1
|
Fang N, Wu C, Zhang Y, Li Z, Zhou Z. Perspectives: Light Control of Magnetism and Device Development. ACS NANO 2024; 18:8600-8625. [PMID: 38469753 DOI: 10.1021/acsnano.3c13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Accurately controlling magnetic and spin states presents a significant challenge in spintronics, especially as demands for higher data storage density and increased processing speeds grow. Approaches such as light control are gradually supplanting traditional magnetic field methods. Traditionally, the modulation of magnetism was predominantly achieved through polarized light with the help of ultrafast light technologies. With the growing demand for energy efficiency and multifunctionality in spintronic devices, integrating photovoltaic materials into magnetoelectric systems has introduced more physical effects. This development suggests that sunlight will play an increasingly pivotal role in manipulating spin orientation in the future. This review introduces and concludes the influence of various light types on magnetism, exploring mechanisms such as magneto-optical (MO) effects, light-induced magnetic phase transitions, and spin photovoltaic effects. This review briefly summarizes recent advancements in the light control of magnetism, especially sunlight, and their potential applications, providing an optimistic perspective on future research directions in this area.
Collapse
Affiliation(s)
- Ning Fang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Changqing Wu
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ziyao Zhou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Gao B, Xu S, Xu Q. CO 2 -Induced Spin-Lattice Coupling for Strong Magnetoelectric Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303692. [PMID: 37975158 PMCID: PMC10837372 DOI: 10.1002/advs.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Indexed: 11/19/2023]
Abstract
The preparation of 2D magnetoelectric (ME) nanomaterials with strong ME coupling is crucial for the fast reading and writing processes in the next generation of storage devices. Herein, 2D BaTiO3 (BTO)-CoFe2 O4 (CFO) ME nanocomposites are prepared through a substrate-free coupling strategy using supercritical CO2 . Such 2D BTO-CFO with strong coupling is built through alternating in-plane and out-of-plane epitaxy stacking, leading to remarkable mutual biaxial strain effects for spin-lattice coupling. As a results, such strain effect significantly enhances the ferroelectricity of BTO and the ferrimagnetism of CFO, where an unexceptionally high ME coupling coefficient of (325.8 mV cm-1 Oe-1 ) is obtained for the BTO-CFO nanocomposites.
Collapse
Affiliation(s)
- Bo Gao
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Song Xu
- Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qun Xu
- College of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Shen J, Hu Z, Quigley L, Wang H. Controlled Growth of Vertically Aligned Nanocomposites through a Au Seeding-Assisted Method. ACS OMEGA 2023; 8:37140-37146. [PMID: 37841141 PMCID: PMC10568576 DOI: 10.1021/acsomega.3c04701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Heteroepitaxial metal-oxide vertically aligned nanocomposites (VAN) have piqued significant interest due to their remarkable vertical interfacial coupling effects, strong structural and property anisotropy, and potential applications in magnetoelectrics, photocatalysts, and optical metamaterials. VANs present a unique pillar-in-matrix structure with uniform but rather random pillar distributions. Achieving a well-controlled pillar growth remains a major challenge in this field. Here, we use BaTiO3 (BTO)-Au as a model VAN system to demonstrate the effects of Au seedings on achieving such pillar-growth control with enhanced ordering and morphology tuning. The Au seedings are introduced using an anodic aluminum oxide (AAO) template through pulsed laser deposition (PLD). TEM characterization reveals that the Au seedings result in straighter and more evenly distributed Au pillars in the BTO matrix compared to those without seeding, with the diameter of the Au seedings increasing with the number of pulses. Additionally, spectroscopic ellipsometry demonstrates distinct permittivity dispersion for all samples. This demonstration lays a foundation for future controlled and selective growth of VAN systems for on-chip integration.
Collapse
Affiliation(s)
- Jianan Shen
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zedong Hu
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lizabeth Quigley
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School
of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
MacManus-Driscoll JL, Wu R, Li W. Interface-related phenomena in epitaxial complex oxide ferroics across different thin film platforms: opportunities and challenges. MATERIALS HORIZONS 2023; 10:1060-1086. [PMID: 36815609 PMCID: PMC10068909 DOI: 10.1039/d2mh01527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Interfaces in complex oxides give rise to fascinating new physical phenomena arising from the interconnected spin, lattice, charge and orbital degrees of freedom. Most commonly, interfaces are engineered in epitaxial superlattice films. Of growing interest also are epitaxial vertically aligned nanocomposite films where interfaces form by self-assembly. These two thin film forms offer different capabilities for materials tuning and have been explored largely separately from one another. Ferroics (ferroelectric, ferromagnetic, multiferroic) are among the most fascinating phenomena to be manipulated using interface effects. Hence, in this review we compare and contrast the ferroic properties that arise in these two different film forms, highlighting exemplary materials combinations which demonstrate novel, enhanced and/or emergent ferroic functionalities. We discuss the origins of the observed functionalities and propose where knowledge can be translated from one materials form to another, to potentially produce new functionalities. Finally, for the two different film forms we present a perspective on underexplored/emerging research directions.
Collapse
Affiliation(s)
| | - Rui Wu
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Spin-X Institute, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| | - Weiwei Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
5
|
Wang T, Peng RC, Dong G, Du Y, Zhao S, Zhao Y, Zhou C, Yang S, Shi K, Zhou Z, Liu M, Pan J. Enhanced Energy Density at a Low Electric Field in PVDF-Based Heterojunctions Sandwiched with High Ion-Polarized BTO Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17849-17857. [PMID: 35389212 DOI: 10.1021/acsami.2c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inorganic/organic dielectric composites with outstanding energy storage properties at a low electric field possess the advantages of low operating voltage and small probability of failure. Composites filled with two-dimensional inorganic nanosheets have attracted much attention owing to their fewer interfacial defects caused by the agglomeration of fillers. Continuous oxide films with a preferred orientation can play a significant role in enhancing energy storage. The challenge is to prepare large-sized, freestanding, single-crystal, ferroelectric oxide films and to combine them with polymers. In this work, a well-developed water-dissolvent process was used to transfer millimeter-sized (100)-oriented BaTiO3 (BTO) films. Poly(vinylidene fluoride) (PVDF)-based heterojunctions sandwiched with the single-crystal films were synthesized via the transferring process and an optimized hot-pressing technique. By virtue of high ion displacement polarization and inhibited conductive path formation of single-crystal BTO films, the energy storage density and efficiency of BTO/PVDF heterojunctions reach 1.56 J cm-3 and 71.2% at a low electric field of 120 MV m-1, which are much higher than those of pure PVDF and BTO nanoparticles/PVDF composite films, respectively. A finite-element simulation was employed to further confirm the experimental results. This work provides an effective approach to enhance energy storage properties in various polymer-based composites and opens the door to advanced dielectric capacitors.
Collapse
Affiliation(s)
- Tian Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ren-Ci Peng
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guohua Dong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yujing Du
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shishun Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chao Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sen Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Keqing Shi
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingye Pan
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
6
|
Dong G, Wang T, Liu H, Zhang Y, Zhao Y, Hu Z, Ren W, Ye ZG, Shi K, Zhou Z, Liu M, Pan J. Strain-Induced Magnetoelectric Coupling in Fe 3O 4/BaTiO 3 Nanopillar Composites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13925-13931. [PMID: 35271247 DOI: 10.1021/acsami.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetoelectric coupling properties are limited to the substrate clamping effect in traditional ferroelectric/ferromagnetic heterostructures. Here, Fe3O4/BaTiO3 nanopillar composites are successfully constructed. The well-ordered BaTiO3 nanopillar arrays are prepared through template-assisted pulsed laser deposition. The Fe3O4 layer is coated on BaTiO3 nanopillar arrays by atomic layer deposition. The nanopillar arrays and heterostructure are confirmed by scanning electron microscopy and transmission electron microscopy. A large thermally driven magnetoelectric coupling coefficient of 395 Oe °C-1 near the phase transition of BaTiO3 (orthorhombic to rhombohedral) is obtained, indicating a strong strain-induced magnetoelectric coupling effect. The enhanced magnetoelectric coupling effect originated from the reduced substrate clamping effect and increased the interface area in nanopillar structures. This work opens a door toward cutting-edge potential applications in spintronic devices.
Collapse
Affiliation(s)
- Guohua Dong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haixia Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yijun Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yanan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhongqiang Hu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Ren
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zuo-Guang Ye
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Chemistry & 4D LABS, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Keqing Shi
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziyao Zhou
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingye Pan
- Department of Intensive Care, Precision Medicine Center Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Datt G, Kotnana G, Maddu R, Vallin Ö, Joshi DC, Peddis D, Barucca G, Kamalakar MV, Sarkar T. Combined Bottom-Up and Top-Down Approach for Highly Ordered One-Dimensional Composite Nanostructures for Spin Insulatronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37500-37509. [PMID: 34325507 PMCID: PMC8397244 DOI: 10.1021/acsami.1c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Engineering magnetic proximity effects-based devices requires developing efficient magnetic insulators. In particular, insulators, where magnetic phases show dramatic changes in texture on the nanometric level, could allow us to tune the proximity-induced exchange splitting at such distances. In this paper, we report the fabrication and characterization of highly ordered two-dimensional arrays of LaFeO3 (LFO)-CoFe2O4 (CFO) biphasic magnetic nanowires, grown on silicon substrates using a unique combination of bottom-up and top-down synthesis approaches. The regularity of the patterns was confirmed using atomic force microscopy and scanning electron microscopy techniques, whereas magnetic force microscopy images established the magnetic homogeneity of the patterned nanowires and absence of any magnetic debris between the wires. Transmission electron microscopy shows a close spatial correlation between the LFO and CFO phases, indicating strong grain-to-grain interfacial coupling, intrinsically different from the usual core-shell structures. Magnetic hysteresis loops reveal the ferrimagnetic nature of the composites up to room temperature and the presence of a strong magnetic coupling between the two phases, and electrical transport measurements demonstrate the strong insulating behavior of the LFO-CFO composite, which is found to be governed by Mott-variable range hopping conduction mechanisms. A shift in the Raman modes in the composite sample compared to those of pure CFO suggests the existence of strain-mediated elastic coupling between the two phases in the composite sample. Our work offers ordered composite nanowires with strong interfacial coupling between the two phases that can be directly integrated for developing multiphase spin insulatronic devices and emergent magnetic interfaces.
Collapse
Affiliation(s)
- Gopal Datt
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ganesh Kotnana
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ramu Maddu
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Örjan Vallin
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Deep Chandra Joshi
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Davide Peddis
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, Genova I-16146, Italy
- Institute
of Structure of Matter, Italian National
Research Council (CNR), Monterotondo
Scalo, 00015 Rome, Italy
| | - Gianni Barucca
- Department
SIMAU, Università Politecnica delle
Marche, Via Brecce Bianche
12, Ancona 60131, Italy
| | - M. Venkata Kamalakar
- Department
of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Tapati Sarkar
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| |
Collapse
|
8
|
Lefkidis G, Jin W, Liu J, Dutta D, Hübner W. Topological Spin-Charge Gearbox on a Real Molecular Magnet. J Phys Chem Lett 2020; 11:2592-2597. [PMID: 32163709 DOI: 10.1021/acs.jpclett.0c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, using ab initio many-body theory and inspired by an idea suggested by G. D. Mahan for an abstract N-dimensional chain composed of s-type atoms ( Phys. Rev. Lett. 2009, 102, 016801), we propose a functional topological spin-charge gearbox based on the real synthesized Co3Ni(EtOH) cluster driven with laser pulses. We analyze the implications arising from the use of a real molecule with d-character functional orbitals rather than an extended system and discuss the role of the point group symmetry of the system and the transferability of the electronic and spin density between different many-body states using specially designed laser pulses. We thus find that first-row transition-metal elements can host unpaired yet correlated d electrons and thus act as sites for spin information carriers, while designated laser pulses induce symmetry operations leading to a realizable spin-charge gearbox.
Collapse
Affiliation(s)
- G Lefkidis
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
| | - W Jin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - J Liu
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - D Dutta
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| | - W Hübner
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
| |
Collapse
|
9
|
Tang Y, Wang R, Zhang Y, Xiao B, Li S, Du P. Magnetoelectric coupling tailored by the orientation of the nanocrystals in only one component in percolative multiferroic composites. RSC Adv 2019; 9:20345-20355. [PMID: 35514734 PMCID: PMC9065497 DOI: 10.1039/c9ra03291f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/23/2019] [Indexed: 02/03/2023] Open
Abstract
Strong magnetoelectric coupling is realized in BaTiO3–Ni0.5Zn0.5Fe2O4 multiferroic composite thin films by tailoring the orientation of ferrite nanocrystals.
Collapse
Affiliation(s)
- Yu Tang
- Department of Materials Science and Engineering
- College of Aerospace Science and Engineering
- National University of Defense Technology
- Changsha 410073
- China
| | - Ruixin Wang
- Department of Materials Science and Engineering
- College of Aerospace Science and Engineering
- National University of Defense Technology
- Changsha 410073
- China
| | - Yi Zhang
- Department of Physics
- College of Liberal Arts and Sciences
- National University of Defense Technology
- Changsha 410073
- China
| | - Bin Xiao
- Department of Materials Science and Engineering
- Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices
- Southern University of Science and Technology
- Shenzhen 518055
- China
| | - Shun Li
- Department of Materials Science and Engineering
- College of Aerospace Science and Engineering
- National University of Defense Technology
- Changsha 410073
- China
| | - Piyi Du
- State Key Laboratory of Silicon Materials
- School of Materials Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|