA-intercalation technology. The resulting nanomedicine displayed good encapsulation efficiency, serum stability, drug release profile, and blood-brain barrier-penetration capability. Furthermore, NPD potently induced tau clearance in both cultured neuronal cells and the brains of AD mice. Moreover, intravenous injection of NPD led to a significant improvement in the cognitive function of the AD mice, without any remarkable abnormalities, thereby supporting its clinical development. Collectively, the novel nanomedicine developed in this study may serve as an innovative strategy for AD therapy, since it effectively and specifically induces tau protein clearance in brain lesions, which in turn enhances cognition.
Collapse
Affiliation(s)
- Baofeng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Weicong Zhang
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Wei Cong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Honglei Zhou
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
| | - Yi Luo
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, 519080, China
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
| | - Yan Liu
- Clinical Pharmacy Innovation Institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200240, China
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, 200003, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
6
|
Kim YG, Choi B, Lee Y, Lee B, Kim H, Choi SH, Park OK, Kim Y, Baik S, Kim D, Soh M, Kim CK, Hyeon T. Co-Delivery of Renal Clearable Cerium Complex and Synergistic Antioxidant Iron Complex for Treating Sepsis. ACS NANO 2024; 18:29535-29549. [PMID: 39419629 DOI: 10.1021/acsnano.4c05902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The mononuclear phagocytic system clears the circulating inorganic nanomaterials from the bloodstream, which raises concerns about the chronic toxicity of the accumulated metal species. A better understanding of the behavior of each metal after systemic injection is thus required for clinical translations. This study investigates the significance of the metal-ligand interaction on the accumulation of cerium and demonstrates that only the form in which cerium is coordinated to a multidentate chelator with a strong binding affinity does not accumulate in major organs. Specifically, cerium complexed with diethylenetriamine pentaacetic acid (DTPA) forms renally excretable nanoparticles in vivo to circumvent the leaching of cerium ions, whereas weakly coordinated cerium-based nanomaterials produce insoluble precipitates upon encountering physiological phosphate anions. Ceria-based renally clearable nanoparticles (CRNs) derived from cerium-DTPA are utilized as the antioxidant pair with iron-DTPA, in which their combination leverages the Fenton reaction to synergistically scavenge hydrogen peroxide. This reduces the gene expression of pro-inflammatory factors in the macrophages activated with lipopolysaccharide as well as improves the survival rate of septic mice by alleviating the systemic inflammatory response and its downstream tissue injury in the liver, spleen, and kidneys. This study demonstrates that CRNs combined with iron-DTPA can be utilized as nonaccumulative nanomedicines for treating systemic inflammation, thereby overcoming the limitations of conventional ceria nanoparticle-based treatments.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Boomin Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio Inc., Seoul 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Bohyung Lee
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Hyunmin Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ok Kyu Park
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yubeen Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio Inc., Seoul 08826, Republic of Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Awuah WA, Ahluwalia A, Tan JK, Sanker V, Roy S, Ben-Jaafar A, Shah DM, Tenkorang PO, Aderinto N, Abdul-Rahman T, Atallah O, Alexiou A. Theranostics advances in the treatment and diagnosis of neurological and neurosurgical diseases. Arch Med Res 2024; 56:103085. [PMID: 39369666 DOI: 10.1016/j.arcmed.2024.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Theranostics represents a significant advance in the fields of neurology and neurosurgery, offering innovative approaches that combine the diagnosis and treatment of various neurological disorders. This innovation serves as a cornerstone of personalized medicine, where therapeutic strategies are closely integrated with diagnostic tools to enable precise and targeted interventions. Primary research results emphasize the profound impact of theranostics in Neuro Oncol. In this context, it has provided valuable insights into the complexity of the tumor microenvironment and mechanisms of resistance. In addition, in the field of neurodegenerative diseases (NDs), theranostics has facilitated the identification of distinct disease subtypes and novel therapeutic targets. It has also unravelled the intricate pathophysiology underlying conditions such as cerebrovascular disease (CVD) and epilepsy, setting the stage for more refined treatment approaches. As theranostics continues to evolve through ongoing research and refinement, its goals include further advancing the field of precision medicine, developing practical biomarkers for clinical use, and opening doors to new therapeutic opportunities. Nevertheless, the integration of these approaches into clinical settings presents challenges, including ethical considerations, the need for advanced data interpretation, standardization of procedures, and ensuring cost-effectiveness. Despite these obstacles, the promise of theranostics to significantly improve patient outcomes in the fields of neurology and neurosurgery remains a source of optimism for the future of healthcare.
Collapse
Affiliation(s)
| | - Arjun Ahluwalia
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | - Vivek Sanker
- Department of Neurosurgery, Stanford University, CA, USA
| | - Sakshi Roy
- School of Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Adam Ben-Jaafar
- University College Dublin, School of Medicine, Belfield, Dublin 4, Ireland
| | - Devansh Mitesh Shah
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research and Development, Funogen, Athens, Greece; Department of Research and Development, AFNP Med, Wien, Austria; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.
| |
Collapse
|
8
|
Yang Y, Wang Y, Jiang X, Mi J, Ge D, Tong Y, Zhu Y. Modified Ce/Zr-MOF Nanoparticles Loaded with Curcumin for Alzheimer's Disease via Multifunctional Modulation. Int J Nanomedicine 2024; 19:9943-9959. [PMID: 39355653 PMCID: PMC11444058 DOI: 10.2147/ijn.s479242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a neurodegenerative condition, stands as the most prevalent form of dementia. Its complex pathological mechanisms and the formidable blood-brain barrier (BBB) pose significant challenges to current treatment approaches. Oxidative stress is recognized as a central factor in AD, underscoring the importance of antioxidative strategies in its treatment. In this study, we developed a novel brain-targeted nanoparticle, Ce/Zr-MOF@Cur-Lf, for AD therapy. Methods Layer-by-layer self-assembly technology was used to prepare Ce/Zr-MOF@Cur-Lf. In addition, the effect on the intracellular reactive oxygen species level, the uptake effect by PC12 and bEnd.3 cells and the in vitro BBB permeation effect were investigated. Finally, the mouse AD model was established by intrahippocampal injection of Aβ1-42, and the in vivo biodistribution, AD therapeutic effect and biosafety of the nanoparticles were researched at the animal level. Results As anticipated, Ce/Zr-MOF@Cur-Lf demonstrated efficient BBB penetration and uptake by PC12 cells, leading to attenuation of H2O2-induced oxidative damage. Moreover, intravenous administration of Ce/Zr-MOF@Cur-Lf resulted in rapid brain access and improvement of various pathological features of AD, including neuronal damage, amyloid-β deposition, dysregulated central cholinergic system, oxidative stress, and neuroinflammation. Conclusion Overall, Ce/Zr-MOF@Cur-Lf represents a promising approach for precise brain targeting and multi-target mechanisms in AD therapy, potentially serving as a viable option for future clinical treatment.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yiling Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xinran Jiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jiahao Mi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Dizhang Ge
- Department of Pharmacy, People’s Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 624000, People’s Republic of China
| | - Yuna Tong
- Department of Nephrology, The Third People’s Hospital of Chengdu, Chongqing Medical University, Chengdu, 610031, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Department of Pharmacy, People’s Hospital of Aba Tibetan and Qiang Autonomous Prefecture, Aba, 624000, People’s Republic of China
| |
Collapse
|
9
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
10
|
Xu L, Wu X, Zhao S, Hu H, Wang S, Zhang Y, Chen J, Zhang X, Zhao Y, Ma R, Huang F, Shi L. Harnessing Nanochaperone-Mediated Autophagy for Selective Clearance of Pathogenic Tau Protein in Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313869. [PMID: 38688523 DOI: 10.1002/adma.202313869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Accumulation of pathological tau is a hallmark of Alzheimer's disease (AD), which correlates more closely with cognitive impairment than does the amyloid-β (Aβ) burden. Autophagy is a powerful process for the clearance of toxic proteins including aberrant tau. However, compromised autophagy is demonstrated in neurodegeneration including AD, and current autophagy inducers remain enormously challenging due to inability of restoring autophagy pathway and lack of targeting specificity. Here, pathogenic tau-specific autophagy based on customized nanochaperone is developed for AD treatment. In this strategy, the nanochaperone can selectively bind to pathogenic tau and maintain tau homeostasis, thereby ensuring microtubule stability which is important for autophagy pathway. Meanwhile, the bound pathogenic tau can be sequestered in autophagosomes by in situ autophagy activation of nanochaperone. Consequently, autophagosomes wrapping with pathogenic tau are able to be trafficked along the stabilized microtubule to achieve successful fusion with lysosomes, resulting in the enhancement of autophagic flux and pathologic tau clearance. After treatment with this nanochaperone-mediated autophagy strategy, the tau burden, neuron damages, and cognitive deficits of AD mice are significantly alleviated in the brain. Therefore, this work represents a promising candidate for AD-targeted therapy and provides new insights into future design of anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Linlin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaohui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuyue Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haodong Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Silei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yongxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jiajing Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaochen Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Rujiang Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P.R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300090, P. R. China
| |
Collapse
|
11
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
12
|
Zhang L, Cao K, Xie J, Liang X, Gong H, Luo Q, Luo H. Aβ 42 and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer's disease. J Nanobiotechnology 2024; 22:278. [PMID: 38783363 PMCID: PMC11112798 DOI: 10.1186/s12951-024-02543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Amyloid-β (Aβ) readily misfolds into neurotoxic aggregates, generating high levels of reactive oxygen species (ROS), leading to progressive oxidative damage and ultimately cell death. Therefore, simultaneous inhibition of Aβ aggregation and scavenging of ROS may be a promising therapeutic strategy to alleviate Alzheimer's disease pathology. Based on the previously developed antibody 1F12 that targets all forms of Aβ42, we developed an Aβ42 and ROS dual-targeting nanocomposite using biodegradable mesoporous silica nanoparticles as carriers to load ultra-small cerium oxide nanocrystals (bMSNs@Ce-1F12). By modifying the brain-targeted rabies virus glycoprotein 29 (RVG29-bMSNs@Ce-1F12), this intelligent nanocomposite can efficiently target brain Aβ-rich regions. Combined with peripheral and central nervous system treatments, RVG29-bMSNs@Ce-1F12 can significantly alleviate AD symptoms by inhibiting Aβ42 misfolding, accelerating Aβ42 clearance, and scavenging ROS. Furthermore, this synergistic effect of ROS scavenging and Aβ clearance exhibited by this Aβ42 and ROS dual-targeted strategy also reduced the burden of hyperphosphorylated tau, alleviated glial cell activation, and ultimately improved cognitive function in APP/PS1 mice. Our findings indicate that RVG29-bMSNs@Ce-1F12 is a promising nanodrug that can facilitate multi-target treatment of AD.
Collapse
Affiliation(s)
- Liding Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Kai Cao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Xie
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| | - Haiming Luo
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215123, China.
| |
Collapse
|
13
|
Hasan I, Guo B, Zhang J, Chang C. Advances in Antioxidant Nanomedicines for Imaging and Therapy of Alzheimer's Disease. Antioxid Redox Signal 2024; 40:863-888. [PMID: 36070437 DOI: 10.1089/ars.2022.0107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are crucial signaling molecules in the regulation of numerous physiological activities including the formation and function of the central nervous system (CNS). So far, many functional antioxidant nanomedicines with ROS scavenging capability to reduce oxidative stress in Alzheimer's disease (AD) have been developed for both imaging and therapy of AD. Recent Advances: This review focuses on the most recent advances in antioxidant nanomedicines such as ROS-scavenging nanoparticles (NPs), NPs with intrinsic antioxidant activity, and drug-loaded antioxidant NPs for AD theranostics. In addition to antioxidant nanomedicines, the emerging phototherapy treatment paradigms and the promising preclinic drug carriers, such as exosomes and liposomes, are also introduced. Critical Issues: In general, excessive generation of ROS can cause lipid peroxidation, oxidative DNA, as well as protein damage, aggravating pathogenic alterations, accumulation of amyloid-beta plaques and neurofibrillary tangles in the brain. These negative factors further cause cell death, which is the beginning of AD. Future Directions: We anticipate that this review will help researchers in the area of preclinical research and clinical translation of antioxidant nanomedicines for AD imaging and therapy.
Collapse
Affiliation(s)
- Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Liu Y, Tan Y, Cheng G, Ni Y, Xie A, Zhu X, Yin C, Zhang Y, Chen T. Customized Intranasal Hydrogel Delivering Methylene Blue Ameliorates Cognitive Dysfunction against Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307081. [PMID: 38395039 DOI: 10.1002/adma.202307081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The accumulation of hyperphosphorylated tau protein aggregates is a key pathogenic event in Alzheimer's disease (AD) and induces mitochondrial dysfunction and reactive oxygen species overproduction. However, the treatment of AD remains challenging owning to the hindrance caused by the blood-brain barrier (BBB) and the complex pathology of AD. Nasal delivery represents an effective means of circumventing the BBB and delivering drugs to the brain. In this study, black phosphorus (BP) is used as a drug carrier, as well as an antioxidant, and loaded with a tau aggregation inhibitor, methylene blue (MB), to obtain BP-MB. For intranasal (IN) delivery, a thermosensitive hydrogel is fabricated by cross-linking carboxymethyl chitosan and aldehyde Pluronic F127 (F127-CHO) micelles. The BP-MB nanocomposite is incorporated into the hydrogel to obtain BP-MB@Gel. BP-MB@Gel could be injected intranasally, providing high nasal mucosal retention and controlled drug release. After IN administration, BP-MB is continuously released and delivered to the brain, exerting synergistic therapeutic effects by suppressing tau neuropathology, restoring mitochondrial function, and alleviating neuroinflammation, thus inducing cognitive improvements in mouse models of AD. These findings highlight a potential strategy for brain-targeted drug delivery in the management of the complex pathologies of AD.
Collapse
Affiliation(s)
- Yujing Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yun Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guopan Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Aihua Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaozhen Zhu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| |
Collapse
|
15
|
Nwaji N, Gwak J, Nguyen MC, Nguyen HQ, Kang H, Choi Y, Kim Y, Chen H, Lee J. Emerging potentials of Fe-based nanomaterials for chiral sensing and imaging. Med Res Rev 2024; 44:897-918. [PMID: 38084636 DOI: 10.1002/med.22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/11/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Fe-based nanostructures have possessed promising properties that make it suitable for chiral sensing and imaging applications owing to their ultra-small size, non-toxicity, biocompatibility, excellent photostability, tunable fluorescence, and water solubility. This review summarizes the recent research progress in the field of Fe-based nanostructures and places special emphases on their applications in chiral sensing and imaging. The synthetic strategies to prepare the targeted Fe-based structures were also introduced. The chiral sensing and imaging applications of the nanostructures are discussed in details.
Collapse
Affiliation(s)
- Njemuwa Nwaji
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Juyong Gwak
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - My-Chi Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hyojin Kang
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Youngmi Kim
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Jaebeom Lee
- Institute of Materials Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
17
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
18
|
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210819. [PMID: 36793245 DOI: 10.1002/adma.202210819] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio, Inc., Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
19
|
Andrikopoulos N, Tang H, Wang Y, Liang X, Li Y, Davis TP, Ke PC. Exploring Peptido-Nanocomposites in the Context of Amyloid Diseases. Angew Chem Int Ed Engl 2024; 63:e202309958. [PMID: 37943171 DOI: 10.1002/anie.202309958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Therapeutic peptides are a major class of pharmaceutical drugs owing to their target-binding specificity as well as their versatility in inhibiting aberrant protein-protein interactions associated with human pathologies. Within the realm of amyloid diseases, the use of peptides and peptidomimetics tailor-designed to overcome amyloidogenesis has been an active research endeavor since the late 90s. In more recent years, incorporating nanoparticles for enhancing the biocirculation and delivery of peptide drugs has emerged as a frontier in nanomedicine, and nanoparticles have further demonstrated a potency against amyloid aggregation and cellular inflammation to rival strategies employing small molecules, peptides, and antibodies. Despite these efforts, however, a fundamental understanding of the chemistry, characteristics and function of peptido-nanocomposites is lacking, and a systematic analysis of such strategy for combating a range of amyloid pathogeneses is missing. Here we review the history, principles and evolving chemistry of constructing peptido-nanocomposites from bottom up and discuss their future application against amyloid diseases that debilitate a significant portion of the global population.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Huayuan Tang
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yue Wang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Xiufang Liang
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 510006, China
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Thomas P Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| |
Collapse
|
20
|
Xu R, Zhang S, Wang P, Zhang R, Lin P, Wang Y, Gao L, Wei H, Zhang X, Ling D, Yan X, Fan K. Nanozyme-based strategies for efficient theranostics of brain diseases. Coord Chem Rev 2024; 501:215519. [DOI: 10.1016/j.ccr.2023.215519] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Tang J, Sun R, Wan J, Xu Z, Zou Y, Zhang Q. Atomic insights into the inhibition of R3 domain of tau protein by epigallocatechin gallate, quercetin and gallic acid. Biophys Chem 2024; 305:107142. [PMID: 38088006 DOI: 10.1016/j.bpc.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024]
Abstract
Inhibiting tau protein aggregation has become a prospective avenue for the therapeutic development of tauopathies. The third microtubule-binding repeat (R3) domain of tau is confirmed as the most aggregation-favorable fragment of the whole protein. As dimerization is the first step of the aggregation of tau into amyloid fibrils, impeding the dimerization of the R3 domain is critical to prevent the full-length tau aggregation. Natural polyphenol small molecules epigallocatechin gallate (EGCG), quercetin (QE) and gallic acid (GA) are proven to inhibit the aggregation of the full-length recombinant tau (For EGCG and QE) or the R3 domain (For GA) of tau in vitro. However, the underlying molecular mechanisms of the inhibitive effects on the R3 domain of tau remain largely unknown. In this study, we conducted numerous all-atom molecular dynamics simulations on R3 dimers with and without EGCG, QE or GA, respectively. The results reveal that all three molecules can effectively decrease the β structure composition of the R3 dimer, induce the dimer to adopt loosely-packed conformations, and weaken interchain interactions, thus impeding the dimerization of the R3 peptide chains. The specific preferentially binding sites for the three molecules exhibit similarities and differences. Hydrophobic, π-π stacking and hydrogen-bonding interactions collectively drive EGCG, QE and GA respectively binding on the R3 dimer, while QE also binds with the dimer through cation-π interaction. Given the incurable nature of tauopathies hitherto, our research provides helpful knowledge for the development of drugs to treat tauopathies.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
22
|
Tang J, Sun R, Wan J, Zou Y, Zhang Q. Molecular mechanisms involved in the destabilization of two types of R3-R4 tau fibrils associated with chronic traumatic encephalopathy by Fisetin. Phys Chem Chem Phys 2024; 26:3322-3334. [PMID: 38197437 DOI: 10.1039/d3cp05427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Chronic traumatic encephalopathy is a neurodegenerative tauopathy pathologically characterized by fibrillary tau aggregates in the depth of sulci. Clearing fibrous tau aggregates is considered a promising strategy in the treatment of CTE. Fisetin (FS), a natural polyphenolic small molecule, was confirmed to disassociate the tau filaments in vitro. However, the molecular mechanisms of FS in destabilizing the CTE-related R3-R4 tau fibrils remain largely unknown. In this study, we compared the atomic-level structural differences of the two types of CTE-related R3-R4 tau fibrils and explored the influence and molecular mechanisms of FS on the two types of fibrils by conducting multiple molecular dynamics (MD) simulations. The results reveal that the type 1 fibril displays higher structural stability than the type 2 fibril, with a lower root-mean-square-fluctuation value and higher β-sheet structure probability. FS can destabilize both types of fibrils by decreasing the β-sheet structure content, interrupting the mainchain H-bond network, and increasing the solvent accessible surface area and β7-β8 angle of the fibrils. H-bonding, π-π stacking and cation-π are the common interactions driving FS molecules binding on the two types of fibrils, while the hydrophobic interaction occurs only in the type 2 fibril. Due to the relatively short simulation time, our study captures the early molecular mechanisms. However, it does provide beneficial information for the design of drugs to prevent or treat CTE.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
23
|
Li Y, Ni N, Lee M, Wei W, Andrikopoulos N, Kakinen A, Davis TP, Song Y, Ding F, Leong DT, Ke PC. Endothelial leakiness elicited by amyloid protein aggregation. Nat Commun 2024; 15:613. [PMID: 38242873 PMCID: PMC10798980 DOI: 10.1038/s41467-024-44814-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/05/2024] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is a major cause of dementia debilitating the global ageing population. Current understanding of the AD pathophysiology implicates the aggregation of amyloid beta (Aβ) as causative to neurodegeneration, with tauopathies, apolipoprotein E and neuroinflammation considered as other major culprits. Curiously, vascular endothelial barrier dysfunction is strongly associated with Aβ deposition and 80-90% AD subjects also experience cerebral amyloid angiopathy. Here we show amyloid protein-induced endothelial leakiness (APEL) in human microvascular endothelial monolayers as well as in mouse cerebral vasculature. Using signaling pathway assays and discrete molecular dynamics, we revealed that the angiopathy first arose from a disruption to vascular endothelial (VE)-cadherin junctions exposed to the nanoparticulates of Aβ oligomers and seeds, preceding the earlier implicated proinflammatory and pro-oxidative stressors to endothelial leakiness. These findings were analogous to nanomaterials-induced endothelial leakiness (NanoEL), a major phenomenon in nanomedicine depicting the paracellular transport of anionic inorganic nanoparticles in the vasculature. As APEL also occurred in vitro with the oligomers and seeds of alpha synuclein, this study proposes a paradigm for elucidating the vascular permeation, systemic spread, and cross-seeding of amyloid proteins that underlie the pathogeneses of AD and Parkinson's disease.
Collapse
Affiliation(s)
- Yuhuan Li
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Nengyi Ni
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Myeongsang Lee
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Wei Wei
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - David Tai Leong
- National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.
- The Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China.
| |
Collapse
|
24
|
Paul PS, Patel T, Cho JY, Yarahmady A, Khalili A, Semenchenko V, Wille H, Kulka M, Mok SA, Kar S. Native PLGA nanoparticles attenuate Aβ-seed induced tau aggregation under in vitro conditions: potential implication in Alzheimer's disease pathology. Sci Rep 2024; 14:144. [PMID: 38167993 PMCID: PMC10762165 DOI: 10.1038/s41598-023-50465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Evidence suggests that beta-amyloid (Aβ)-induced phosphorylation/aggregation of tau protein plays a critical role in the degeneration of neurons and development of Alzheimer's disease (AD), the most common cause of dementia affecting the elderly population. Many studies have pursued a variety of small molecules, including nanoparticles conjugated with drugs to interfere with Aβ and/or tau aggregation/toxicity as an effective strategy for AD treatment. We reported earlier that FDA approved PLGA nanoparticles without any drug can attenuate Aβ aggregation/toxicity in cellular/animal models of AD. In this study, we evaluated the effects of native PLGA on Aβ seed-induced aggregation of tau protein using a variety of biophysical, structural and spectroscopic approaches. Our results show that Aβ1-42 seeds enhanced aggregation of tau protein in the presence and absence of heparin and the effect was attenuated by native PLGA nanoparticles. Interestingly, PLGA inhibited aggregation of both 4R and 3R tau isoforms involved in the formation of neurofibrillary tangles in AD brains. Furthermore, Aβ seed-induced tau aggregation in the presence of arachidonic acid was suppressed by native PLGA. Collectively, our results suggest that native PLGA nanoparticles can inhibit the Aβ seed-induced aggregation of different tau protein isoforms highlighting their therapeutic implication in the treatment of AD.
Collapse
Affiliation(s)
- Pallabi Sil Paul
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Tark Patel
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Jae-Young Cho
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Allan Yarahmady
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Aria Khalili
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Valentyna Semenchenko
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
| | - Holger Wille
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB, T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Sue-Ann Mok
- Departments of Biochemistry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada
| | - Satyabrata Kar
- Departments of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, Departments of Medicine (Neurology) and Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
25
|
Boyton I, Valenzuela SM, Collins-Praino LE, Care A. Neuronanomedicine for Alzheimer's and Parkinson's disease: Current progress and a guide to improve clinical translation. Brain Behav Immun 2024; 115:631-651. [PMID: 37967664 DOI: 10.1016/j.bbi.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023] Open
Abstract
Neuronanomedicine is an emerging multidisciplinary field that aims to create innovative nanotechnologies to treat major neurodegenerative disorders, such as Alzheimer's (AD) and Parkinson's disease (PD). A key component of neuronanomedicine are nanoparticles, which can improve drug properties and demonstrate enhanced safety and delivery across the blood-brain barrier, a major improvement on existing therapeutic approaches. In this review, we critically analyze the latest nanoparticle-based strategies to modify underlying disease pathology to slow or halt AD/PD progression. We find that a major roadblock for neuronanomedicine translation to date is a poor understanding of how nanoparticles interact with biological systems (i.e., bio-nano interactions), which is partly due to inconsistent reporting in published works. Accordingly, this review makes a set of specific recommendations to help guide researchers to harness the unique properties of nanoparticles and thus realise breakthrough treatments for AD/PD.
Collapse
Affiliation(s)
- India Boyton
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | - Stella M Valenzuela
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia
| | | | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Gadigal Country, NSW 2007, Australia.
| |
Collapse
|
26
|
Lee SH, Son HJ. Second Wave, Late-Stage Neuroinflammation in Cleared Brains of Aged 5xFAD Alzheimer's Mice Detected by Macrolaser Light Sheet Microscopy Imaging. Int J Mol Sci 2023; 24:17058. [PMID: 38069392 PMCID: PMC10707588 DOI: 10.3390/ijms242317058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
This study leverages the innovative imaging capabilities of macrolaser light-sheet microscopy to elucidate the 3D spatial visualization of AD-associated neuropathologic networks in the transparent brains of 44-week-old 5xFAD mice. Brain samples from ten AD and seven control mice were prepared through a hydrophilic tissue-clearing pipeline and immunostained with thioflavin S (β-amyloid), anti-CD11b antibody (microglia), and anti-ACSA-2 antibody (astrocytes). The 5xFAD group exhibited significantly higher average total surface volumes of β-amyloid accumulation than the control group (AD, 898,634,368 µm3 [383,355,488-1,324,986,752]; control, 33,320,178 µm3 [11,156,785-65,390,988], p = 0.0006). Within the AD group, there was significant interindividual and interindividual variability concerning the number and surface volume of individual amyloid particles throughout the entire brain. In the context of neuroinflammation, the 5xFAD group showed significantly higher average total surface volumes of anti-ACSA-2-labeled astrocytes (AD, 59,064,360 µm3 [27,815,500-222,619,280]; control, 20,272,722 µm3 [9,317,288-27,223,352], p = 0.0047) and anti-CD11b labeled microglia (AD, 51,210,100 µm3 [15,309,118-135,532,144]; control, 23,461,593 µm3 [14,499,170-27,924,110], p = 0.0162) than the control group. Contrary to the long-standing finding that early-stage neuroinflammation precedes the subsequent later-stage of neurodegeneration, our data reveal that the second wave, late-stage active neuroinflammation persists in the aged AD brains, even as they continue to show signs of ongoing neurodegeneration and significant amyloid accumulation.
Collapse
Affiliation(s)
- Suk Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University Medical Center, Dankook University College of Medicine, Cheonan 31116, Republic of Korea
| |
Collapse
|
27
|
Geethika M, Singh N, Kumar S, Kumar SKN, Mugesh G. A Redox Modulatory SOD Mimetic Nanozyme Prevents the Formation of Cytotoxic Peroxynitrite and Improves Nitric Oxide Bioavailability in Human Endothelial Cells. Adv Healthc Mater 2023; 12:e2300621. [PMID: 37524524 DOI: 10.1002/adhm.202300621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/22/2023] [Indexed: 08/02/2023]
Abstract
The endothelium-derived signalling molecule nitric oxide (NO) in addition to controlling multifarious servo-regulatory functions, suppresses key processes in vascular lesion formation and prevents atherogenesis and other vascular abnormalities. The conversion of NO into cytotoxic and powerful oxidant peroxynitrite (ONOO- ) in a superoxide (O2 .- )-rich environment has emerged as a major reason for reduced NO levels in vascular walls, leading to endothelial dysfunction and cardiovascular complications. So, designing superoxide dismutase (SOD) mimetics that can selectively catalyze the dismutation of O2 .- in the presence of NO, considering their rapid reaction is challenging and is of therapeutic relevance. Herein, the authors report that SOD mimetic cerium vanadate (CeVO4 ) nanozymes effectively regulate the bioavailability of both NO and O2 .- , the two vital constitutive molecules of vascular endothelium, even in the absence of cellular SOD enzyme. The nanozymes optimally modulate the O2 .- level in endothelial cells under oxidative stress conditions and improve endogenously generated NO levels by preventing the formation of ONOO- . Furthermore, nanoparticles exhibit size- and morphology-dependent uptake into the cells and internalize via the clathrin-mediated endocytosis pathway. Intravenous administration of CeVO4 nanoparticles in mice caused no definite organ toxicity and unaltered haematological and biochemical parameters, indicating their biosafety and potential use in biological applications.
Collapse
Affiliation(s)
- Motika Geethika
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Sagar Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
28
|
Singh N, Sherin GR, Mugesh G. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202301232. [PMID: 37083312 DOI: 10.1002/anie.202301232] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Nanozymes, nanomaterials with enzyme-mimicking activity, have attracted tremendous interest in recent years owing to their ability to replace natural enzymes in various biomedical applications, such as biosensing, therapeutics, drug delivery, and bioimaging. In particular, the nanozymes capable of regulating the cellular redox status by mimicking the antioxidant enzymes in mammalian cells are of great therapeutic significance in oxidative-stress-mediated disorders. As the distinction of physiological oxidative stress (oxidative eustress) and pathological oxidative stress (oxidative distress) occurs at a fine borderline, it is a great challenge to design nanozymes that can differentially sense the two extremes in cells, tissues and organs and mediate appropriate redox chemical reactions. In this Review, we summarize the advances in the development of redox-active nanozymes and their biomedical applications. We primarily highlight the therapeutic significance of the antioxidant and prooxidant nanozymes in various disease model systems, such as cancer, neurodegeneration, and cardiovascular diseases. The future perspectives of this emerging area of research and the challenges associated with the biomedical applications of nanozymes are described.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Current address: Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 171 65, Solna, Sweden
| | - G R Sherin
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
29
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
30
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
31
|
Song X, Zheng Z, Ouyang S, Chen H, Sun M, Lin P, Chen Y, You Y, Hao W, Tao J, Zhao P. Biomimetic Epigallocatechin Gallate-Cerium Assemblies for the Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37399544 DOI: 10.1021/acsami.3c02768] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune and inflammatory disease that is so far incurable with long-term health risks. The high doses and frequent administration for the available RA drug always lead to adverse side effects. Aiming at the obstacles to achieving effective RA treatment, we prepared macrophage cell membrane-camouflaged nanoparticles (M-EC), which were assembled from epigallocatechin gallate (EGCG) and cerium(IV) ions. Due to its geometrical similarity to the active metal sites of a natural antioxidant enzyme, the EC possessed a high scavenge efficiency to various types of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The macrophage cell membrane assisted M-EC in escaping from the immune system, being uptaken by inflammatory cells, and specifically binding IL-1β. After tail vein injection to the collagen-induced arthritis (CIA) mouse model, the M-EC accumulated at inflamed joints and effectively repaired the bone erosion and cartilage damage of rheumatoid arthritis by relieving synovial inflammation and cartilage erosion. It is expected that the M-EC can not only pave a new way for designing metal-phenolic networks with better biological activity but also provide a more biocompatible therapeutic strategy for effective treatment of RA.
Collapse
Affiliation(s)
- Xiangfei Song
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingyan Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Hao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
32
|
Abstract
The nanoscale properties of nanomaterials, especially nanoparticles, including size, shape, and surface charge, have been extensively studied for their impact on nanomedicine. Given the inherent chiral nature of biological systems and their high enantiomeric selectivity, there is rising interest to manipulate the chirality of nanomaterials to enhance their biomolecular interactions and improve nanotherapeutics. Chiral nanostructures are currently more prevalently used in biosensing and diagnostic applications owing to their distinctive physical and optical properties, but they hold great promise for use in nanomedicine. In this Review, we first discuss stereospecific interactions between chiral nanomaterials and biomolecules before comparing the synthesis and characterization methods of chiral nanoparticles and nanoassemblies. Finally, we examine the applications of chiral nanotherapeutics in cancer, immunomodulation, and neurodegenerative diseases and propose plausible mechanisms in which chiral nanomaterials interact with cells for biological manipulation. This Review on chirality is a timely reminder of the arsenal of nanoscale modifications to boost research in nanotherapeutics.
Collapse
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
- Institute of Health Innovation and Technology, National University of Singapore, Singapore 117599
- Tissue Engineering Program, National University of Singapore, Singapore 117510
| |
Collapse
|
33
|
Thao NTM, Do HDK, Nam NN, Tran NKS, Dan TT, Trinh KTL. Antioxidant Nanozymes: Mechanisms, Activity Manipulation, and Applications. MICROMACHINES 2023; 14:1017. [PMID: 37241640 PMCID: PMC10220853 DOI: 10.3390/mi14051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase play important roles in the inhibition of oxidative-damage-related pathological diseases. However, natural antioxidant enzymes face some limitations, including low stability, high cost, and less flexibility. Recently, antioxidant nanozymes have emerged as promising materials to replace natural antioxidant enzymes for their stability, cost savings, and flexible design. The present review firstly discusses the mechanisms of antioxidant nanozymes, focusing on catalase-, superoxide dismutase-, and glutathione peroxidase-like activities. Then, we summarize the main strategies for the manipulation of antioxidant nanozymes based on their size, morphology, composition, surface modification, and modification with a metal-organic framework. Furthermore, the applications of antioxidant nanozymes in medicine and healthcare are also discussed as potential biological applications. In brief, this review provides useful information for the further development of antioxidant nanozymes, offering opportunities to improve current limitations and expand the application of antioxidant nanozymes.
Collapse
Affiliation(s)
- Nguyen Thi My Thao
- School of Medicine and Pharmacy, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- College of Korean Medicine, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | | | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
34
|
Jia YL, Xu CH, Li XQ, Chen HY, Xu JJ. Visual analysis of Alzheimer disease biomarker via low-potential driven bipolar electrode. Anal Chim Acta 2023; 1251:340980. [PMID: 36925305 DOI: 10.1016/j.aca.2023.340980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Developing a simple, economical, and accurate diagnostic method has positive practical significance for the early prevention and intervention of Alzheimer's disease (AD). Herein, combining a closed bipolar electrode (BPE) chip with multicolor electrochemiluminescence (ECL) imaging technology, we constructed a low-voltage driven portable visualized ECL device for the early screening of AD. By introducing parallel resistance, the total resistance of the circuit was greatly reduced. A classical mixture of Ir(ppy)3 and Ru(bpy)32+ was used as multicolor emitters of the anode with TPrA as the co-reactant. Capture of amyloid-β (Aβ) through antigen-antibody recognition, and signal amplification by electroactive covalent organic frameworks (COF) probe at the cathode of BPE caused the significantly increased faradaic current. The electrical balance of the BPE system resulted in the change of the emission color from green to red at the anode. The ECL-BPE sensor shows good reproducibility and high sensitivity with detection limit of 1 pM by naked eye. The driving voltage is 3.0 V, which means the chip could be driven by two fifth batteries. The visualized ECL-BPE sensor provides a promising point-of-care testing (POCT) tool for the screening of Alzheimer's-related diseases in the early stage.
Collapse
Affiliation(s)
- Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
36
|
Zhang L, Wu J, Zhu Z, He Y, Fang R. Mitochondrion: A bridge linking aging and degenerative diseases. Life Sci 2023; 322:121666. [PMID: 37030614 DOI: 10.1016/j.lfs.2023.121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Aging is a natural process, characterized by progressive loss of physiological integrity, impaired function, and increased vulnerability to death. For centuries, people have been trying hard to understand the process of aging and find effective ways to delay it. However, limited breakthroughs have been made in anti-aging area. Since the hallmarks of aging were summarized in 2013, increasing studies focus on the role of mitochondrial dysfunction in aging and aging-related degenerative diseases, such as neurodegenerative diseases, osteoarthritis, metabolic diseases, and cardiovascular diseases. Accumulating evidence indicates that restoring mitochondrial function and biogenesis exerts beneficial effects in extending lifespan and promoting healthy aging. In this paper, we provide an overview of mitochondrial changes during aging and summarize the advanced studies in mitochondrial therapies for the treatment of degenerative diseases. Current challenges and future perspectives are proposed to provide novel and promising directions for future research.
Collapse
Affiliation(s)
- Lanlan Zhang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianlong Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ziguan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Renpeng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
38
|
Song S, Lee JU, Jeon MJ, Kim S, Lee CN, Sim SJ. Precise profiling of exosomal biomarkers via programmable curved plasmonic nanoarchitecture-based biosensor for clinical diagnosis of Alzheimer's disease. Biosens Bioelectron 2023; 230:115269. [PMID: 37001292 DOI: 10.1016/j.bios.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of complex pathogenesis, with overt symptoms following disease progression. Early AD diagnosis is challenging due to the lack of robust biomarkers and limited patient access to diagnostics via neuroimaging and cerebrospinal fluid (CSF) tests. Exosomes present in body fluids are attracting attention as diagnostic biomarkers that directly reflect neuropathological features within the brain. In particular, exosomal miRNAs (exomiRs) signatures are involved in AD pathogenesis, showing a different expression between patients and the healthy controls (HCs). However, low yield and high homologous nature impede the accuracy and reproducibility of exosome blood-based AD diagnostics. Here, we developed a programmable curved plasmonic nanoarchitecture-based biosensor to analyze exomiRs in clinical serum samples for accurate AD diagnosis. To allow the detection of exomiRs in serum at attomolar levels, nanospaces (e.g., nanocrevice and nanocavity) were introduced into the nanostructures to dramatically increase the spectral sensitivity by adjusting the bending angle of the plasmonic nanostructure through sodium chloride concentration control. The developed biosensor classifies individuals into AD, mild cognitive impairment (MCI) patients, and HCs through profiling and quantifying exomiRs. Furthermore, integrating analysis expression patterns of multiple exosomal biomarkers improved serum-based diagnostic performance (average accuracy of 98.22%). Therefore, precise, highly sensitive serum-derived exosomal biomarker detection-based plasmonic biosensor has a robust capacity to predict the molecular pathologic of neurodegenerative disease, progression of cognitive decline, MCI/AD conversion, as well as early diagnosis and treatment.
Collapse
|
39
|
Tang J, Zou Y, Gong Y, Xu Z, Wan J, Wei G, Zhang Q. Molecular Mechanism in the Disruption of Chronic Traumatic Encephalopathy-Related R3-R4 Tau Protofibril by Quercetin and Gallic Acid: Similarities and Differences. ACS Chem Neurosci 2023; 14:897-908. [PMID: 36749931 DOI: 10.1021/acschemneuro.2c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a unique progressive neurodegenerative tauopathy pathologically related to the aggregation of the tau protein to neurofibrillary tangles. Disrupting tau oligomers (protofibril) is a promising strategy to prevent CTE. Quercetin (QE) and gallic acid (GA), two polyphenol small molecules abundant in natural crops, were proved to inhibit recombinant tau and the R3 fragment of human full-length tau in vitro. However, their disruptive effect on CTE-related protofibril and the underlying molecular mechanism remain elusive. Cryo-electron microscopy resolution reveals that the R3-R4 fragment of tau forms the core of the CTE-related tau protofibril. In this study, we conducted extensive all-atom molecular dynamics simulations on CTE-related R3-R4 tau protofibril with and without QE/GA molecules. The results disclose that both QE and GA can disrupt the global structure of the protofibril, while GA shows a relatively strong effect. The binding sites, exact binding patterns, and disruptive modes for the two molecules show similarities and differences. Strikingly, both QE and GA can insert into the hydrophobic cavity of the protofibril, indicating they have the potential to compete for the space in the cavity with aggregation cofactors unique to CTE-related protofibril and thus impede the further aggregation of the tau protein. Due to relatively short time scale, our study captures the early disruptive mechanism of CTE-related R3-R4 tau protofibril by QE/GA. However, our research does provide valuable knowledge for the design of supplements or drugs to prevent or delay the development of CTE.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 886 Yuhangtang Road, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yehong Gong
- School of Sports Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Zhengdong Xu
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
40
|
Zhang L, Meng W, Chen X, Wu L, Chen M, Zhou Z, Chen Y, Yuan L, Chen M, Chen J, Shui P. Multifunctional Nanoplatform for Mild Microwave-Enhanced Thermal, Antioxidative, and Chemotherapeutic Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10341-10355. [PMID: 36790223 DOI: 10.1021/acsami.2c19198] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rheumatoid arthritis (RA) is usually associated with excessive proliferation of M1-type proinflammatory macrophages, resulting in severe hypoxia and excess reactive oxygen species (ROS) in the joint cavity. Inhibiting M1-type proinflammatory macrophages and/or repolarizing them into M2 phenotype anti-inflammatory cells by alleviating hypoxia and scavenging ROS could be a promising strategy for RA treatment. In this work, a microwave-sensitive metal-organic framework of UiO-66-NH2 is constructed for coating a nanoenzyme of cerium oxide (CeO2) and loading with the drug celastrol (Cel) to give UiO-66-NH2/CeO2/Cel, which is ultimately wrapped with hyaluronic acid (HA) to form a nanocomposite UiO-66-NH2/CeO2/Cel@HA (UCCH). With the microwave-susceptible properties of UiO-66-NH2, the thermal effect of microwaves can eliminate the excessive proliferation of inflammatory cells. In addition, superoxide-like and catalase-like activities originating from CeO2 in UCCH are boosted to scavenge ROS and accelerate the decomposition of H2O2 to produce O2 under microwave irradiation. The nonthermal effect of microwaves could synergistically promote the repolarization of M1-type macrophages into the M2 phenotype. Accompanied by the release of the anti-RA chemotherapeutic drug Cel, UCCH can efficiently ameliorate RA in vitro and in vivo through microwave-enhanced multisynergistic effects. This strategy could inspire the design of other multisynergistic platforms enhanced by microwaves to exploit new treatment modalities in RA therapies.
Collapse
Affiliation(s)
- Lianying Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Libo Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mingwa Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhaoxi Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongjian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Yuan
- School of Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ming Chen
- The People's Hospital of Gaozhou, Maoming 525200, China
| | - Jinxiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
41
|
Guo Q, Li Y, Xu S, Wang P, Qian K, Yang P, Sheng D, Wang L, Cheng Y, Meng R, Cao J, Luo H, Wei Y, Zhang Q. Brain-neuron targeted nanoparticles for peptide synergy therapy at dual-target of Alzheimer's disease. J Control Release 2023; 355:604-621. [PMID: 36738970 DOI: 10.1016/j.jconrel.2023.01.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/06/2023]
Abstract
Since the complex interactions of multiple mechanisms involved in Alzheimer's disease (AD) preclude the monotherapeutic approaches from clinical application, combination therapy has become an attractive strategy for AD treatment. However, to be emphasized, the realization of the edges of combination therapy greatly depends on the reasonable choice of targets and the rational design of combination scheme. Acknowledgedly, amyloid plaques and hyperphosphorylated tau (p-tau) are two main hallmarks in AD with close pathological correlations, implying the hopeful prospect of combined intervention in them for AD treatment. Herein, we developed the nano-combination system, neuron-targeting PEG-PLA nanoparticles (CT-NP) loading two peptide drugs H102, a β-sheet breaker acting on Aβ, and NAP, a microtubule stabilizer acting on p-tau. Compared with free peptide combination, nano-combination system partly aligned the in vivo behaviors of combined peptides and enhanced peptide accumulation in lesion neurons by the guidance of targeting peptide CGN and Tet1, facilitating the therapeutic performance of peptide combination. Further, to maximize the therapeutic potential of nano-combination system, the combination ratio and mode were screened by the quantitative evaluation with combination index and U test, respectively, in vitro and in vivo. The results showed that the separated-loading CT-NP at the combination molar ratio of 2:1 (H102:NAP), CT-NP/H102 + CT-NP/NAP(2:1), generated the strongest synergistic therapeutic effects on Aβ, p-tau and their linkage, and effectually prevented neuroinflammation, reversed the neuronal damage and restored cognitive performance in 3 × Tg-AD transgenic mice. Our studies provide critical data on the effectiveness of nano-combination therapy simultaneously intervening in Aβ and p-tau, confirming the promising application of nano-combination strategy in AD treatment.
Collapse
Affiliation(s)
- Qian Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yixian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Shuting Xu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Pengzhen Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Kang Qian
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Peng Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Dongyu Sheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Liuchang Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yunlong Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Ran Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Jinxu Cao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Haichang Luo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai 200436, China.
| | - Qizhi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China.
| |
Collapse
|
42
|
Ashique S, Afzal O, Yasmin S, Hussain A, Altamimi MA, Webster TJ, Altamimi ASA. Strategic nanocarriers to control neurodegenerative disorders: Concept, challenges, and future perspective. Int J Pharm 2023; 633:122614. [PMID: 36646255 DOI: 10.1016/j.ijpharm.2023.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Various neurodegenerative diseases (parkinson, huntington, alzheimer, and amyotrophic lateral sclerosis) are becoming serious global health challenges. Despite various treatment options, successful delivery and effective outcomes have been challenged with several physiological-anatomical barriers, formulation related issues, post-administration hurdles, regulatory constraints, physical hurdles, environmental issues, and safety concern. In the present review, we addressed a brief understanding of pathological and normal condition of blood brain barrier (BBB), rational for brain delivery using nanocarriers, major challenges, advantages of nanomedicine, critical aspects of nanomedicine to translate from bed to clinics, and strategic approaches for improved delivery across BBB. The review addressed various mechanistic perspective for delivery of drug loaded nanocarriers across BBB. Moreover, several reports have been published wherein phytomedicine, exosomes, magnetic nanopartilces, functionalized nanocarriers, cationic nanopartilces, and nano-phytomedicine were investigated for remarkable improvement in neurological disorders. These findings are informative for healthcare professionals, researchers, and scientists working in the domains. The successful application and convincing outcomes of nanomedicines were envisaged with clinical trials conducted on various drugs intended to control neurological disorders (NDs). Conclusively, the review addressed comprehensive findings on various aspects of drug loaded nanocarrier delivery across BBB, considerable risks, potential therapeutic benefits, clinical trial based outcomes, and recent advances followed by future perspectives.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut-250103, UP, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, King Khalid University, Abha 61441, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Engineering, Hebei University of Technology, Tianjin, China
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
43
|
Kumar A, Sudevan ST, Nair AS, Singh AK, Kumar S, Jose J, Behl T, Mangalathillam S, Mathew B, Kim H. Current and Future Nano-Carrier-Based Approaches in the Treatment of Alzheimer's Disease. Brain Sci 2023; 13:brainsci13020213. [PMID: 36831756 PMCID: PMC9953820 DOI: 10.3390/brainsci13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
It is a very alarming situation for the globe because 55 million humans are estimated to be affected by Alzheimer's disease (AD) worldwide, and still it is increasing at the rapid speed of 10 million cases per year worldwide. This is an urgent reminder for better research and treatment due to the unavailability of a permanent medication for neurodegenerative disorders like AD. The lack of drugs for neurodegenerative disorder treatment is due to the complexity of the structure of the brain, mainly due to blood-brain barrier, because blood-brain drug molecules must enter the brain compartment. There are several novel and conventional formulation approaches that can be employed for the transportation of drug molecules to the target site in the brain, such as oral, intravenous, gene delivery, surgically implanted intraventricular catheter, nasal and liposomal hydrogels, and repurposing old drugs. A drug's lipophilicity influences metabolic activity in addition to membrane permeability because lipophilic substances have a higher affinity for metabolic enzymes. As a result, the higher a drug's lipophilicity is, the higher its permeability and metabolic clearance. AD is currently incurable, and the medicines available merely cure the symptoms or slow the illness's progression. In the next 20 years, the World Health Organization (WHO) predicts that neurodegenerative illnesses affecting motor function will become the second-leading cause of mortality. The current article provides a brief overview of recent advances in brain drug delivery for AD therapy.
Collapse
Affiliation(s)
- Astik Kumar
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE Deemed to be University, Mangalore 575018, India
| | - Tapan Behl
- School of Health Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Sabitha Mangalathillam
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.M.); or (B.M.); (H.K.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682041, India
- Correspondence: (S.M.); or (B.M.); (H.K.)
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
- Correspondence: (S.M.); or (B.M.); (H.K.)
| |
Collapse
|
44
|
Li M, Liu J, Shi L, Zhou C, Zou M, Fu D, Yuan Y, Yao C, Zhang L, Qin S, Liu M, Cheng Q, Wang Z, Wang L. Gold nanoparticles-embedded ceria with enhanced antioxidant activities for treating inflammatory bowel disease. Bioact Mater 2023; 25:95-106. [PMID: 36789001 PMCID: PMC9900456 DOI: 10.1016/j.bioactmat.2023.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
The excessive reactive oxygen species (ROS) is a hallmark associated with the initiation and progression of inflammatory bowel disease (IBD), which execrably form a vicious cycle of ROS and inflammation to continually promote disease progression. Here, the gold nanoparticles-embedded ceria nanoparticles (Au/CeO2) with enhanced antioxidant activities are designed to block this cycle reaction for treating IBD by scavenging overproduced ROS. The Au/CeO2 with core-shell and porous structure exhibits significantly higher enzymatic catalytic activities compared with commercial ceria nanoparticles, likely due to the effective exposure of catalytic sites, higher content of Ce (III) and oxygen vacancy, and accelerated reduction from Ce (IV) to Ce (III). Being coated with negatively-charged hyaluronic acid, the Au/CeO2@HA facilitates accumulation in inflamed colon tissues via oral administration, reduces pro-inflammatory cytokines, and effectively alleviates colon injury in colitis mice. Overall, the Au/CeO2@HA with good biocompatibility is a promising nano-therapeutic for treating IBD.
Collapse
Affiliation(s)
- Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Daan Fu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Chundong Yao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Lifang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Qian Cheng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China,Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China,Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Wuhan, 430022, China,Corresponding author. Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
The Long and the Short of Current Nanomedicines for Treating Alzheimer's Disease. J Transl Int Med 2023; 10:294-296. [PMID: 36860633 PMCID: PMC9969564 DOI: 10.2478/jtim-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JOURNAL OF NANOTHERANOSTICS 2023. [DOI: 10.3390/jnt4010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The existing diagnosis and treatment modalities have major limitations related to their precision and capability to understand several stages of disease development. A superior therapeutic system consists of a multifunctional approach in early diagnosis of the disease with a simultaneous progressive cure, using a precise medical approach towards complex treatment. These challenges can be addressed via nanotheranostics and explore suitable approaches to improve health care. Nanotechnology in combination with theranostics as an unconventional platform paved the way for developing novel strategies and modalities leading to diagnosis and therapy for complex disease conditions, ranging from acute to chronic levels. Among the metal nanoparticles, gold nanoparticles are being widely used for theranostics due to their inherent non-toxic nature and plasmonic properties. The unique optical and chemical properties of plasmonic metal nanoparticles along with theranostics have led to a promising era of plausible early detection of disease conditions, and they enable real-time monitoring with enhanced non-invasive or minimally invasive imaging of several ailments. This review aims to highlight the improvement and advancement brought to nanotheranostics by gold nanoparticles in the past decade. The clinical use of the metal nanoparticles in nanotheranostics is explained, along with the future perspectives on addressing the key applications related to diagnostics and therapeutics, respectively. The scope of gold nanoparticles and their realistic potential to design a sophisticated theranostic system is discussed in detail, along with their implications in clinical advancements which are the needs of the hour. The review concluded with the challenges, opportunities, and implications on translational potential of using gold nanoparticles in nanotheranostics.
Collapse
|
47
|
Zhong H, Jiang C, Huang Y. The recent development of nanozymes for targeting antibacterial, anticancer and antioxidant applications. RSC Adv 2023; 13:1539-1550. [PMID: 36688073 PMCID: PMC9818253 DOI: 10.1039/d2ra06849d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/24/2022] [Indexed: 01/09/2023] Open
Abstract
Nowadays, nanozymes have not only been used as biosensors in the detection field, but also their application prospects in disease treatment have been explored. Numerous nanomaterials have similar catalytic activities such as peroxidase, oxidase, catalase and superoxide dismutase, and they can be used for antibacterial, anticancer and antioxidant therapy. Although there have been many studies on the application of nanozymes in the therapeutic field, the current nanozyme-based systems often lack targeting and ignore the harm to the surrounding normal tissues. Although promising, the biosafety of nanomaterials has always been the concern of researchers. To improve the treatment effect and reduce toxic and side effects, precision treatment has become the key. At present, a few studies have modified targeted molecules on nanozymes to achieve precise targeting through specific interaction with surface overexpression factors of bacteria or cells. Combined with the catalysis of nanozymes, the targeted treatment of diseases can be achieved. This review summarizes the current research of nanozyme systems in targeted antibacterial, anticancer and antioxidant applications. At the same time, the challenges and development prospects of nanozyme-based targeted therapy system are summarized. It is expected that this work will provide new ideas and new directions for the precise treatment of nanozymes.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
48
|
Liu Y, Yan X, Wei H. Medical Nanozymes for Therapeutics. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Subramanian TS. Nanomedicine for Neurodegenerative Diseases. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2023:33-43. [DOI: 10.1007/978-981-99-2139-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
50
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|