1
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
2
|
Süle P. Resolving heterogeneous particle mobility in deeply quenched liquid iron: an ultra-fast assembly-free two-step nucleation mechanism. Phys Chem Chem Phys 2024; 26:26091-26108. [PMID: 39377916 DOI: 10.1039/d4cp02526a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Despite intensive research, little is known about the intermediate state of phase transforming materials, which may form the missing link between e.g. liquids and solids on the nanoscale. The unraveling of the nanoscale interplay between the structure and dynamics of the intermediate state of phase transformations (through which e.g. crystal nucleation proceeds) is one of the biggest challenges and unsolved problems of materials science. Here we show using unbiased molecular dynamics simulations and spatially resolved atomic displacement maps (d-maps) that upon deep quenching the solidification of undercooled liquid iron proceeds through the formation of metastable pre-nucleation clusters (PNCs). We also reveal that the hitherto hidden PNCs are nearly immobile (dynamically arrested) and the related heterogeneity in atomic mobilities becomes clearly visible on atomic displacement-maps (d-maps) when atomic jumps are referenced to the final crystalline positions. However, this is in contrast to PNCs found in molecular solutions, in which PNCs tend to aggregate, move and crystallize via an activated process. Coordination filtered d-maps resolved in real space directly demonstrate that previously unseen highly ramified intermediate atomic clusters with a short lifetime emerge after incubation of undercooled liquid iron. The supercooled liquid iron is neither a spinodal system nor a liquid and undergoes a transition into a specific state called a quasi-liquid state within the temperature regime of 700-1250 K (0.5Tm > 0.7Tm, where the melting point is Tm ≈ 1811 K). Below 700 K the supercooled system is spinodal-like and above 1300 K it behaves like an ordinary liquid with long incubation times. A two-step process is proposed to explain the anomalous drop in the incubation time in the temperature regime of 700-1250 K. The 1st step is activated aggregation of small atomic clusters followed by assembly-free nearly barrierless ultrafast growth of early ramified prenucleation clusters called germs. The display and characterization of the hidden PNCs in computer simulations could provide new perspectives on the deeper understanding of the long-standing problem of precursor development during crystal nucleation following deep quenching.
Collapse
Affiliation(s)
- P Süle
- Centre for Energy Research, HUN-REN, Research Institute for Technical Physics and Material Science, Dept. of Nanostructures, Konkoly Thege u. 29-33, Budapest, Hungary.
- Wigner Research Centre for Physics, HUN-REN, P. O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
3
|
Zeng Y, Szymanski NJ, He T, Jun K, Gallington LC, Huo H, Bartel CJ, Ouyang B, Ceder G. Selective formation of metastable polymorphs in solid-state synthesis. SCIENCE ADVANCES 2024; 10:eadj5431. [PMID: 38232170 DOI: 10.1126/sciadv.adj5431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Metastable polymorphs often result from the interplay between thermodynamics and kinetics. Despite advances in predictive synthesis for solution-based techniques, there remains a lack of methods to design solid-state reactions targeting metastable materials. Here, we introduce a theoretical framework to predict and control polymorph selectivity in solid-state reactions. This framework presents reaction energy as a rarely used handle for polymorph selection, which influences the role of surface energy in promoting the nucleation of metastable phases. Through in situ characterization and density functional theory calculations on two distinct synthesis pathways targeting LiTiOPO4, we demonstrate how precursor selection and its effect on reaction energy can effectively be used to control which polymorph is obtained from solid-state synthesis. A general approach is outlined to quantify the conditions under which metastable polymorphs are experimentally accessible. With comparison to historical data, this approach suggests that using appropriate precursors could enable targeted materials synthesis across diverse chemistries through selective polymorph nucleation.
Collapse
Affiliation(s)
- Yan Zeng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nathan J Szymanski
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Tanjin He
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - KyuJung Jun
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Haoyan Huo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
| | - Christopher J Bartel
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Ouyang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Gerbrand Ceder
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, UC Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Zhou L, Sun Y, Wu Y, Zhu Y, Xu Y, Jia J, Wang F, Wang R. Controlled Growth of Pd Nanocrystals by Interface Interaction on Monolayer MoS 2: An Atom-Resolved in Situ Study. NANO LETTERS 2023. [PMID: 38010863 DOI: 10.1021/acs.nanolett.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The crystal growth kinetics is crucial for the controllable preparation and performance modulation of metal nanocrystals (NCs). However, the study of growth mechanisms is significantly limited by characterization techniques, and it is still challenging to in situ capture the growth process. Real-time and real-space imaging techniques at the atomic scale can promote the understanding of microdynamics for NC growth. Herein, the growth of Pd NCs on monolayer MoS2 under different atmospheres was in situ studied by environmental transmission electron microscopy. Introducing carbon monoxide can modulate the diffusion of Pd monomers, resulting in the epitaxial growth of Pd NCs with a uniform orientation. The electron energy loss spectroscopy and theoretical calculations showed that the CO adsorption assured the specific exposed facets and good uniformity of Pd NCs. The insight into the gas-solid interface interaction and the microscopic growth mechanism of NCs may shed light on the precise synthesis of NCs on two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Liang Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yusong Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchen Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingying Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Fang Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, The State Key Laboratory for Advanced Metals and Materials, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Ma S, Li Y, Cui D, Yang G, Wang L, Ran G. In situ TEM investigation of nucleation and crystallization of hybrid bismuth nanodiamonds. NANOSCALE 2023; 15:8762-8771. [PMID: 37185584 DOI: 10.1039/d3nr01338c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Despite great progress in the non-classical homogeneous nucleation and crystallization theory, the heterogeneous processes of atomic nucleation and crystallization remain poorly understood. Abundant theories and experiments have demonstrated the detailed dynamics of homogeneous nucleation; however, intensive dynamic investigations on heterogeneous nucleation are still rare. In this work, in situ transmission electron microscopy (TEM) at the atomic scale was carried out with temporal resolution for heterogeneous nucleation and crystallization. The results show a reversible amorphous to crystal phase transformation that is manipulated by the size threshold effect. Moreover, the two growth pathways of Bi particles can be mainly assigned to the atomic adsorption expansion in the amorphous state and effective fusion in the crystal contact process. These interesting findings, based on a real dynamic imaging system, strongly enrich and improve our understanding of the dynamic mechanisms in the non-classical heterogeneous nucleation and crystallization theory, providing insights into designing innovative materials with controlled microstructures and desired physicochemical properties.
Collapse
Affiliation(s)
- Sihan Ma
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Yipeng Li
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Dewang Cui
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Gang Yang
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| | - Lin Wang
- Department of Oncology, Zhongshan Hospital, Xiamen University, No. 201-209 Hubinnan Road, Xiamen 361004, Fujian Province, China
- School of Medicine, Xiamen University, Xiamen city, Fujian Province, 361002, China.
| | - Guang Ran
- College of Energy, Xiamen University, Xiamen city, Fujian Province, 361002, China.
- Fujian Provincial Nuclear Energy Engineering Technology Research Center, Xiamen 361002, China
| |
Collapse
|
6
|
Ma H, Kim D, Park SI, Choi BK, Park G, Baek H, Lee H, Kim H, Yu J, Lee WC, Park J, Yang J. Direct Observation of Off-Stoichiometry-Induced Phase Transformation of 2D CdSe Quantum Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205690. [PMID: 36638252 PMCID: PMC9982559 DOI: 10.1002/advs.202205690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Crystal structures determine material properties, suggesting that crystal phase transformations have the potential for application in a variety of systems and devices. Phase transitions are more likely to occur in smaller crystals; however, in quantum-sized semiconductor nanocrystals, the microscopic mechanisms by which phase transitions occur are not well understood. Herein, the phase transformation of 2D CdSe quantum nanosheets caused by off-stoichiometry is revealed, and the progress of the transformation is directly observed by in situ transmission electron microscopy. The initial hexagonal wurtzite-CdSe nanosheets with atomically uniform thickness are transformed into cubic zinc blende-CdSe nanosheets. A combined experimental and theoretical study reveals that electron-beam irradiation can change the stoichiometry of the nanosheets, thereby triggering phase transformation. The loss of Se atoms induces the reconstruction of surface atoms, driving the transformation from wurtzite-CdSe(11 2 ¯ $\bar{2}$ 0) to zinc blende-CdSe(001) 2D nanocrystals. Furthermore, during the phase transformation, unconventional dynamic phenomena occur, including domain separation. This study contributes to the fundamental understanding of the phase transformations in 2D quantum-sized semiconductor nanocrystals.
Collapse
Affiliation(s)
- Hyeonjong Ma
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Dongjun Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Soo Ik Park
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Gisang Park
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hayeon Baek
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Hyocheol Lee
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Hyeongseoung Kim
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Jong‐Sung Yu
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
- Energy Science and Engineering Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Won Chul Lee
- Department of Mechanical EngineeringBK21 FOUR ERICA‐ACE CenterHanyang UniversityAnsanGyeonggi15588Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS)Seoul08826Republic of Korea
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Institute of Engineering ResearchCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySeoul National UniversitySuwon‐siGyeonggi‐do16229Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
- Energy Science and Engineering Research CenterDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| |
Collapse
|
7
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
8
|
Yang S, Guo Z, Bian B, Du J, Hu Y. Dynamic Observation of Anisotropic Chainlike Structures during Nonclassical Two-Step Nucleation in Solid-State Iron Oxide Crystallization. J Phys Chem Lett 2022; 13:8352-8358. [PMID: 36043849 DOI: 10.1021/acs.jpclett.2c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The demonstration of the self-crystallization nucleation process from an amorphous precursor in a solid is crucial for understanding of interactions between atoms. We report a study of dynamic crystallization process of iron oxides by virtue of in situ measurement of transmission electron microscopy. At first, semiordered chainlike structures are observed with the increase of concentration, and when sufficient chains form, the crystalline lattice begins to grow. The two-step nucleation pathway has also been confirmed by performing a molecular dynamics simulation, where Lennard-Jones and magnetic dipole-dipole interaction potentials are both taken into account and take effect individually predominantly in different ranges of distance between atoms. Furthermore, the total free energy profile in the crystallization nucleation process is calculated to evidence the stabilization of intermediate state. This work advances our understanding of nonclassical nucleation theory.
Collapse
Affiliation(s)
- Song Yang
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhongze Guo
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Baoru Bian
- Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Juan Du
- Institute of Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Hu
- Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Zhang Z, Tang Y, Ying Y, Guo J, Gan M, Jiang Y, Xing C, Pan S, Xu M, Zhou Y, Zhang H, Leung CW, Huang H, Mak CL, Fei L. Multistep nucleation visualized during solid-state crystallization. MATERIALS HORIZONS 2022; 9:1670-1678. [PMID: 35470363 DOI: 10.1039/d2mh00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yujie Tang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Junqing Guo
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Min Gan
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yateng Jiang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Chunxian Xing
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shanshan Pan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yangbo Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
10
|
Ye H, Yang F, Sun Y, Wang R. Atom-Resolved Investigation on Dynamic Nucleation and Growth of Platinum Nanocrystals. SMALL METHODS 2022; 6:e2200171. [PMID: 35324080 DOI: 10.1002/smtd.202200171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Understanding the mechanism of nucleation and growth of nanocrystals is crucial for designing and regulating the structure and properties of nanocrystals. However, the process from molecules to nanocrystals remains unclear because of the rapid and complicated dynamics of evolution under reaction conditions. Here, the complete evolution process of solid-phase chloroplatinic acid during the electron beam irradiation triggered reduction and nucleation of platinum nanocrystals is recorded. Aberration-corrected environmental transmission electron microscopy is used for direct visualization of the dynamic evolution from H2 PtCl6 to Pt nanocrystals at the atomic scale, including the formation and growth of amorphous clusters, crystallization, and growth of clusters, and the ripening of Pt nanocrystals. At the first two stages, there exists a critical size of ≈2.0 nm, which represents the start of crystallization. Crystallization from the center and density fluctuation are observed in the second stage of the crystallization of a few clusters with a size obviously larger than the critical size. The work provides valuable information to understand the kinetics of the early stage of nanocrystal nucleation and crystallization at atomic scale.
Collapse
Affiliation(s)
- Huanyu Ye
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Feng Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yinghui Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongming Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Popov O, Vishnyakov V. High Densification of Tungsten via Hot Pressing at 1300 °C in Carbon Presence. MATERIALS 2022; 15:ma15103641. [PMID: 35629665 PMCID: PMC9144784 DOI: 10.3390/ma15103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022]
Abstract
A reactive sintering technique with a small addition of carbon (up to 1.9 wt.%) has been used for tungsten powder consolidation. The process allowed procurement of the nonporous and fully densified material at 1300 °C and 30 MPa in 12 min. The SEM and EDX analysis showed that the milling of 5 μm tungsten powder with 0.6, 1.3, and 1.9 wt.% of carbon in a planetary mill led to the formation of the nanostructured mix, which appears to be W-C nanopowder surrounding tungsten grains. X-Ray Diffractometry data indicated tungsten hemicarbide (W2C) nucleation during the hot pressing of the milled powders. The exothermic reaction 2W + C → W2C occurs during the sintering process and promotes charge densification. The Vickers hardness and indentation toughness of W-1.3 wt.%C composition reached 5.7 GPa and 12.6 MPa∙m1/2, respectively. High toughness and high material densification allow proposing the W-WC2 for use as a plasma-facing material in fusion applications.
Collapse
Affiliation(s)
- Oleksii Popov
- Metal Physics Department, Faculty of Physics, Taras Shevchenko National University of Kyiv, 01033 Kyiv, Ukraine
- SRC “Synthesis”, 02161 Kyiv, Ukraine
- Correspondence:
| | - Vladimir Vishnyakov
- Institute for Materials Research, University of Huddersfield, Huddersfield HD1 3DH, UK;
| |
Collapse
|
12
|
Kim HJ, Kim JH, Jeong JS, Moon CY, Nahm S, Nam KM, Park J, Kim YH. Heterointerface Effect on Two-Step Nucleation Mechanism of Bi Particles. NANO LETTERS 2022; 22:3252-3259. [PMID: 35434994 DOI: 10.1021/acs.nanolett.1c04966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nucleation and crystallization of Bi particles on two matrices, crystalline bismuth sulfide (c-Bi2S3) and amorphized bismuth titanium oxide (a-Bi12TiO20), were studied by using in situ transmission electron microscopy (TEM) analysis. The atomic structures of the Bi particles were monitored by acquiring high-resolution TEM images in real time. The Bi particles were grown on c-Bi2S3 and a-Bi12TiO20 via a two-step nucleation mechanism; dense liquid clusters were clearly observed at the initial stage of nucleation, and the coalescence of clusters was frequently observed during the growth. However, the nucleation and crystallization behaviors of Bi particles were governed by the matrix; in particular, the evolution of their morphology and atomic structure was confined on c-Bi2S3 but free from matrix effects on a-Bi12TiO20. The matrix effect on the two-step nucleation mechanism was demonstrated from a thermodynamic point of view.
Collapse
Affiliation(s)
- Hyung Joong Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong Hoon Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jong Seok Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Chang Youn Moon
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 305-340, Republic of Korea
| | - Sahn Nahm
- Department of Materials Science and Engineering, Korea University, Seoul 136-701, Republic of Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Geumjwong-gu, Busan 46241, Republic of Korea
| | - Jucheol Park
- Gumi Electronics and Information Research Institute, Gumi, Kyoungsangbuk-do 136-701, Republic of Korea
| | - Young Heon Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
13
|
Fu X, Wang XD, Zhao B, Zhang Q, Sun S, Wang JJ, Zhang W, Gu L, Zhang Y, Zhang WZ, Wen W, Zhang Z, Chen LQ, Yu Q, Ma E. Atomic-scale observation of non-classical nucleation-mediated phase transformation in a titanium alloy. NATURE MATERIALS 2022; 21:290-296. [PMID: 34824395 DOI: 10.1038/s41563-021-01144-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Two-phase titanium-based alloys are widely used in aerospace and biomedical applications, and they are obtained through phase transformations between a low-temperature hexagonal closed-packed α-phase and a high-temperature body-centred cubic β-phase. Understanding how a new phase evolves from its parent phase is critical to controlling the transforming microstructures and thus material properties. Here, we report time-resolved experimental evidence, at sub-ångström resolution, of a non-classically nucleated metastable phase that bridges the α-phase and the β-phase, in a technologically important titanium-molybdenum alloy. We observed a nanosized and chemically ordered superstructure in the α-phase matrix; its composition, chemical order and crystal structure are all found to be different from both the parent and the product phases, but instigating a vanishingly low energy barrier for the transformation into the β-phase. This latter phase transition can proceed instantly via vibrational switching when the molybdenum concentration in the superstructure exceeds a critical value. We expect that such a non-classical phase evolution mechanism is much more common than previously believed for solid-state transformations.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xu-Dong Wang
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Beikai Zhao
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Suyang Sun
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Jiang-Jing Wang
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China
| | - Wei Zhang
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yangsheng Zhang
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wen-Zheng Zhang
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Wen Wen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Qian Yu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - En Ma
- Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Zhang Z, Qiang J, Wang S, Xu M, Gan M, Rao Z, Tian T, Ke S, Zhou Y, Hu Y, Leung CW, Mak CL, Fei L. Visualization of Bubble Nucleation and Growth Confined in 2D Flakes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103301. [PMID: 34473395 DOI: 10.1002/smll.202103301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jun Qiang
- State Key Laboratory of High-Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shensong Wang
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Min Gan
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenggang Rao
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Tingfang Tian
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Shanming Ke
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yangbo Zhou
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yongming Hu
- Hubei Key Laboratory of Ferro- & Piezoelectric Materials and Devices, School of Microelectronics, Hubei University, Wuhan, Hubei, 430062, China
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Linfeng Fei
- School of Materials Science and Engineering, Jiangxi Engineering Laboratory for Advanced Functional Thin Films, Jiangxi Key Laboratory for Two-Dimensional Materials and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi, 330031, China
| |
Collapse
|
15
|
Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Recent Progress in Emerging Two-Dimensional Transition Metal Carbides. NANO-MICRO LETTERS 2021; 13:183. [PMID: 34417663 PMCID: PMC8379312 DOI: 10.1007/s40820-021-00710-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/25/2021] [Indexed: 05/17/2023]
Abstract
As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.
Collapse
Affiliation(s)
- Tianchen Qin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zegao Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Yuqing Wang
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark
| | | | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 77146, Olomouc, Czech Republic
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
16
|
Jeon S, Heo T, Hwang SY, Ciston J, Bustillo KC, Reed BW, Ham J, Kang S, Kim S, Lim J, Lim K, Kim JS, Kang MH, Bloom RS, Hong S, Kim K, Zettl A, Kim WY, Ercius P, Park J, Lee WC. Reversible disorder-order transitions in atomic crystal nucleation. Science 2021; 371:498-503. [PMID: 33510024 DOI: 10.1126/science.aaz7555] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 11/02/2022]
Abstract
Nucleation in atomic crystallization remains poorly understood, despite advances in classical nucleation theory. The nucleation process has been described to involve a nonclassical mechanism that includes a spontaneous transition from disordered to crystalline states, but a detailed understanding of dynamics requires further investigation. In situ electron microscopy of heterogeneous nucleation of individual gold nanocrystals with millisecond temporal resolution shows that the early stage of atomic crystallization proceeds through dynamic structural fluctuations between disordered and crystalline states, rather than through a single irreversible transition. Our experimental and theoretical analyses support the idea that structural fluctuations originate from size-dependent thermodynamic stability of the two states in atomic clusters. These findings, based on dynamics in a real atomic system, reshape and improve our understanding of nucleation mechanisms in atomic crystallization.
Collapse
Affiliation(s)
- Sungho Jeon
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Taeyeong Heo
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Sang-Yeon Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Bryan W Reed
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, CA 94588, USA
| | - Jimin Ham
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Sungin Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Joowon Lim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Kitaek Lim
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Ji Soo Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Min-Ho Kang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ruth S Bloom
- Integrated Dynamic Electron Solutions, Inc., Pleasanton, CA 94588, USA
| | - Sukjoon Hong
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea.,Center for Nanomedicine, IBS, Seoul 03722, Republic of Korea
| | - Alex Zettl
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, LBNL, Berkeley, CA 94720, USA.,Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| | - Woo Youn Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA.
| | - Jungwon Park
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea. .,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Won Chul Lee
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, Gyeonggi 15588, Republic of Korea.
| |
Collapse
|
17
|
Amodeo J, Pietrucci F, Lam J. Out-of-Equilibrium Polymorph Selection in Nanoparticle Freezing. J Phys Chem Lett 2020; 11:8060-8066. [PMID: 32880462 DOI: 10.1021/acs.jpclett.0c02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to design synthesis processes that are out of equilibrium has opened the possibility of creating nanomaterials with remarkable physicochemical properties, choosing from a much richer palette of possible atomic architectures compared to equilibrium processes in extended systems. In this work, we employ atomistic simulations to demonstrate how to control polymorph selection via the cooling rate during nanoparticle freezing in the case of Ni3Al, a material with a rich structural landscape. State-of-the-art free-energy calculations allow us to rationalize the complex nucleation process, discovering a switch between two kinetic pathways, yielding the equilibrium structure at room temperature and an alternative metastable one at higher temperature. Our findings address the key challenge in the synthesis of nanoalloys for technological applications, i.e., rationally exploiting the competition between kinetics and thermodynamics by designing a treatment history that forces the system into desirable metastable states.
Collapse
Affiliation(s)
- Jonathan Amodeo
- Université de Lyon, INSA-Lyon, MATEIS, UMR 5510 CNRS, 69621 Villeurbanne, France
| | - Fabio Pietrucci
- Sorbonne Université, CNRS UMR 7590, IMPMC, 75005 Paris, France
| | - Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
18
|
Ye L, Ying Y, Sun D, Zhang Z, Fei L, Wen Z, Qiao J, Huang H. Highly Efficient Porous Carbon Electrocatalyst with Controllable N-Species Content for Selective CO 2 Reduction. Angew Chem Int Ed Engl 2020; 59:3244-3251. [PMID: 31814233 DOI: 10.1002/anie.201912751] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 12/22/2022]
Abstract
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2 RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal-organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2 RR. The NPC exhibits superior CO2 RR activity with a small onset potential of -0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at -0.55 V vs. RHE, one of the highest values among NPC-based CO2 RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2 RR electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Lin Ye
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dengrong Sun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang-Si, Gyungsangbuk-do, 37673, South Korea
| | - Zhouyang Zhang
- School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Linfeng Fei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.,School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Zhenhai Wen
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jinli Qiao
- College of Environmental Science and Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Ye L, Ying Y, Sun D, Zhang Z, Fei L, Wen Z, Qiao J, Huang H. Highly Efficient Porous Carbon Electrocatalyst with Controllable N‐Species Content for Selective CO
2
Reduction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912751] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lin Ye
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong China
| | - Yiran Ying
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong China
| | - Dengrong Sun
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Nam-gu, Pohang-Si Gyungsangbuk-do 37673 South Korea
| | - Zhouyang Zhang
- School of Materials Science and Engineering Nanchang University Nanchang Jiangxi 330031 China
| | - Linfeng Fei
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong China
- School of Materials Science and Engineering Nanchang University Nanchang Jiangxi 330031 China
| | - Zhenhai Wen
- Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jinli Qiao
- College of Environmental Science and Engineering State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 China
| | - Haitao Huang
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong China
| |
Collapse
|
20
|
Jin B, Wang Y, Liu Z, France-Lanord A, Grossman JC, Jin C, Tang R. Revealing the Cluster-Cloud and Its Role in Nanocrystallization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808225. [PMID: 30847959 DOI: 10.1002/adma.201808225] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/21/2019] [Indexed: 05/18/2023]
Abstract
Elucidating the early stages of crystallization from supersaturated solutions is of critical importance, but remains a great challenge. An in situ liquid cell transmission electron microscopy study reveals an intermediate state of condensed atomic clusters during Pd and Au crystallizations, which is named a "cluster-cloud." It is found that nucleation is initiated by the collapse of a cluster-cloud, first forming a nanoparticle. The subsequent particle maturation proceeds via multiple out-and-in relaxations of the cluster-cloud to improve crystallinity: from a poorly crystallized phase, the particle evolves into a well-defined single-crystal phase. Both experimental investigations and atomistic simulations suggest that the cluster-cloud-mediated nanocrystallization involves an order-disorder phase separation and reconstruction, which is energetically favored compared to local rearrangements within the particle. This finding grants new insights into nanocrystallization mechanisms, and provides useful information for the improvement of synthesis pathways of nanocrystals.
Collapse
Affiliation(s)
- Biao Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yanming Wang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Arthur France-Lanord
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeffrey C Grossman
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|