1
|
Ravichandran H, Sen D, Wali A, Schranghamer TF, Trainor N, Redwing JM, Ray B, Das S. A Peripheral-Free True Random Number Generator Based on Integrated Circuits Enabled by Atomically Thin Two-Dimensional Materials. ACS NANO 2023; 17:16817-16826. [PMID: 37616285 DOI: 10.1021/acsnano.3c03581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A true random number generator (TRNG) is essential to ensure information security for Internet of Things (IoT) edge devices. While pseudorandom number generators (PRNGs) have been instrumental, their deterministic nature limits their application in security-sensitive scenarios. In contrast, hardware-based TRNGs derived from physically unpredictable processes offer greater reliability. This study demonstrates a peripheral-free TRNG utilizing two cascaded three-stage inverters (TSIs) in conjunction with an XOR gate composed of monolayer molybdenum disulfide (MoS2) field-effect transistors (FETs) by exploiting the stochastic charge trapping and detrapping phenomena at and/or near the MoS2/dielectric interface. The entropy source passes the NIST SP800-90B tests with a minimum normalized entropy of 0.8780, while the generated bits pass the NIST SP800-22 randomness tests without any postprocessing. Moreover, the keys generated using these random bits are uncorrelated with near-ideal entropy, bit uniformity, and Hamming distances, exhibiting resilience against machine learning (ML) attacks, temperature variations, and supply bias fluctuations with a frugal energy expenditure of 30 pJ/bit. This approach offers an advantageous alternative to conventional silicon, memristive, and nanomaterial-based TRNGs as it obviates the need for extensive peripherals while harnessing the potential of atomically thin 2D materials in developing low-power TRNGs.
Collapse
Affiliation(s)
- Harikrishnan Ravichandran
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipanjan Sen
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Akshay Wali
- Electrical Engineering and Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas F Schranghamer
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas Trainor
- Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Biswajit Ray
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Saptarshi Das
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Electrical Engineering and Computer Science, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Ravichandran H, Knobloch T, Pannone A, Karl A, Stampfer B, Waldhoer D, Zheng Y, Sakib NU, Karim Sadaf MU, Pendurthi R, Torsi R, Robinson JA, Grasser T, Das S. Observation of Rich Defect Dynamics in Monolayer MoS 2. ACS NANO 2023. [PMID: 37490390 DOI: 10.1021/acsnano.2c12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Defects play a pivotal role in limiting the performance and reliability of nanoscale devices. Field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors such as monolayer MoS2 are no exception. Probing defect dynamics in 2D FETs is therefore of significant interest. Here, we present a comprehensive insight into various defect dynamics observed in monolayer MoS2 FETs at varying gate biases and temperatures. The measured source-to-drain currents exhibit random telegraph signals (RTS) owing to the transfer of charges between the semiconducting channel and individual defects. Based on the modeled temperature and gate bias dependence, oxygen vacancies or aluminum interstitials are probable defect candidates. Several types of RTSs are observed including anomalous RTS and giant RTS indicating local current crowding effects and rich defect dynamics in monolayer MoS2 FETs. This study explores defect dynamics in large area-grown monolayer MoS2 with ALD-grown Al2O3 as the gate dielectric.
Collapse
Affiliation(s)
- Harikrishnan Ravichandran
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Theresia Knobloch
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alexander Karl
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Bernhard Stampfer
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Dominic Waldhoer
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Yikai Zheng
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Najam U Sakib
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Muhtasim Ul Karim Sadaf
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Rahul Pendurthi
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Riccardo Torsi
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Joshua A Robinson
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Tibor Grasser
- Institute for Microelectronics (TU Wien), Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Electrical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Schranghamer TF, Sakib NU, Sadaf MUK, Subbulakshmi Radhakrishnan S, Pendurthi R, Agyapong AD, Stepanoff SP, Torsi R, Chen C, Redwing JM, Robinson JA, Wolfe DE, Mohney SE, Das S. Ultrascaled Contacts to Monolayer MoS 2 Field Effect Transistors. NANO LETTERS 2023; 23:3426-3434. [PMID: 37058411 DOI: 10.1021/acs.nanolett.3c00466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) semiconductors possess promise for the development of field-effect transistors (FETs) at the ultimate scaling limit due to their strong gate electrostatics. However, proper FET scaling requires reduction of both channel length (LCH) and contact length (LC), the latter of which has remained a challenge due to increased current crowding at the nanoscale. Here, we investigate Au contacts to monolayer MoS2 FETs with LCH down to 100 nm and LC down to 20 nm to evaluate the impact of contact scaling on FET performance. Au contacts are found to display a ∼2.5× reduction in the ON-current, from 519 to 206 μA/μm, when LC is scaled from 300 to 20 nm. It is our belief that this study is warranted to ensure an accurate representation of contact effects at and beyond the technology nodes currently occupied by silicon.
Collapse
Affiliation(s)
- Thomas F Schranghamer
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Najam U Sakib
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Muhtasim Ul Karim Sadaf
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shiva Subbulakshmi Radhakrishnan
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rahul Pendurthi
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ama Duffie Agyapong
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sergei P Stepanoff
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Riccardo Torsi
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chen Chen
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- 2D Crystal Consortium Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joshua A Robinson
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Douglas E Wolfe
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Suzanne E Mohney
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Dodda A, Jayachandran D, Subbulakshmi Radhakrishnan S, Pannone A, Zhang Y, Trainor N, Redwing JM, Das S. Bioinspired and Low-Power 2D Machine Vision with Adaptive Machine Learning and Forgetting. ACS NANO 2022; 16:20010-20020. [PMID: 36305614 DOI: 10.1021/acsnano.2c02906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Natural intelligence has many dimensions, with some of its most important manifestations being tied to learning about the environment and making behavioral changes. In primates, vision plays a critical role in learning. The underlying biological neural networks contain specialized neurons and synapses which not only sense and process visual stimuli but also learn and adapt with remarkable energy efficiency. Forgetting also plays an active role in learning. Mimicking the adaptive neurobiological mechanisms for seeing, learning, and forgetting can, therefore, accelerate the development of artificial intelligence (AI) and bridge the massive energy gap that exists between AI and biological intelligence. Here, we demonstrate a bioinspired machine vision system based on a 2D phototransistor array fabricated from large-area monolayer molybdenum disulfide (MoS2) and integrated with an analog, nonvolatile, and programmable memory gate-stack; this architecture not only enables dynamic learning and relearning from visual stimuli but also offers learning adaptability under noisy illumination conditions at miniscule energy expenditure. In short, our demonstrated "all-in-one" hardware vision platform combines "sensing", "computing", and "storage" to not only overcome the von Neumann bottleneck of conventional complementary metal-oxide-semiconductor (CMOS) technology but also to eliminate the need for peripheral circuits and sensors.
Collapse
Affiliation(s)
- Akhil Dodda
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Darsith Jayachandran
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | | | - Andrew Pannone
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Yikai Zhang
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
| | - Nicholas Trainor
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
| | - Saptarshi Das
- Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Electrical Engineering and Computer Science, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
5
|
Wang X, Tan J, Ouyang J, Zhang H, Wang J, Wang Y, Deringer VL, Zhou J, Zhang W, Ma E. Designing Inorganic Semiconductors with Cold-Rolling Processability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203776. [PMID: 35981888 PMCID: PMC9596854 DOI: 10.1002/advs.202203776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Indexed: 06/15/2023]
Abstract
While metals can be readily processed and reshaped by cold rolling, most bulk inorganic semiconductors are brittle materials that tend to fracture when plastically deformed. Manufacturing thin sheets and foils of inorganic semiconductors is therefore a bottleneck problem, severely restricting their use in flexible electronic applications. It is recently reported that a few single-crystalline 2D van der Waals (vdW) semiconductors, such as InSe, are deformable under compressive stress. Here it is demonstrated that intralayer fracture toughness can be tailored via compositional design to make inorganic semiconductors processable by cold rolling. Systematic ab initio calculations covering a range of van der Waals semiconductors homologous to InSe are reported, leading to material-property maps that forecast trends in both the susceptibility to interlayer slip and the intralayer fracture toughness against cracking. GaSe is predicted, and experimentally confirmed, to be practically amenable to being rolled to large (three quarters) thickness reduction and length extension by a factor of three. The fracture toughness and cleavage energy are predicted to be 0.25 MPa m0.5 and 15 meV Å-2 , respectively. The findings open a new realm of possibility for alloy selection and design toward processing-friendly group-III chalcogenides for practical applications.
Collapse
Affiliation(s)
- Xu‐Dong Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jieling Tan
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jian Ouyang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Hang‐Ming Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jiang‐Jing Wang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yuecun Wang
- Center for Advancing Materials Performance from the Nanoscale (CAMP‐Nano) and Hysitron Applied Research Center in China (HARCC)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Volker L. Deringer
- Department of ChemistryInorganic Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QRUK
| | - Jian Zhou
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Zhang
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - En Ma
- Center for Alloy Innovation and Design (CAID)State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
6
|
Kaur G, Sharma S, Singh S, Bhardwaj N, Deep A. Selective and Sensitive Electrochemical Sensor for Aflatoxin M1 with a Molybdenum Disulfide Quantum Dot/Metal-Organic Framework Nanocomposite. ACS OMEGA 2022; 7:17600-17608. [PMID: 35664620 PMCID: PMC9161392 DOI: 10.1021/acsomega.2c00126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxins are the hepatotoxic secondary metabolites which are highly carcinogenic and known to cause several adverse effects on human health. The present study reports a simple, sensitive, and novel electrochemical sensor for aflatoxin M1 (AFM1). The sensor has been fabricated by modifying the screen-printed carbon electrodes with a functional nanocomposite of molybdenum disulfide (MoS2) quantum dots (QDs) and a zirconium-based metal-organic framework (MOF), that is, UiO-66-NH2. The MoS2/UiO-66-modified electrodes were decorated with the AFM1-specific monoclonal antibodies and then investigated for the electrochemical detection of AFM1. Based on the electrochemical impedance spectroscopy analysis, it was possible to detect AFM1 in the concentration range of 0.2-10 ng mL-1 with a limit of detection of 0.06 ng mL-1. The realization of an excellent sensing performance can be attributed to the electroactivity of MoS2 QDs and the large surface to volume area achieved by the addition of the MOF. The presence of UiO-66-NH2 is also useful to attain readily available amine functionality for the robust interfacing of antibodies. The performance of the developed sensor has also been validated by detecting AFM1 in the spiked milk samples.
Collapse
Affiliation(s)
- Gurjeet Kaur
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Saloni Sharma
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Shalini Singh
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| | - Neha Bhardwaj
- Department
of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh 160014, India
| | - Akash Deep
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
- CSIR-Central
Scientific Instruments Organization (CSIR-CSIO), Sector 30C, Chandigarh 160030, India
| |
Collapse
|
7
|
de Freitas N, Florindo BR, Freitas VMS, Piazzetta MHDO, Ospina CA, Bettini J, Strauss M, Leite ER, Gobbi AL, Lima RS, Santhiago M. Fast and efficient electrochemical thinning of ultra-large supported and free-standing MoS 2 layers on gold surfaces. NANOSCALE 2022; 14:6811-6821. [PMID: 35388391 DOI: 10.1039/d2nr00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molybdenum disulfide (MoS2) is a very promising layered material for electrical, optical, and electrochemical applications because of its unique and outstanding properties. To unlock its full potential, among different preparation routes, electrochemistry has gain interest due to its simple, fast, scalable and simple instrumentation. However, obtaining large-area monolayer MoS2 that will enable the fabrication of novel electronic and electrochemical devices is still challenging. In this work, we reported a simple and fast electrochemical thinning process that results in ultra-large MoS2 down to monolayer on Au surfaces. The high affinity of MoS2 by Au surfaces enables the removal of bulk layers while preserving the first layer attached to the electrode. With a proper choice of the applied potential, more than 90% of the bulk regions can be removed from large-area MoS2 crystals, as confirmed by atomic force microscopy, photoluminescence, and Raman spectroscopy. We further address a set of contributions that are helpful to elucidate the features of MoS2, namely, the hyphenation of electrochemistry and optical microscopy for real-time observation of the thinning process that was revealed to occur from the edges to the center of the flake, an image treatment to estimate the thinning area and thinning rate, and the preparation of free-standing MoS2 layers by electrochemically thinning bulk flakes on microhole-structured Ni/Au meshes.
Collapse
Affiliation(s)
- Nicolli de Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Bianca R Florindo
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Vitória M S Freitas
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Maria H de O Piazzetta
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Carlos A Ospina
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Jefferson Bettini
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Mathias Strauss
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Edson R Leite
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Angelo L Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil.
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
8
|
Dodda A, Das S. Demonstration of Stochastic Resonance, Population Coding, and Population Voting Using Artificial MoS 2 Based Synapses. ACS NANO 2021; 15:16172-16182. [PMID: 34648278 DOI: 10.1021/acsnano.1c05042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fast detection of weak signals at low energy expenditure is a challenging but inescapable task for the evolutionary success of animals that survive in resource constrained environments. This task is accomplished by the sensory nervous system by exploiting the synergy between three astounding neural phenomena, namely, stochastic resonance (SR), population coding (PC), and population voting (PV). In SR, the constructive role of synaptic noise is exploited for the detection of otherwise invisible signals. In PC, the redundancy in neural population is exploited to reduce the detection latency. Finally, PV ensures unambiguous signal detection even in the presence of excessive noise. Here we adopt a similar strategies and experimentally demonstrate how a population of stochastic artificial neurons based on monolayer MoS2 field effect transistors (FETs) can use an optimum amount of white Gaussian noise and population voting to detect invisible signals at a frugal energy expenditure (∼10s of nano-Joules). Our findings can aid remote sensing in the emerging era of the Internet of things (IoT) that thrive on energy efficiency.
Collapse
Affiliation(s)
- Akhil Dodda
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Chubarov M, Choudhury TH, Hickey DR, Bachu S, Zhang T, Sebastian A, Bansal A, Zhu H, Trainor N, Das S, Terrones M, Alem N, Redwing JM. Wafer-Scale Epitaxial Growth of Unidirectional WS 2 Monolayers on Sapphire. ACS NANO 2021; 15:2532-2541. [PMID: 33450158 DOI: 10.1021/acsnano.0c06750] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Realization of wafer-scale single-crystal films of transition metal dichalcogenides (TMDs) such as WS2 requires epitaxial growth and coalescence of oriented domains to form a continuous monolayer. The domains must be oriented in the same crystallographic direction on the substrate to inhibit the formation of inversion domain boundaries (IDBs), which are a common feature of layered chalcogenides. Here we demonstrate fully coalesced unidirectional WS2 monolayers on 2 in. diameter c-plane sapphire by metalorganic chemical vapor deposition using a multistep growth process to achieve epitaxial WS2 monolayers with low in-plane rotational twist (0.09°). Transmission electron microscopy analysis reveals that the WS2 monolayers are largely free of IDBs but instead have translational boundaries that arise when WS2 domains with slightly offset lattices merge together. By regulating the monolayer growth rate, the density of translational boundaries and bilayer coverage were significantly reduced. The unidirectional orientation of domains is attributed to the presence of steps on the sapphire surface coupled with growth conditions that promote surface diffusion, lateral domain growth, and coalescence while preserving the aligned domain structure. The transferred WS2 monolayers show neutral and charged exciton emission at 80 K with negligible defect-related luminescence. Back-gated WS2 field effect transistors exhibited an ION/OFF of ∼107 and mobility of 16 cm2/(V s). The results demonstrate the potential of achieving wafer-scale TMD monolayers free of inversion domains with properties approaching those of exfoliated flakes.
Collapse
Affiliation(s)
- Mikhail Chubarov
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tanushree H Choudhury
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Danielle Reifsnyder Hickey
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saiphaneendra Bachu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amritanand Sebastian
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anushka Bansal
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Haoyue Zhu
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas Trainor
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Saptarshi Das
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nasim Alem
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joan M Redwing
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Sebastian A, Pendurthi R, Choudhury TH, Redwing JM, Das S. Benchmarking monolayer MoS 2 and WS 2 field-effect transistors. Nat Commun 2021; 12:693. [PMID: 33514710 PMCID: PMC7846590 DOI: 10.1038/s41467-020-20732-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/17/2020] [Indexed: 11/09/2022] Open
Abstract
Here we benchmark device-to-device variation in field-effect transistors (FETs) based on monolayer MoS2 and WS2 films grown using metal-organic chemical vapor deposition process. Our study involves 230 MoS2 FETs and 160 WS2 FETs with channel lengths ranging from 5 μm down to 100 nm. We use statistical measures to evaluate key FET performance indicators for benchmarking these two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers against existing literature as well as ultra-thin body Si FETs. Our results show consistent performance of 2D FETs across 1 × 1 cm2 chips owing to high quality and uniform growth of these TMDs followed by clean transfer onto device substrates. We are able to demonstrate record high carrier mobility of 33 cm2 V-1 s-1 in WS2 FETs, which is a 1.5X improvement compared to the best reported in the literature. Our experimental demonstrations confirm the technological viability of 2D FETs in future integrated circuits.
Collapse
Affiliation(s)
- Amritanand Sebastian
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Rahul Pendurthi
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA
| | - Tanushree H Choudhury
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Penn State University, University Park, PA, 16802, USA
| | - Joan M Redwing
- 2D Crystal Consortium-Materials Innovation Platform (2DCC-MIP), Penn State University, University Park, PA, 16802, USA.,Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA.,Materials Research Institute, Penn State University, University Park, PA, 16802, USA
| | - Saptarshi Das
- Department of Engineering Science and Mechanics, Penn State University, University Park, PA, 16802, USA. .,Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, USA. .,Materials Research Institute, Penn State University, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Abstract
In this article, we adopt a radical approach for next generation ultra-low-power sensor design by embracing the evolutionary success of animals with extraordinary sensory information processing capabilities that allow them to survive in extreme and resource constrained environments. Stochastic resonance (SR) is one of those astounding phenomena, where noise, which is considered detrimental for electronic circuits and communication systems, plays a constructive role in the detection of weak signals. Here, we show SR in a photodetector based on monolayer MoS2 for detecting ultra-low-intensity subthreshold optical signals from a distant light emitting diode (LED). We demonstrate that weak periodic LED signals, which are otherwise undetectable, can be detected by a MoS2 photodetector in the presence of a finite and optimum amount of white Gaussian noise at a frugal energy expenditure of few tens of nano-Joules. The concept of SR is generic in nature and can be extended beyond photodetector to any other sensors. Here, the authors take advantage of stochastic resonance in a photodetector based on monolayer MoS2 for measuring otherwise undetectable, ultra-low-intensity, subthreshold optical signals from a distant light emitting diode in the presence of a finite and optimum amount of white Gaussian noise.
Collapse
|
12
|
Singh VK, Pendurthi R, Nasr JR, Mamgain H, Tiwari RS, Das S, Srivastava A. Study on the Growth Parameters and the Electrical and Optical Behaviors of 2D Tungsten Disulfide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16576-16583. [PMID: 32180391 DOI: 10.1021/acsami.9b19820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transition-metal dichalcogenides (TMDCs) with atomic thickness are promising materials for next-generation electronic and optoelectronic devices. Herein, we report uniform growth of triangular-shaped (∼40 μm) monolayer WS2 using the atmospheric-pressure chemical vapor deposition (APCVD) technique in a hydrogen-free environment. We have studied the optical and electrical behaviors of as-grown WS2 samples. The absorption spectrum of monolayer WS2 shows two intense excitonic absorption peaks, namely, A (∼630 nm) and B (∼530 nm), due to the direct gap transitions at the K point. Photoluminescence (PL) and fluorescence studies reveal that under the exposure of green light, monolayer WS2 gives very strong red emission at ∼663 nm. This corresponds to the direct band gap and strong excitonic effect in monolayer WS2. Furthermore, the efficacy of the synthesized WS2 crystals for electronic devices is also checked by fabricating field-effect transistors (FETs). FET devices exhibit an electron mobility of μ ∼ 6 cm2 V-1 s-1, current ON/OFF ratio of ∼106, and subthreshold swing (SS) of ∼641 mV decade-1, which are comparable to those of the exfoliated monolayer WS2 FETs. These findings suggest that our APCVD-grown WS2 has the potential to be used for next-generation nanoelectronic and optoelectronic applications.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Pendurthi
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph R Nasr
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | - Radhey Shyam Tiwari
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saptarshi Das
- Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Ghasemi F, Abdollahi A, Mohajerzadeh S. Controlled Plasma Thinning of Bulk MoS 2 Flakes for Photodetector Fabrication. ACS OMEGA 2019; 4:19693-19704. [PMID: 31788600 PMCID: PMC6881830 DOI: 10.1021/acsomega.9b02367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
The electronic properties of layered materials are directly determined based on their thicknesses. Remarkable progress has been carried out on synthesis of wafer-scale atomically molybdenum disulfide (MoS2) layers as a two-dimensional material in the past few years in order to transform them into commercial products. Although chemical/mechanical exfoliation techniques are used to obtain a high-quality monolayer of MoS2, the lack of suitable control in the thickness and the lateral size of the flakes restrict their benefits. As a result, a straightforward, effective, and reliable approach is widely demanded to achieve a large-area MoS2 flake with control in its thickness for optoelectronic applications. In this study, thick MoS2 flakes are obtained by a short-time bath sonication in dimethylformamide solvent, which are thinned with the aid of a sequential plasma etching process using H2, O2, and SF6 plasma. A comprehensive study has been carried out on MoS2 flakes based on scanning electron microscopy, atomic force microscopy, Raman, transmission electron microscopy, and X-ray photoelectron microscopy measurements, which ultimately leads to a two-cycle plasma thinning method. In this approach, H2 is used in the passivation step in the first subcycle, and O2/SF6 plasma acts as an etching step for removing the MoS2 layers in the second subcycle. Finally, we show that this technique can be enthusiastically used to fabricate MoS2-based photodetectors with a considerable photoresponsivity of 1.39 A/W and a response time of 0.45 s under laser excitation of 532 nm.
Collapse
Affiliation(s)
- Foad Ghasemi
- Nanoscale
Physics Device Lab (NPDL), Department of Physics, University of Kurdistan, Sanandaj 66177-15175, Kurdistan, Iran
| | - Ali Abdollahi
- Nanoelectronic
Lab, School of Electrical and Computer Eng, University of Tehran, Tehran 14399-56191, Tehran, Iran
| | - Shams Mohajerzadeh
- Nanoelectronic
Lab, School of Electrical and Computer Eng, University of Tehran, Tehran 14399-56191, Tehran, Iran
| |
Collapse
|
14
|
Wang L, Schmid M, Nilsson ZN, Tahir M, Chen H, Sambur JB. Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe 2 Photoelectrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19207-19217. [PMID: 31070890 DOI: 10.1021/acsami.9b04785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding light-matter interactions in transition-metal dichalcogenides (TMDs) is critical for optoelectronic device applications. Several studies have shown that high intensity light irradiation can tune the optical and physical properties of pristine TMDs. The enhancement in optoelectronic properties has been attributed to a so-called laser annealing effect that heals chalcogen vacancies. However, it is unknown whether laser annealing improves functional properties such as photocatalytic activity. Here, we show that high intensity supra band gap illumination improves the photoelectrochemical activity of MoSe2 nanosheets for iodide oxidation in indium doped tin oxide/MoSe2/I-, I3-/Pt liquid junction solar cells. Ensemble-level photoelectrochemical measurements show that, on average, illuminating MoSe2 thin films with 1 W/cm2 532 nm excitation increases the photoelectrochemical current by 142% and shifts the photocurrent response to more favorable (negative) potentials. Scanning photoelectrochemical microscopy measurements reveal that pristine bilayer (2L)-MoSe2, trilayer (3L)-MoSe2, and multilayer-thick nanosheets are initially inactive for iodide oxidation. The light treatment activates 2L-MoSe2 and 3L-MoSe2 materials, and the activation process initiates at the edge sites. The photocurrent enhancement is more significant for 2L-MoSe2 than for 1L-MoSe2. Multilayer-thick MoSe2 remains inactive for iodide oxidation even after the laser treatment. Our microscopy measurements reveal that the laser-induced enhancement effect depends critically on MoSe2 layer thickness. X-ray photoelectron spectroscopy measurements further show that the laser treatment oxidizes Mo(IV) species that are initially associated with Se vacancies. Ambient oxygen fills the Se vacancies and removes trap states, thereby increasing the overall photogenerated carrier collection efficiency. To the best of our knowledge, this work represents the first report on using laser to enhance the photoelectrocatalytic properties of few-layer-thick TMDs. The simple and rapid laser annealing procedure is a promising strategy to tune the reactivity of TMD-based photoelectrochemical cells for electricity and chemical fuel production.
Collapse
|