1
|
Zhang HL, Wang HW, Yang JH, Chen JJ, Liu J, Shi QC, Zhao HC, Chen MX, Yang R, Ji QT, Wang PY. From dansyl-modified biofilm disruptors to β-cyclodextrin-optimized multifunctional supramolecular nanovesicles: their improved treatment for plant bacterial diseases. J Nanobiotechnology 2024; 22:739. [PMID: 39609837 PMCID: PMC11603638 DOI: 10.1186/s12951-024-03028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Bacterial diseases caused by phytopathogenic Xanthomonas pose a significant threat to global agricultural production, causing substantial economic losses. Biofilm formation by these bacteria enhances their resistance to environmental stressors and chemical treatments, complicating disease control. The key to overcoming this challenge lies in the development of multifunctional green bactericides capable of effectively breaking down biofilm barriers, improving foliar deposition properties, and achieving the control of bacterial diseases. RESULTS We have developed a kind of innovative green bactericide from small-molecule conception to eco-friendly supramolecular nanovesicles (DaPA8@β -CD) by host-guest supramolecular technology. These nanoscale assemblies demonstrated the ability to inhibit and eradicate biofilm formation, while also promoted foliar wetting and effective deposition properties, laying the foundation for improving agrochemical utilization. Studies revealed that DaPA8@β -CD exhibited significant biofilm inhibition (78.66% at 7.0 µ g mL- 1) and eradication (83.50% at 25.0 µ g mL- 1), outperforming DaPA8 alone (inhibition: 59.71%, eradication: 66.79%). These nanovesicles also reduced exopolysaccharide formation and bacterial virulence. In vivo experiments showed enhanced control efficiency against citrus bacterial canker (protective: 78.04%, curative: 50.80%) at a low dose of 200 µ g mL- 1, superior to thiodiazole-copper-20%SC and DaPA8 itself. CONCLUSION This study demonstrates the potential of DaPA8@β -CD nanovesicles as multifunctional bactericides for managing Xanthomonas -induced plant diseases, highlighting the advantages of using host-guest supramolecular technology to enhance agrochemical bioavailability.
Collapse
Affiliation(s)
- Hui-Ling Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hong-Wei Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jing-Han Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jia-Jia Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Juan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing-Chuan Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Hai-Cong Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Run Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing-Tian Ji
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Pei-Yi Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Gong P, Wang B, Li J, Cui H, Wang D, Liu J, Liu W. Photothermal COFs with donor-acceptor structure for friction reduction and antiwear. Chem Commun (Camb) 2024; 60:5695-5698. [PMID: 38726610 DOI: 10.1039/d4cc00838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
For the first time, a novel donor-acceptor structured COF with excellent photothermal conversion and mono-dispersity in various oils without any further modification is reported; it realized responsive friction reduction, excellent antiwear and long-time lubrication.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Bairen Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Junyao Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Huiying Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dandan Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Zhao H, Huang L, Liu W, Dong Q, Bai Q, Yuan J, Jiang Z, Chen M, Liu D, Wang J, Li Y, Wang P. Segmented Template-Directed Self-Assembly of Giant Truncated Triangular Supramolecules. Inorg Chem 2024; 63:4152-4159. [PMID: 38372260 DOI: 10.1021/acs.inorgchem.3c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The template-directed strategy has been extensively employed for the construction of supramolecular architectures. However, with the increase in the size and complexity of these structures, the synthesis difficulty of the templates escalates exponentially, thereby impeding the widespread application of this strategy. In this study, two truncated triangles T1 and T2 were successfully self-assembled through a novel segmented template strategy by segmenting the core triangular template into portions. Two metallo-organic ligands L2 and L3 were designed and synthesized by dividing the central stable triangle into three separate parts and incorporating them into the precursor ligands, which served as templates to guide the self-assembly process with ligands L1 and L4, respectively. The assembled structures were unambiguously characterized by multidimensional and multinuclear NMR (1H, COSY, NOESY), multidimensional mass spectrometry analysis (ESI-MS and TWIM-MS), and transmission electron microscopy (TEM). Moreover, we observed the formation of fiberlike nanotubes from single-molecule triangles by hierarchical self-assembly.
Collapse
Affiliation(s)
- He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Linlin Huang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Wenping Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Xinxiang 453007, Henan, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jun Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Liu Y, Hu H, Qi H, Lv M, Liu Z. The Synthesis, Structure, and Dielectric Properties of a One-Dimensional Hydrogen-Bonded DL-α-Phenylglycine Supramolecular Crown-Ether-Based Inclusion Compound. Molecules 2023; 28:7586. [PMID: 38005309 PMCID: PMC10673173 DOI: 10.3390/molecules28227586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A novel hydrogen-bonded supramolecular crown-ether-based inclusion compound, [(DL-α-Phenylglycine)(18-crown-6)]+[(CoCl4)0.5]-(1), was obtained via evaporation in a methanolic solution at room temperature using DL-α-phenylglycine, 18-crown-6, cobalt chloride (CoCl2), and hydrochloric acid. Its structure, thermal properties, and electrical properties were characterized via elemental analysis, single-crystal X-ray diffraction, variable-temperature infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and variable temperature-variable frequency dielectric constant testing. The compound was a monoclinic crystal system in the C2 space group at low temperature (100 K) and room temperature (293 K). Analysis of the single crystal structure showed that [(CoCl4)0.5]- presented an edge-sharing ditetrahedral structure in the disordered state, while the protonated DL-α-phenylglycine molecule in the disordered state and intramolecular hydroxyl group (-OH) underwent dynamic rocking, causing a significant stretching motion of the O-H···Cl-type one-dimensional hydrogen bond chain. This resulted in dielectric anomalies in the three axes of the crystal, thus showing significant dielectric anisotropy.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Huanhuan Qi
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (Y.L.); (H.H.); (H.Q.); (M.L.)
- Xinjiang Sub-Center, National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
5
|
Chen C, Zhou H, Ma Y, Dai Q, Tang Z. Celebrating 20 Years of NCNST: Innovation in Nanoscience and Nanotechnology. ACS NANO 2023; 17:20715-20722. [PMID: 37610121 DOI: 10.1021/acsnano.3c06711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the development of nanoscience and technology, it has become an essential part of various research directions, changing our way of life, such as advanced accurate manufacturing in nanotechnology that facilitates reducing chip sizes, progress made in health care via nanoscience that provides hope to patients, and so on. As the nation's flagship institution of nanoscience and technology in China, the National Center for Nanoscience and Technology, China (NCNST), established in December 2003, has played a crucial role in promoting cutting-edge technologies in the field of nanoscience and expediting interdisciplinary fusion. With a strong research team and state-of-the-art research equipment, NCNST currently carries out frontier research and world-class technology innovation, including nanosystems and hierarchical fabrication, biological effects of nanomaterials and nanosafety, standardization and measurements for nanotechnology, as well as theoretical simulations. Serving as one of the most prestigious institutions in nanoscience and nanotechnology in China, NCNST will continue to foster impactful international cooperation, cultivate young talents, and boost inspiring innovation.
Collapse
Affiliation(s)
- Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Yanhong Ma
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
6
|
Schaack S, Mangaud E, Fallacara E, Huppert S, Depondt P, Finocchi F. When Quantum Fluctuations Meet Structural Instabilities: The Isotope- and Pressure-Induced Phase Transition in the Quantum Paraelectric NaOH. PHYSICAL REVIEW LETTERS 2023; 131:126101. [PMID: 37802932 DOI: 10.1103/physrevlett.131.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2023] [Accepted: 08/15/2023] [Indexed: 10/08/2023]
Abstract
Anhydrous sodium hydroxide, a common and structurally simple compound, shows spectacular isotope effects: NaOD undergoes a first-order transition, which is absent in NaOH. By combining ab initio electronic structure calculations with Feynman path integrals, we show that NaOH is an unusual example of a quantum paraelectric: zero-point quantum fluctuations stretch the weak hydrogen bonds (HBs) into a region where they are unstable and break. By strengthening the HBs via isotope substitution or applied pressure, the system can be driven to a broken-symmetry antiferroelectric phase. In passing, we provide a simple quantitative criterion for HB breaking in layered crystals and show that nuclear quantum effects are crucial in paraelectric to ferroelectric transitions in hydrogen-bonded hydroxides.
Collapse
Affiliation(s)
- Sofiane Schaack
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Etienne Mangaud
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Erika Fallacara
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Simon Huppert
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Philippe Depondt
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Fabio Finocchi
- Sorbonne Université, CNRS UMR 7588, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| |
Collapse
|
7
|
Liu S, Norikane Y, Kikkawa Y. Two-dimensional molecular networks at the solid/liquid interface and the role of alkyl chains in their building blocks. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:872-892. [PMID: 37674543 PMCID: PMC10477993 DOI: 10.3762/bjnano.14.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023]
Abstract
Nanoarchitectonics has attracted increasing attention owing to its potential applications in nanomachines, nanoelectronics, catalysis, and nanopatterning, which can contribute to overcoming global problems related to energy and environment, among others. However, the fabrication of ordered nanoarchitectures remains a challenge, even in two dimensions. Therefore, a deeper understanding of the self-assembly processes and substantial factors for building ordered structures is critical for tailoring flexible and desirable nanoarchitectures. Scanning tunneling microscopy is a powerful tool for revealing the molecular conformations, arrangements, and orientations of two-dimensional (2D) networks on surfaces. The fabrication of 2D assemblies involves non-covalent interactions that play a significant role in the molecular arrangement and orientation. Among the non-covalent interactions, dispersion interactions that derive from alkyl chain units are believed to be weak. However, alkyl chains play an important role in the adsorption onto substrates, as well as in the in-plane intermolecular interactions. In this review, we focus on the role of alkyl chains in the formation of ordered 2D assemblies at the solid/liquid interface. The alkyl chain effects on the 2D assemblies are introduced together with examples documented in the past decades.
Collapse
Affiliation(s)
- Suyi Liu
- Graduate School of Science and Technology, University of Tsukuba, Ibaraki, 305-8571, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuo Norikane
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshihiro Kikkawa
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Son YJ, Han JW, Kang H, Seong S, Han S, Maeda S, Chikami S, Hayashi T, Hara M, Noh J. Formation and Thermal Stability of Ordered Self-Assembled Monolayers by the Adsorption of Amide-Containing Alkanethiols on Au(111). Int J Mol Sci 2023; 24:ijms24043241. [PMID: 36834654 PMCID: PMC9967528 DOI: 10.3390/ijms24043241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
We examined the surface structure, binding conditions, electrochemical behavior, and thermal stability of self-assembled monolayers (SAMs) on Au(111) formed by N-(2-mercaptoethyl)heptanamide (MEHA) containing an amide group in an inner alkyl chain using scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) to understand the effects of an internal amide group as a function of deposition time. The STM study clearly showed that the structural transitions of MEHA SAMs on Au(111) occurred from the liquid phase to the formation of a closely packed and well-ordered β-phase via a loosely packed α-phase as an intermediate phase, depending on the deposition time. XPS measurements showed that the relative peak intensities of chemisorbed sulfur against Au 4f for MEHA SAMs formed after deposition for 1 min, 10 min, and 1 h were calculated to be 0.0022, 0.0068, and 0.0070, respectively. Based on the STM and XPS results, it is expected that the formation of a well-ordered β-phase is due to an increased adsorption of chemisorbed sulfur and the structural rearrangement of molecular backbones to maximize lateral interactions resulting from a longer deposition period of 1 h. CV measurements showed a significant difference in the electrochemical behavior of MEHA and decanethiol (DT) SAMs as a result of the presence of an internal amide group in the MEHA SAMs. Herein, we report the first high-resolution STM image of well-ordered MEHA SAMs on Au(111) with a (3 × 2√3) superlattice (β-phase). We also found that amide-containing MEHA SAMs were thermally much more stable than DT SAMs due to the formation of internal hydrogen networks in MEHA SAMs. Our molecular-scale STM results provide new insight into the growth process, surface structure, and thermal stability of amide-containing alkanethiols on Au(111).
Collapse
Affiliation(s)
- Young Ji Son
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jin Wook Han
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hungu Kang
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sicheon Seong
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seulki Han
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Shoichi Maeda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shunta Chikami
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Masahiko Hara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Jaegeun Noh
- Department of Chemistry, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Correspondence:
| |
Collapse
|
9
|
Sahare S, Ghoderao P, Chan Y, Lee SL. Surface supramolecular assemblies tailored by chemical/physical and synergistic stimuli: a scanning tunneling microscopy study. NANOSCALE 2023; 15:1981-2002. [PMID: 36515142 DOI: 10.1039/d2nr05264d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Supramolecular self-assemblies formed by various non-covalent interactions can produce diverse functional networks on solid surfaces. These networks have recently attracted much interest from both fundamental and application points of view. Unlike covalent organic frameworks (COFs), the properties of the assemblies differ from each other depending on the constituent motifs. These various motifs may find diverse applications such as in crystal engineering, surface modification, and molecular electronics. Significantly, these interactions between/among the molecular tectonics are relatively weak and reversible, which makes them responsive to external stimuli. Moreover, for a liquid-solid-interface environment, the dynamic processes are amenable to in situ observation using scanning tunneling microscopy (STM). In the literature, most review articles focus on supramolecular self-assembly interactions. This review summarizes the recent literature in which stimulation sources, including chemical, physical, and their combined stimuli, cooperatively tailor supramolecular assemblies on surfaces. The appropriate design and synthesis of functional molecules that can be integrated on different surfaces permits the use of nanostructured materials and devices for bottom-up nanotechnology. Finally, we discuss synergic effect on materials science.
Collapse
Affiliation(s)
- Sanjay Sahare
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
- Faculty of Physics, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Prachi Ghoderao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Yue Chan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Shern-Long Lee
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
10
|
Tan S, Wang K, Zeng Q, Liu Y. Insight into the Nanotribological Mechanism of Two-Dimensional Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40173-40181. [PMID: 36006009 DOI: 10.1021/acsami.2c08269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) materials are promising in reducing friction-induced energy loss and wear in automotive and electronics industries because of their superior tribological performance. As a kind of organic 2D materials, the structure and functionality of covalent organic frameworks (COFs) are much easier to tailor compared to other inorganic 2D materials, which expand their potential application in a Micro-Electro-Mechanical System (MEMS). In this manuscript, several kinds of COFs are synthesized and characterized on the surface of highly oriented pyrolytic graphite (HOPG) to investigate the nanotribological mechanism of organic 2D materials. It is surprisingly revealed that the friction coefficients of surface COFs are positively correlated with the pore sizes of honeycomb networks. The COFs with smaller pores would have a smoother potential energy surface and exhibit a lower friction coefficient. Besides, the porous structures of surface COFs make them good candidates to be host templates. The host-guest assembly structures are successfully constructed after introducing coronene molecules, and these host-guest systems display higher friction coefficients because the assembly structure of the guest molecules would be perturbed during the friction process and bring additional slip energy barriers, but the capacity of COFs to form composite assembly with functional guest molecules greatly promotes their further application in the MEMS.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Kunpeng Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Lei P, Luo W, Tu B, Xiao X, Fang Q, Wang C, Zeng Q. Minor adjustments in the chemical structures of pyridine derivatives induced different co-assemblies by O-H⋯N hydrogen bonds. Chem Commun (Camb) 2022; 58:9914-9917. [PMID: 35979695 DOI: 10.1039/d2cc03859e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The co-adsorption behaviours of aromatic carboxylic acids with various pyridine derivatives were investigated with scanning tunneling microscopy and density functional theory. Surprisingly, minor adjustments in the chemical structures of the pyridine derivatives, such as the relative position of the nitrogen atom or the lengths of the side chains on the backbone would evidently affect the intermolecular O-H⋯N hydrogen bonds and further form various co-adsorption structures.
Collapse
Affiliation(s)
- Peng Lei
- College of Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China. .,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wendi Luo
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China.
| | - Bin Tu
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China.
| | - Xunwen Xiao
- College of Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China.
| | - Qiaojun Fang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China.
| | - Chen Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China.
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Zhang S, Chen C, Li J, Ma C, Li X, Ma W, Zhang M, Cheng F, Deng K, Zeng Q. The self-assembly and pyridine regulation of a hydrogen-bonded dimeric building block formed by a low-symmetric aromatic carboxylic acid. NANOSCALE 2022; 14:2419-2426. [PMID: 35098290 DOI: 10.1039/d1nr07840b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The supramolecular self-assembly behavior of a low-symmetric aromatic carboxylic acid molecule (H5BHB) and its co-assembly behavior with a series of pyridine molecules (BPD, BPDYB and TPDYB) were studied at the heptanoic acid/HOPG liquid-solid interface. Scanning tunneling microscopy (STM) observations revealed that H5BHB molecules tend to form dimeric building blocks which then assemble into a close-packed structure. BPD, BPDYB and TPDYB pyridine molecules were all able to form a stable two-component co-assembled structure with the H5BHB molecule, and in these co-assembled structures, the H5BHB molecule still takes the form of a dimer. It was found that the pyridine molecules were able to regulate the self-assembly structure of the H5BHB molecule, and the molecular arrangement of the co-assembly structures varies with the shape of the pyridine molecules. Based on the analysis of the STM results and density functional theory (DFT) calculations, the formation mechanism of the assembled structures was revealed.
Collapse
Affiliation(s)
- Siqi Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chen Chen
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Jianqiao Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Chunyu Ma
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Xiaokang Li
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Min Zhang
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Ke Deng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Monodisperse fusiform microporous silica formed by evaporation-induced self assembly of polyamino acid copolymer template. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Li W, Chen J, Zhang C, Li Y, Wan L, Chen X. Mixing behavior of p-terphenyl-3,5,3',5'-tetracarboxylic acid with trimesic acid at the solid-liquid interface. Phys Chem Chem Phys 2021; 23:25896-25900. [PMID: 34779445 DOI: 10.1039/d1cp04770a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The molecular self-assembly of carboxylic acid molecules on a solid surface plays an important role in understanding the nanoscale-precision construction of functional patterns. In this study, the mixing behavior of p-terphenyl-3,5,3',5'-tetracarboxylic acid (TPTC) and trimesic acid (TMA) on a highly oriented pyrolytic graphite surface was studied by scanning tunneling microscopy (STM). The STM images show how the presence of a small percentage of TPTC molecules adsorbed onto TMA molecules can drastically change the on-surface self-assembly behavior of aromatic tetracarboxylic acid by initiating the nucleation and growth of a different polymorph. Molecular mechanics and density functional theory simulations of the adsorption energy and the additional stabilizing energy, induced by hydrogen bonds during assembly formations, provide insights into the relative stability of different assembled structures. Moreover, STM-based "nanoshaving" was conducted to confirm that the template layer underneath the second layer is indeed a random network.
Collapse
Affiliation(s)
- Wei Li
- School of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China. .,Key Laboratory of Optoelectronic Materials and New Energy Technology, Nanchang Institute of Technology, Nanchang 330099, P. R. China.,Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang 330099, P. R. China
| | - Jianbin Chen
- Guangdong Titans Intelligent Power Co., Ltd, Zhuhai, 519060, P. R. China
| | - Chengdong Zhang
- School of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China.
| | - Yudie Li
- School of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China.
| | - Lijia Wan
- School of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China. .,Key Laboratory of Optoelectronic Materials and New Energy Technology, Nanchang Institute of Technology, Nanchang 330099, P. R. China.,Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang 330099, P. R. China
| | - Xiaoling Chen
- School of Science, Nanchang Institute of Technology, Nanchang 330099, P. R. China. .,Key Laboratory of Optoelectronic Materials and New Energy Technology, Nanchang Institute of Technology, Nanchang 330099, P. R. China.,Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang 330099, P. R. China
| |
Collapse
|
15
|
Wu S, Jiang P, Ding N, Hu Q, Yan X, Liu J, Wang Y, Zhang H, Yuan P, Yang Q. Novel multi-stimuli-responsive supramolecular gel based on quinoline for the fluorescence ultrasensitive detection of Fe 3+and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120078. [PMID: 34147737 DOI: 10.1016/j.saa.2021.120078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
A novel gelator molecular based on quinolone (MN) has been successfully designed and synthesized. The gelator MN could self-assemble to form a supramolecular gel (OMN), which showed obvious aggregation-induced emission (AIE) in iso-Propyl alcohol (i-PrOH). Furthermore, the supramolecular organogel OMN realized ultrasensitive detection of Fe3+ and Cu2+ in aqueous medium and fluorescent quenching at 427 nm. The sensing mechanism between supramolecular gel and metal ions was fully investigated via FE-SEM, FT-IR, XRD and XPS. Meanwhile, a thin film based on responsive supramolecular gel OMN was prepared, which could be used as multi-stimuli-responsive fluorescent display materials for the detection of Fe3+ and Cu2+.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China.
| | - Pengwei Jiang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Ning Ding
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Qiang Hu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Xiangtao Yan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Jutao Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China.
| | - Peilin Yuan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
16
|
Xue D, Ma L, Tian Y, Zeng Q, Tu B, Luo W, Wen S, Luo J. Light-Controlled Friction by Carboxylic Azobenzene Molecular Self-Assembly Layers. Front Chem 2021; 9:707232. [PMID: 34422766 PMCID: PMC8374315 DOI: 10.3389/fchem.2021.707232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Nowadays, reversible friction regulation has become the focus of scientists in terms of the flexible regulatory structure of photosensitive materials and theories since this facilitates rapid development in this field. Meanwhile, as an external stimulus, light possesses great potential and advantages in spatiotemporal control and remote triggering. In this work, we demonstrated two photo-isomerized organic molecular layers, tetra-carboxylic azobenzene (NN4A) and dicarboxylic azobenzene (NN2A), which were selected to construct template networks on the surface of the highly oriented pyrolytic graphite (HOPG) to study the friction properties, corresponding to the arrangement structure of self-assembled layers under light regulation. First of all, the morphology of the self-assembled layers were characterized by a scanning tunneling microscope (STM), then the nanotribological properties of the template networks were measured by atomic force microscope (AFM). Their friction coefficients are respectively changed by about 0.6 and 2.3 times under light control. The density functional theory (DFT) method was used to calculate the relationship between the force intensity and the friction characteristics of the self-assembled systems under light regulation. Herein, the use of external light stimulus plays a significant role in regulating the friction properties of the interface of the nanometer, hopefully serving as a fundamental basis for further light-controlling research for the future fabrication of advanced on-surface devices.
Collapse
Affiliation(s)
- Dandan Xue
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Liran Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
17
|
Tan S, Tao J, Luo W, Shi H, Tu B, Jiang H, Liu Y, Xu H, Zeng Q. Insight Into the Superlubricity and Self-Assembly of Liquid Crystals. Front Chem 2021; 9:668794. [PMID: 34178941 PMCID: PMC8226320 DOI: 10.3389/fchem.2021.668794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/19/2022] Open
Abstract
Liquid crystals are promising molecular materials in the application of lubrication. Herein, the microscale solid superlubricity is accomplished by the construction of uniform and ordered self-assembly of several liquid crystals. The self-assembly structures on a highly oriented pyrolytic graphite (HOPG) surface are explicitly revealed by using scanning tunneling microscopy (STM). Meanwhile, the nanotribological performance of the self-assemblies are measured by using atomic force microscopy (AFM), revealing ultralow friction coefficients lower than 0.01. The interaction energies are calculated by density functional theory (DFT) method, indicating the positive correlation between friction coefficients and interaction strength. The effort on the self-assembly and superlubricity of liquid crystals could enhance the understanding of the nanotribological mechanism and benefit the further application of liquid crystals as lubricants.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.,Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jiayu Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Wendi Luo
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Hongyu Shi
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.,Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Hao Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Haijun Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingdao Zeng
- Chinese Academy of Sciences (CAS) Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Tan S, Tao J, Luo W, Jiang H, Liu Y, Xu H, Zeng Q, Shi H. Influence of functional groups on the self-assembly of liquid crystals. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Li W, Xu S, Chen X, Xu C. Structural transformations of carboxyl acids networks induced by concentration and oriented external electric field. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Liang Q, Yu Y, Feng G, Shen Y, Yang L, Lei S. Two-dimensional co-crystallization of two carboxylic acid derivatives having dissimilar symmetries at the liquid/solid interface. Chem Commun (Camb) 2020; 56:12182-12185. [PMID: 32914798 DOI: 10.1039/d0cc05216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By the co-assembly of two carboxylic acids with distinct symmetries and different numbers of carboxyl groups, we obtained two novel cocrystal structures at the n-octanoic acid/HOPG interface, one of which was sustained by unoptimized R22(8) hydrogen bonding. Benefiting from the bias-sensitivity of the BTB (1,3,5-tris(4-carboxyphenyl)benzene) molecule, a structure transition between the cocrystal network and a denser BTB lamella is achieved.
Collapse
Affiliation(s)
- Qiu Liang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Yanxia Yu
- Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China and MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Guangyuan Feng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Yongtao Shen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | - Ling Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
21
|
Tan S, Shi H, Fu L, Ma J, Du X, Song J, Liu Y, Zeng Q, Xu H, Wan J. Superlubricity of Fullerene Derivatives Induced by Host-Guest Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18924-18933. [PMID: 32227981 DOI: 10.1021/acsami.0c02726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fullerenes have been recognized as good candidates for solid lubricants. In this study, the microscale superlubricity of fullerene derivatives was accomplished by the construction of regular host-guest assembly structures. Herein, the host-guest assembly structures of fullerene derivatives were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing the macrocycles as the templates and were explicitly revealed by scanning tunneling microscopy (STM). Meanwhile, the nanotribological properties of the host-guest assemblies were measured using atomic force microscopy (AFM), revealing ultralow friction coefficients of 0.003-0.008, which could be attributed to the restriction on removal of fullerene molecules after introducing the templates. The interaction energies were calculated by density functional theory (DFT) method, which indicates the correlation between friction coefficients and interaction strength in the host-guest assemblies. The effort on fullerene-related superlubricity could extend the solid superlubrication systems and provide a novel pathway to explore the friction mechanisms at the molecular level.
Collapse
Affiliation(s)
- Shanchao Tan
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hongyu Shi
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Lulu Fu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin Du
- College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haijun Xu
- College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Junhua Wan
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, China
| |
Collapse
|
22
|
Li SY, Yang XQ, Chen T, Wang D, Zhu GS, Wan LJ. 2D Co-crystallization of molecular homologues promoted by size complementarity of the alkyl chains at the liquid/solid interface. Phys Chem Chem Phys 2019; 21:17846-17851. [PMID: 31378794 DOI: 10.1039/c9cp03863a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Co-crystallization of organic molecules is an important strategy for the fabrication of molecular materials. In this contribution, we investigated the mixing behavior of 5-(benzyloxy)-isophthalic acid homologues (BIC-Cn, n = 6, 8, 10, 12, and 14) at the liquid/solid interface using a scanning tunneling microscope. Deposition of the single component of BIC-Cn always results in typical honeycomb networks, whereas co-deposition of two BIC-Cn homologues leads to hybrid double-walled honeycomb networks or phase separation depending on the difference in the length of their alkyl chains. 2D co-crystallization can only be realized for BIC-C6/BIC-C10 or BIC-C8/BIC-C12 which have a four-methyl unit difference in their alkyl chains. The size complementarity of the alkyl chains in the two components suggests that it is responsible for the 2D co-crystallization, though hydrogen bonding contributes a lot both to the pristine honeycomb network and to the hybrid co-crystal. This result is of importance for understanding the role of van der Waals interaction and its interplay with hydrogen bonding in 2D co-crystallization.
Collapse
Affiliation(s)
- Shu-Ying Li
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | | | | | | | | | | |
Collapse
|
23
|
Cheng L, Tu B, Xiao X, Feringán B, Giménez R, Li X, Fang Q, Sierra T, Li Y, Zeng Q, Wang C. On-Surface Crystallization Behaviors of H-Bond Donor-Acceptor Complexes at Liquid/Solid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8935-8942. [PMID: 31189309 DOI: 10.1021/acs.langmuir.9b01350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) crystallization behaviors of A-TPC n ( n = 4, 6, 10), T3C4, and hydrogen-bonded complexes T3C4@TPC n ( n = 4, 6, 10) are investigated by means of scanning tunneling microscope (STM) observations and density functional theory (DFT) calculations. The STM observations reveal that A-TPC4, A-TPC10, and T3C4 self-organize into dumbbell-shaped structures, well-ordered bright arrays, and zigzag structures, respectively. Interestingly, T3C4@TPC10 fails to form the cage-ball structure, whereas T3C4@TPC4 and T3C4@TPC6 co-assemble into cage-ball structures with the same lattice parameters. The filling rates of the balls of these two kinds of cage-ball structures depend heavily on the deposition sequence. As a result, the filling rates of the cages in T3C4/A-TPC n ( n = 4, 6) with deposition of T3C4 anterior to A-TPC n are higher than those in A-TPC n/T3C4 ( n = 4, 6) with the opposite deposition sequence. Furthermore, lattice defects formed by T3C4 coexist with the cage-ball structures. Moreover, the similar energy per unit area of lattice defects (-0.101 kcal mol-1 Å-2) and the two cage-ball networks (-0.194 and -0.208 kcal mol-1 Å-2, respectively), illustrating the similar stabilities of lattice defects and cage-ball networks, demonstrates the rationality of lattice defects. Combining STM investigations and DFT calculations, this work could provide a useful approach to investigate the 2D crystallization mechanisms of supramolecular liquid crystals on surfaces.
Collapse
Affiliation(s)
- Linxiu Cheng
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | - Xunwen Xiao
- College of Chemical Engineering , Ningbo University of Technology , Ningbo 315016 , P. R. China
| | - Beatriz Feringán
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Raquel Giménez
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Xiaokang Li
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | | | - Teresa Sierra
- Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón (ICMA), Facultad de Ciencias , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Yibao Li
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , P. R. China
| | - Qingdao Zeng
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | |
Collapse
|
24
|
Xu H, Shi H, Liu Y, Song J, Lu X, Gros CP, Deng K, Zeng Q. Assembly structures and electronic properties of truxene-porphyrin compounds studied by STM/STS. Dalton Trans 2019; 48:8693-8701. [PMID: 31089664 DOI: 10.1039/c9dt01078e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The self-assembly of functional molecules into uniform nanostructures with innovational properties has attracted extensive research interest. In the present work, the assembly structures and electronic properties of a novel type of truxene derivative, e.g. truxene-porphyrin derivatives, were studied, for the first time, on a highly oriented pyrolytic graphite (HOPG) surface. Scanning tunneling microscopy (STM) images revealed that the truxene-porphyrin compounds could be parallelly arranged into long-ranged lamellar patterns. Density functional theory (DFT) calculations helped explain the assembly mechanisms further. Besides, order distribution of the smaller compound 1T1P in the 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) host network was achieved, which is a reflection of the dimensional effect in the host-guest assembly. Furthermore, together with theoretical analyses, scanning tunneling spectroscopy (STS) measurements were conducted to investigate the electronic properties of truxene-porphyrin compounds. Results showed that the metalation of the porphyrin units could have a significant effect on the band gap and the position of the gap center. The study enhances our understanding of the assembly mechanism of truxene derivatives at the molecular level and paves the way towards fabricating truxene-based functional nanodevices.
Collapse
Affiliation(s)
- Haijun Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China. and State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Yuhong Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Jian Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Xinchun Lu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR UB-CNRS 6302), 9, Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France.
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|