1
|
Li H, Chen S, Su F, Li Z, Tang KW. N-Doped Carbon-Incorporated Cobalt-Iron Mixed-Metal Phosphide Nanoboxes as Efficient Bifunctional Catalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69210-69220. [PMID: 39656143 DOI: 10.1021/acsami.4c13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Optimizing the composition and structure of nanocatalysts is an efficient approach to achieving the top electrocatalytic performance. However, the construction of hollow nanocomposites composed of metal phosphides and highly conductive carbon to promote the electrocatalytic performance of metal phosphide-based catalysts is rarely reported. Herein, a CoFeP/C nanobox nanocomposite consisting of Co-Fe mixed-metal phosphides and N-doped carbon was successfully fabricated through an ion-exchange phosphidation strategy derived from ZIF-67 nanocubes. Benefiting from the synergistic effects between multiple components and the unique hollow structure, CoFeP/C nanoboxes can catalyze the alkaline oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with high activity and stability. Furthermore, in the construction of an alkaline water electrolyzer using CoFeP/C nanoboxes as both OER and HER catalysts, they were capable of efficiently splitting water with a current density of 10 mA cm-2 achieved by applying only 1.62 V of cell voltage and exhibited outstanding durability. Density functional theory calculations demonstrate that synergistic effects among multiple components in CoFeP/C nanoboxes can lower the hydrogen adsorption free energy of the HER and OER energy barrier of the rate-determining step, thus promoting the catalytic reactions. The design and synthesis of CoFeP/C nanoboxes highlight the importance of the composition and structural characteristics in achieving high-performance water electrolysis.
Collapse
Affiliation(s)
- Hua Li
- School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuiqiang Chen
- School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fang Su
- School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Zheng Li
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ke-Wen Tang
- School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| |
Collapse
|
2
|
Pahuja M, Dastider SG, Jyoti, Alam K, Rani S, Das S, Urkude R, Afshan M, Rani D, Chaudhary N, Siddiqui SA, Riyajuddin SK, Ghosh R, Mondal K, Ghosh K. Harvesting Green Hydrogen from the Deep Blue: Seawater-Compatible SnSe-P Decorated Graphene-CNTs Based Electrocatalyst Under Universal pH. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406113. [PMID: 39279593 DOI: 10.1002/smll.202406113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Fabrication of cost-effective and robust metal-based electrocatalysts for hydrogen evolution reactions (HER) across the entire pH range has garnered significant attention in harvesting renewable energy. Herein, the fabrication of 3D high-surface Ni Foam-Graphene-Carbon Nanotubes (NGC) decorated with phosphorous-inserted tin selenide (SnSe-P) showcases unprecedented HER activity with minimal overpotentials across all pH ranges (52 mV in acidic, 93 mV in basic, and 198 mV in neutral conditions@10 mA cm-2) and stability at 1 A cm-2 for 72 h. The as-designed catalyst shows a low overpotential of 122 mV@10 mA cm-2 in alkaline seawater, achieved through controlled electronic distribution on Sn site after incorporation of P in NGC-SnSe-P. A stable cell voltage of 1.56 V@10 mA cm⁻2 is achieved for prolonged time in 1 m KOH toward overall water electrolysis. Experimental and theoretical investigation reveals that the insertion of P in layered SnSe enables s orbitals of H* and p orbitals of Sn to interact, favoring the adsorption of the H* intermediate. A renewable approach is adopted by using silicon solar cells (η = 10.66%) to power up the electrolyzer, yielding a solar-to-hydrogen (STH) conversion efficiency of 7.70% in 1 m KOH and 5.65% in alkaline seawater, aiming toward green hydrogen production.
Collapse
Affiliation(s)
- Mansi Pahuja
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | | | - Jyoti
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Kehkashan Alam
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Seema Rani
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Subhabrata Das
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Rajashri Urkude
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai, 400085, India
| | - Mohd Afshan
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Daya Rani
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Nikita Chaudhary
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Shumile Ahmed Siddiqui
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - S K Riyajuddin
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Rishita Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Krishnakanta Mondal
- Department of Physics and Astrophysics, University of Delhi, New Delhi, 110007, India
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Knowledge City, Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
3
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
5
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
6
|
Wang B, Liu W, Leng Y, Yu X, Wang C, Hu L, Zhu X, Wu C, Yao Y, Zou Z. Strain engineering of high-entropy alloy catalysts for electrocatalytic water splitting. iScience 2023; 26:106326. [PMID: 36950114 PMCID: PMC10025961 DOI: 10.1016/j.isci.2023.106326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/07/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Developing active and cost-effective bifunctional electrocatalysts for overall water splitting is challenging but mandatory for renewable energy technologies. We report a high-entropy alloy (HEA) of PtIrCuNiCr as a bifunctional electrocatalyst for overall water splitting, which shows a low overpotential of ca. 190 mV at the current density of 10 mA cm-2. Compared with pure metals, HEAs exhibit remarkable surface strain due to severe lattice distortion in their crystal structures. Theoretical calculations reveal that the strain can regulate the binding energy of intermediates on catalysts by adjusting the metal-metal bonding energy. It pushes the HEA toward the top of volcano plots to achieve superior electrocatalytic activity for both hydrogen and oxygen evolution reactions. The strain effect of HEAs on electrocatalysis can be well engineered by tuning the catalyst radius or configurational entropy. This work renders a systematic strain regulation strategy for designing a high-performance HEA catalyst for overall water splitting.
Collapse
Affiliation(s)
- Bing Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
- Corresponding author
| | - Weigui Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yecheng Leng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Xiwen Yu
- College of Engineering and Applied Sciences, Nanjing University; No. 22 Hankou Road, Nanjing 210093, P. R. China
| | - Cheng Wang
- College of Engineering and Applied Sciences, Nanjing University; No. 22 Hankou Road, Nanjing 210093, P. R. China
| | - Lianghe Hu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- Corresponding author
| | - Congping Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yingfang Yao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
- College of Engineering and Applied Sciences, Nanjing University; No. 22 Hankou Road, Nanjing 210093, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- Corresponding author
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nano Technology, Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, Nanjing University, Nanjing 210093, P. R. China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
- Institute for Carbon Neutrality, Ningbo Innovation Center, Zhejiang University, Ningbo 315100, P. R. China
| |
Collapse
|
7
|
Lin F, Lv B, Gao H, Feng J, Chen D, Zheng C, Li D, Chen Y, Sun C. Graphite Nanoflake-Modified Mo 2C with Ameliorated Interfacial Interaction as an Electrocatalyst for Hydrogen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56407-56415. [PMID: 36475593 DOI: 10.1021/acsami.2c18021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molybdenum carbide (Mo2C) is anticipated to be a promising electrocatalyst for electrocatalytic hydrogen production due to its low cost, resourceful property, prominent stability, and Pt-like electrocatalytic activity. The rational design of Mo2C-based electrocatalysts is expected to improve hydrogen evolution reaction (HER) performance, especially by constructing ultrasmall Mo2C particles and appropriate interfaces. Herein, composites of molybdenum carbide (Mo2C) quantum dots anchored on graphite nanoflakes (Mo2C/G) were fabricated, which realized a stable overpotential of 136 mV at 10 mA cm-2 for the HER with a small Tafel slope of 76.81 mV dec-1 in alkaline media, and operated stably over 10 h and 2000 cycles. The superior HER performance can be attributed to the fact that graphite nanoflakes could act as a matrix to disperse Mo2C as quantum dots to expose more active sites and guarantee high electronic conductivity and, more importantly, provide ameliorated interfacial interaction between Mo2C and graphite nanoflakes with appropriate hydrogen binding energy and charge density distribution. To further explore which kind of interfacial interaction is more favorable to improve the HER performance, density functional theory calculations and corresponding contrast experiments were also performed, and it was interesting to prove that Mo2C quantum dots anchored to the basal planes of defective graphite nanoflakes exhibit better electrochemical performance than those anchored on the edges.
Collapse
Affiliation(s)
- Fangfei Lin
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Benhui Lv
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Haopeng Gao
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiaming Feng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Daming Chen
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Cheng Zheng
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - De Li
- State Key Laboratory of Marine Resources Utilization in South China Sea, Key Laboratory of Research on Utilization of Si-Zr-Ti Resources of Hainan Province, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies; School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Chenghua Sun
- College of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry and Biotechnology and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
8
|
Saji VS. Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Feng M, Huang J, Peng Y, Huang C, Yue X, Huang S. Tuning Electronic Structures of Transition Metal Carbides to Boost Oxygen Evolution Reactions in Acidic Medium. ACS NANO 2022; 16:13834-13844. [PMID: 35997614 DOI: 10.1021/acsnano.2c02099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing low-cost, efficient, and robust nonprecious metal electrocatalysts for oxygen evolution reactions (OER) in acidic medium is the major challenge to realize the application of the proton exchange membrane water electrolyzer (PEM-WE). It is well-known that transition metal carbides (TMCs) have Pt-like electronic structures and catalytic behaviors. However, monometallic carbides in acidic medium show ignored OER activities. Herein, we reported that the catalytic activity of the TMCs can be enhanced by constructing bimetallic carbides (TiTaC2) fabricated through hydrothermal treatment followed by an annealing process, and further by doping fluorine (F) into the bimetallic carbides (TiTaFxC2). The as-prepared reduced graphene oxide (rGO) supported TiTaFxC2 nanoparticles (TiTaFxC2 NP/rGO) show state-of-the-art OER catalytic activity, which is even superior to Ir/C catalyst (an onset potential of only 1.42 V vs RHE and the overpotential of 490 mV to reach 100 mA cm-2), fast kinetics (Tafel slope of only 36 mV dec-1), and high durability (maintaining the current density at 1.60 V vs RHE for 40 h). Detailed structural characterizations together with density functional theory (DFT) calculations reveal that the electronic structures of the bimetallic carbides have been tuned, and their possible mechanism is also discussed.
Collapse
Affiliation(s)
- Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Koudakan PA, Wei C, Mosallanezhad A, Liu B, Fang Y, Hao X, Qian Y, Wang G. Constructing Reactive Micro-Environment in Basal Plane of MoS 2 for pH-Universal Hydrogen Evolution Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107974. [PMID: 35665596 DOI: 10.1002/smll.202107974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
MoS2 represents a promising catalyst for the hydrogen evolution reaction (HER) in water splitting, but the inefficient catalytic activity in a pH-universal environment is an obstacle to developing practical applications. Boosting and balancing the water dissociation and hydrogen desorption kinetics is crucial in designing high-performance catalysts for the overall pH range. Herein, it is experimentally demonstrated that cobalt single-atom doping can effectively construct a reactive CoMoS micro-environment on the basal plane of MoS2 and thus alter the uniformity of surface electron density, which is further confirmed by the theoretical results. The reactive micro-environment consisting of single-atom Co with the surrounding Mo and S atoms possesses excellent water dissociation and hydrogen desorption kinetics, exhibiting a superior performance of 36 mV at 10 mA cm-2 with a Tafel slope of 33 mV dec-1 in the alkaline condition. Meanwhile, it also shows worthy activity in the acidic (97 mV) and neutral (117 mV) environments. This work provides a facile strategy to improve the HER catalysis of MoS2 in pH-universal environments.
Collapse
Affiliation(s)
- Payam Ahmadian Koudakan
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Cong Wei
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Amirabbas Mosallanezhad
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bo Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yanyan Fang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaobin Hao
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, Anhui, 239000, P. R. China
| | - Yitai Qian
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gongming Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
11
|
In Situ Growth of NiSe2-MoSe2 Heterostructures on Graphene Nanosheets as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2022. [DOI: 10.3390/catal12070701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is regarded as a crucial way to reduce energy loss in water splitting. Herein, NiSe2/MoSe2 heterostructures grown on graphene nanosheets (NiSe2-MoSe2 HTs/G) have been in situ synthesized by a simple hydrothermal reaction. As an electrocatalyst for HER, NiSe2-MoSe2 HTs/G delivers superior performance with a low Tafel slope of 65 mV dec−1, a small overpotential of 144 mV at 10 mA cm−2, and long-term stability up to 24 h. The superior performance for HER can be mainly ascribed to the synergistic effects of NiSe2-MoSe2 heterostructures, which can facilitate the rapid electron transfer from the electrode to the exposed MoSe2 edges to take part in the HER reaction, thus boosting the HER kinetics. Moreover, the graphene matrix with high conductivity can not only improve the overall conductivity of the composite but also greatly increase the exposed active sites, therefore further promoting the HER performance. This study provides a simple route for fabricating bimetallic selenides-based heterostructures on graphene as an efficient and stable electrocatalyst for HER.
Collapse
|
12
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|
13
|
Pi C, Li X, Zhang X, Song H, Zheng Y, Gao B, Kızılaslan A, Chu PK, Huo K. In-Plane Mott-Schottky Effects Enabling Efficient Hydrogen Evolution from Mo 5 N 6 -MoS 2 Heterojunction Nanosheets in Universal-pH Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201137. [PMID: 35527344 DOI: 10.1002/smll.202201137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Cost-effective electrocatalysts for the hydrogen evolution reaction (HER) spanning a wide pH range are highly desirable but still challenging for hydrogen production via electrochemical water splitting. Herein, Mo5 N6 -MoS2 heterojunction nanosheets prepared on hollow carbon nanoribbons (Mo5 N6 -MoS2 /HCNRs) are designed as Mott-Schottky electrocatalysts for efficient pH-universal HER. The in-plane Mo5 N6 -MoS2 Mott-Schottky heterointerface induces electron redistribution and a built-in electric field, which effectively activates the inert MoS2 basal planes to intrinsically increase the electrocatalytic activity, improve electronic conductivity, and boost water dissociation activity. Moreover, the vertical Mo5 N6 -MoS2 nanosheets provide more activated sites for the electrochemical reaction and facilitate mass/electrolyte transport, while the tightly coupled HCNRs substrate and metallic Mo5 N6 provide fast electron transfer paths. Consequently, the Mo5 N6 -MoS2 /HCNRs electrocatalyst delivers excellent pH-universal HER performances exemplified by ultralow overpotentials of 57, 59, and 53 mV at a current density of 10 mA cm-2 in acidic, neutral, and alkaline electrolytes with Tafel slopes of 38.4, 43.5, and 37.9 mV dec-1 , respectively, which are superior to those of the reported MoS2 -based catalysts and outperform Pt in overall water splitting. This work proposes a new strategy to construct an in-plane heterointerface on the nanoscale and provides fresh insights into the HER electrocatalytic mechanism of MoS2 -based heterostructures.
Collapse
Affiliation(s)
- Chaoran Pi
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Xingxing Li
- College of Architecture and Materials Engineering, Hubei University of Education, Gaoxin Road 129, Wuhan, 430205, P. R. China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Abdulkadir Kızılaslan
- Department of Metallurgy and Materials Science, Sakarya University, Sakarya, 54050, Turkey
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Kaifu Huo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
14
|
Niyitanga T, Kim H. Reduced Graphene Oxide Supported Zinc/Cobalt oxide nanoparticles as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
He B, Zhang Q, Pan Z, Li L, Li C, Ling Y, Wang Z, Chen M, Wang Z, Yao Y, Li Q, Sun L, Wang J, Wei L. Freestanding Metal-Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chem Rev 2022; 122:10087-10125. [PMID: 35446541 PMCID: PMC9185689 DOI: 10.1021/acs.chemrev.1c00978] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Metal–organic
frameworks (MOFs) have recently emerged as
ideal electrode materials and precursors for electrochemical energy
storage and conversion (EESC) owing to their large specific surface
areas, highly tunable porosities, abundant active sites, and diversified
choices of metal nodes and organic linkers. Both MOF-based and MOF-derived
materials in powder form have been widely investigated in relation
to their synthesis methods, structure and morphology controls, and
performance advantages in targeted applications. However, to engage
them for energy applications, both binders and additives would be
required to form postprocessed electrodes, fundamentally eliminating
some of the active sites and thus degrading the superior effects of
the MOF-based/derived materials. The advancement of freestanding electrodes
provides a new promising platform for MOF-based/derived materials
in EESC thanks to their apparent merits, including fast electron/charge
transmission and seamless contact between active materials and current
collectors. Benefiting from the synergistic effect of freestanding
structures and MOF-based/derived materials, outstanding electrochemical
performance in EESC can be achieved, stimulating the increasing enthusiasm
in recent years. This review provides a timely and comprehensive overview
on the structural features and fabrication techniques of freestanding
MOF-based/derived electrodes. Then, the latest advances in freestanding
MOF-based/derived electrodes are summarized from electrochemical energy
storage devices to electrocatalysis. Finally, insights into the currently
faced challenges and further perspectives on these feasible solutions
of freestanding MOF-based/derived electrodes for EESC are discussed,
aiming at providing a new set of guidance to promote their further
development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Zhenghui Pan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Lei Li
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chaowei Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, 436 Xian'ge Road, Anyang 455000, China
| | - Ying Ling
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Mengxiao Chen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yagang Yao
- College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 Singapore.,Institute of Materials Research and Engineering, A*Star, Singapore 138634, Singapore
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
16
|
Najafi L, Bellani S, Zappia MI, Serri M, Oropesa‐Nuñez R, Bagheri A, Beydaghi H, Brescia R, Pasquale L, Shinde DV, Zuo Y, Drago F, Mosina K, Sofer Z, Manna L, Bonaccorso F. Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of “inert” ZrSe
2
as catalyst for electrolyzers. NANO SELECT 2022. [DOI: 10.1002/nano.202100364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | | | - Michele Serri
- Graphene Labs Istituto Italiano di Tecnologia Genova Italy
| | | | - Ahmad Bagheri
- Graphene Labs Istituto Italiano di Tecnologia Genova Italy
| | | | - Rosaria Brescia
- Electron Microscopy Facility Istituto Italiano di Tecnologia Genova Italy
| | - Lea Pasquale
- Materials Characterization Facility Istituto Italiano di Tecnologia Genova Italy
| | | | - Yong Zuo
- NanoChemistry Istituto Italiano di Tecnologia Genova Italy
| | - Filippo Drago
- NanoChemistry Istituto Italiano di Tecnologia Genova Italy
| | - Kseniia Mosina
- Department of Inorganic Chemistry University of Chemistry and Technology Prague Prague 6 Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry University of Chemistry and Technology Prague Prague 6 Czech Republic
| | - Liberato Manna
- NanoChemistry Istituto Italiano di Tecnologia Genova Italy
| | | |
Collapse
|
17
|
Wang Q, Ren J, Sudi MS, Dou Y, Zhao W, Wang A, Zhao L, Shang D, Zhu W. Strongly Coupled Nitrogen-Doped Mo 2C@CoNi Alloy Hybrid Architecture toward Efficient Hydrogen Evolution Reaction. Inorg Chem 2022; 61:4114-4120. [PMID: 35179355 DOI: 10.1021/acs.inorgchem.1c03913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Development of high-efficiency electrocatalysts for water splitting is a promising channel to produce clean hydrogen energy. Herein, we demonstrate that the combination of nitrogen-doped Mo2C and CoNi alloy to form a hybrid architecture is an effective way to produce hydrogen from electrochemical water splitting. Benefiting from a combination of mechanisms, the optimized N-Mo2C@CoNi-650 shows remarkable hydrogen evolution reaction (HER) activity with small overpotentials of 35, 123, and 220 mV to reach the current density of 10, 50, and 100 mA cm-2 in alkaline media, respectively, outperforming most previously reported HER electrocatalysts. The efficient electrocatalytic performance is ascribed to the highly exposed active sites, fast reaction kinetics, and improved charge-transfer steaming from the synergistic effect between each component. This work presents a new insight into designing and preparing highly efficient electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jinshen Ren
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - M Shire Sudi
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yuqin Dou
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Wei Zhao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Aijian Wang
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Long Zhao
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Danhong Shang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, P.R. China
| | - Weihua Zhu
- School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| |
Collapse
|
18
|
Zhao Y, Yan Y, Lee JM. Recent progress on transition metal diselenides from formation and modification to applications. NANOSCALE 2022; 14:1075-1095. [PMID: 35019924 DOI: 10.1039/d1nr07789a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of graphene promotes the research of similar two-dimensional (2D) materials, especially 2D transition metal dichalcogenides (TMDCs) with semiconductor properties. Monolayer or few-layer TMDCs have several advantages, such as direct band gap, weak interlayer van der Waals force, large interlayer spacing, and abundant marginal active sites, which make them widely used in catalysis, optoelectronics, as well as energy conversion and storage devices. In addition, transition metal diselenides (TMDSs) also possess many intriguing characteristics. For instance, transition metal diselenides (e.g., MoSe2) have a more stable 1T phase, larger interlayer spacing, smaller band gap, and more obvious metallic property of Se than TMDCs (e.g., MoS2). Thus, it has become one of the most attractive research topics branching out from TMDCs. Herein, this review unveils the structures, synthesis, properties, modifications, applications, and perspectives for TMDSs.
Collapse
Affiliation(s)
- Yuhan Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yibo Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
19
|
Najafi L, Oropesa-Nuñez R, Bellani S, Martín-García B, Pasquale L, Serri M, Drago F, Luxa J, Sofer Z, Sedmidubský D, Brescia R, Lauciello S, Zappia MI, Shinde DV, Manna L, Bonaccorso F. Topochemical Transformation of Two-Dimensional VSe 2 into Metallic Nonlayered VO 2 for Water Splitting Reactions in Acidic and Alkaline Media. ACS NANO 2022; 16:351-367. [PMID: 34939404 DOI: 10.1021/acsnano.1c06662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The engineering of the structural and morphological properties of nanomaterials is a fundamental aspect to attain desired performance in energy storage/conversion systems and multifunctional composites. We report the synthesis of room temperature-stable metallic rutile VO2 (VO2 (R)) nanosheets by topochemically transforming liquid-phase exfoliated VSe2 in a reductive Ar-H2 atmosphere. The as-produced VO2 (R) represents an example of two-dimensional (2D) nonlayered materials, whose bulk counterparts do not have a layered structure composed by layers held together by van der Waals force or electrostatic forces between charged layers and counterbalancing ions amid them. By pretreating the VSe2 nanosheets by O2 plasma, the resulting 2D VO2 (R) nanosheets exhibit a porous morphology that increases the material specific surface area while introducing defective sites. The as-synthesized porous (holey)-VO2 (R) nanosheets are investigated as metallic catalysts for the water splitting reactions in both acidic and alkaline media, reaching a maximum mass activity of 972.3 A g-1 at -0.300 V vs RHE for the hydrogen evolution reaction (HER) in 0.5 M H2SO4 (faradaic efficiency = 100%, overpotential for the HER at 10 mA cm-2 = 0.184 V) and a mass activity (calculated for a non 100% faradaic efficiency) of 745.9 A g-1 at +1.580 V vs RHE for the oxygen evolution reaction (OER) in 1 M KOH (overpotential for the OER at 10 mA cm-2 = 0.209 V). By demonstrating proof-of-concept electrolyzers, our results show the possibility to synthesize special material phases through topochemical conversion of 2D materials for advanced energy-related applications.
Collapse
Affiliation(s)
- Leyla Najafi
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Reinier Oropesa-Nuñez
- Department of Material Science and Engineering, Uppsala University, Box 35, 75103 Uppsala, Sweden
| | - Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lea Pasquale
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Michele Serri
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Filippo Drago
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - David Sedmidubský
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Simone Lauciello
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marilena I Zappia
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
| | - Dipak V Shinde
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
20
|
|
21
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
22
|
Regulating electronic structure and adsorptivity in molybdenum selenide for boosting electrocatalytic water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Wang T, Wu H, Feng C, Ding Y, Mei H. Ni, N‐codoped NiMoO4 grown on 3D nickel foam as bifunctional electrocatalysts for hydrogen production in urea‐water electrolysis. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138931] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Gao J, Tao H, Liu B. Progress of Nonprecious-Metal-Based Electrocatalysts for Oxygen Evolution in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003786. [PMID: 34169587 DOI: 10.1002/adma.202003786] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/29/2020] [Indexed: 06/13/2023]
Abstract
Water oxidation, or the oxygen evolution reaction (OER), which combines two oxygen atoms from two water molecules and releases one oxygen molecule, plays the key role by providing protons and electrons needed for the hydrogen generation, electrochemical carbon dioxide reduction, and nitrogen fixation. The multielectron transfer OER process involves multiple reaction intermediates, and a high overpotential is needed to overcome the sluggish kinetics. Among the different water splitting devices, proton exchange membrane (PEM) water electrolyzer offers greater advantages. However, current anode OER electrocatalysts in PEM electrolyzers are limited to precious iridium and ruthenium oxides. Developing highly active, stable, and precious-metal-free electrocatalysts for water oxidation in acidic media is attractive for the large-scale application of PEM electrolyzers. In recent years, various types of precious-metal-free catalysts such as carbon-based materials, earth-abundant transition metal oxides, and multiple metal oxide mixtures have been investigated and some of them show promising activity and stability for acidic OER. In this review, the thermodynamics of water oxidation, Pourbaix diagram of metal elements in aqueous solution, and theoretical screening and prediction of precious-metal-free electrocatalysts for acidic OER are first elaborated. The catalytic performance, reaction kinetics, and mechanisms together with future research directions regarding acidic OER are summarized and discussed.
Collapse
Affiliation(s)
- Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Huabing Tao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
25
|
In situ synthesis of a nickel boron oxide/graphdiyne hybrid for enhanced photo/electrocatalytic H2 evolution. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63601-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
Qiu S, Liang X, Li Y, Xia X, Chen M. Recent advance on Co‐based materials for polysulfide catalysis toward promoted lithium‐sulfur batteries. NANO SELECT 2021. [DOI: 10.1002/nano.202100177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Saisai Qiu
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin P. R. China
| | - Xinqi Liang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin P. R. China
| | - Yu Li
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin P. R. China
| | - Xinhui Xia
- State Key Laboratory of Silicon Materials Key Laboratory of Advance Materials and Applications for Batteries of Zhejiang Province and Department of Materials Science and Engineering Zhejiang University Hangzhou China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin P. R. China
| |
Collapse
|
27
|
Zhou Q, Wang M, Li Y, Liu Y, Chen Y, Wu Q, Wang S. Fabrication of Highly Textured 2D SnSe Layers with Tunable Electronic Properties for Hydrogen Evolution. Molecules 2021; 26:molecules26113319. [PMID: 34205895 PMCID: PMC8199299 DOI: 10.3390/molecules26113319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Hydrogen is regarded to be one of the most promising renewable and clean energy sources. Finding a highly efficient and cost-effective catalyst to generate hydrogen via water splitting has become a research hotspot. Two-dimensional materials with exotic structural and electronic properties have been considered as economical alternatives. In this work, 2D SnSe films with high quality of crystallinity were grown on a mica substrate via molecular beam epitaxy. The electronic property of the prepared SnSe thin films can be easily and accurately tuned in situ by three orders of magnitude through the controllable compensation of Sn atoms. The prepared film normally exhibited p-type conduction due to the deficiency of Sn in the film during its growth. First-principle calculations explained that Sn vacancies can introduce additional reactive sites for the hydrogen evolution reaction (HER) and enhance the HER performance by accelerating electron migration and promoting continuous hydrogen generation, which was mirrored by the reduced Gibbs free energy by a factor of 2.3 as compared with the pure SnSe film. The results pave the way for synthesized 2D SnSe thin films in the applications of hydrogen production.
Collapse
Affiliation(s)
- Qianyu Zhou
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| | - Mengya Wang
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| | - Yong Li
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
| | - Yanfang Liu
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuanfu Chen
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Correspondence: (Y.C.); (Q.W.); (S.W.)
| | - Qi Wu
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
- Correspondence: (Y.C.); (Q.W.); (S.W.)
| | - Shifeng Wang
- Department of Physics, and Innovation center of Materials for Energy and Environment Technologies, College of Science, Tibet University, Lhasa 850000, China; (Q.Z.); (M.W.); (Y.L.); (Y.L.)
- Institute of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China
- Correspondence: (Y.C.); (Q.W.); (S.W.)
| |
Collapse
|
28
|
Yang Y, Meng H, Kong C, Yan S, Ma W, Zhu H, Ma F, Wang C, Hu Z. Heterogeneous Ni 3S 2@FeNi 2S 4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J Colloid Interface Sci 2021; 599:300-312. [PMID: 33957423 DOI: 10.1016/j.jcis.2021.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Developing and designing bifunctional electrocatalysts are very important for the production of hydrogen from water electrolysis. The reasonable interface modulation can effectively lead to the optimization of electronic configuration through the interface electron transfer in the heterostructures and thus resulting in the enhanced efficiency. In this work, self-supported and heterogeneous interface-rich Ni3S2@FeNi2S4@NF electrocatalyst for overall water splitting was designed and prepared through a controllable step-wise hydrothermal process. Density functional theory calculations suggest that heterogeneous interface formed between Ni3S2 and FeNi2S4 can optimize the Gibbs free energy for H* adsorption (ΔGH*). Benefiting from the open structure of the nanosheet arrays, the abundant heterogeneous interfaces in Ni3S2@FeNi2S4@NF composite, the positive synergistic effect between Ni3S2 and FeNi2S4, and the good conductivity of foamed nickel (NF) substrate, the optimized Ni3S2@FeNi2S4@NF nanoarray catalyst displayed excellent electrocatalytic activities, the overpotential is only 83 mV and 235 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA cm-2, respectively. Importantly, an alkaline electrolyser directly using the Ni3S2@FeNi2S4@NF as both the anode and cathode achieved an ultralow cell voltage of 1.46 V, accompanied by outstanding stability. The performance is better than that of most other transition-metal sulfides electrocatalysts. This work may provide a useful strategy for reasonably regulating heterogeneous interfaces to effectively improve the performance of materials, thus accelerating the practical application of transition-metal sulfides electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Yuying Yang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Haixia Meng
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Chao Kong
- College of Chemistry & Chemical Engineering, Longdong University, Qingyang, Gansu 745000, PR China
| | - Shaohui Yan
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Weixia Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Hong Zhu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Fuquan Ma
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Chengjuan Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Zhongai Hu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
29
|
Zhang H, Yang X, Zhang H, Ma J, Huang Z, Li J, Wang Y. Transition-Metal Carbides as Hydrogen Evolution Reduction Electrocatalysts: Synthetic Methods and Optimization Strategies. Chemistry 2021; 27:5074-5090. [PMID: 33188550 DOI: 10.1002/chem.202003979] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Indexed: 02/03/2023]
Abstract
With the strengths of zero carbon emission and high gravimetric energy density, hydrogen energy is recognized as a primary choice for future energy supply. Electrochemical water splitting provides a promising strategy for effective and sustainable hydrogen production through renewable electricity, and one of the immediate challenges toward its large-scale application is the availability of low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER). Given the enormous efforts in the exploration of potential transition-metal carbide (TMC) electrocatalysts, this review aims to summarize the recent advances in synthetic methods and optimization strategies of TMC electrocatalysts. Additionally, the perspectives for the development of novel efficient TMC-based catalysts are also proposed.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Xiaohui Yang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Huijuan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Jinling Ma
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Zhengyong Huang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Jian Li
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| | - Yu Wang
- State Key Laboratory of Power Transmission Equipment &, System Security and New Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P. R. China
| |
Collapse
|
30
|
Electrodeposition, formation mechanism, and electrocatalytic performance of Co-Ni-P ternary catalysts coated on carbon fiber paper. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04929-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Li J, Qu Y, Chen C, Zhang X, Shao M. Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li-S batteries. NANOSCALE 2021; 13:15-35. [PMID: 33325951 DOI: 10.1039/d0nr06732f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries have shown great application prospects as next-generation energy storage systems due to their high theoretical capacity and high energy density. However, the practical application of Li-S batteries is still hindered by several challenges, such as their sluggish sulfur redox kinetics and shuttle effect of lithium polysulfides (LiPSs). To date, significant research has been focused on the confinement adsorption and catalytic conversion of LiPSs using theoretical or/and experimental methods. Among them, theoretical calculations are highly attractive to observe complex LiPS conversion reactions, which facilitate the rational design of S mediators for high-performance Li-S batteries. In this review, we summarize and discuss the recent advances in the adsorption and conversion of LiPSs from the viewpoint of theoretical calculations. Moreover, a set of theoretical principles to guide the screening of suitable host materials for Li-S batteries is presented and discussed. Finally, some personal insights about the future challenges and the focus of research in this field are presented, which will push a milestone step toward high-efficiency and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianbo Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | | | | | | | | |
Collapse
|
32
|
Zhou W, Xue Z, Liu Q, Li Y, Hu J, Li G. Trimetallic MOF-74 Films Grown on Ni Foam as Bifunctional Electrocatalysts for Overall Water Splitting. CHEMSUSCHEM 2020; 13:5647-5653. [PMID: 32666641 DOI: 10.1002/cssc.202001230] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Developing earth-abundant and high-performance electrocatalysts for water splitting has long been a vital research in energy conversion field. Herein, we report the preparation of a series of trimetallic uniform Mnx Fey Ni-MOF-74 films in-situ grown on nickel foam, which can be utilized as bifunctional electrocatalysts towards overall water splitting in alkaline media. The introduction of Mn can simultaneously regulate the morphology of MOF-74 to form uniform film and modulate electronic structure of Fe to form more Fe(II)-O-Fe(III) motifs, which is conducive to the exposure of active sites and stabilizing high-valent metal sites. The optimized Mn0.52 Fe0.71 Ni-MOF-74 film electrode showed excellent electrocatalytic performance, affording a current density of 10 mA ⋅ cm-2 at an overpotential of 99 mV for HER and 100 mA ⋅ cm-2 at an overpotential of 267 mV for OER, respectively. Assembled as an electrolyser, Mn0.52 Fe0.71 Ni-MOF-74 film electrode exhibited excellent performance towards overall water splitting, with ultralow overpotential of 245 and 462 mV to achieve current density of 10 and 100 mA ⋅ cm-2 , respectively. This work provides a new view to develop multi-metal MOF-based electrocatalysts.
Collapse
Affiliation(s)
- Weide Zhou
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Ziqian Xue
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Qinglin Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yinle Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianqiang Hu
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
33
|
Ye Z, Jiang Y, Li L, Wu F, Chen R. A High-Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002168. [PMID: 32596845 DOI: 10.1002/adma.202002168] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Indexed: 05/26/2023]
Abstract
Lithium-sulfur (Li-S) batteries are recognized as promising candidates for next-generation electrochemical energy storage systems owing to their high energy density and cost-effective raw materials. However, the sluggish multielectron sulfur redox reactions are the root cause of most of the issues for Li-S batteries. Herein, a high-efficiency CoSe electrocatalyst with hierarchical porous nanopolyhedron architecture (CS@HPP) derived from a metal-organic framework is presented as the sulfur host for Li-S batteries. The CS@HPP with high crystal quality and abundant reaction active sites can catalytically accelerate capture/diffusion of polysulfides and precipitation/decomposition of Li2 S. Thus, the CS@HPP sulfur cathode exhibits an excellent capacity of 1634.9 mAh g-1 , high rate performance, and a long cycle life with a low capacity decay of 0.04% per cycle over 1200 cycles. CoSe nanopolyhedrons are further fabricated on a carbon cloth framework (CC@CS@HPP) to unfold the electrocatalytic activity by its high electrical conductivity and large surface area. A freestanding CC@CS@HPP sulfur cathode with sulfur loading of 8.1 mg cm-2 delivers a high areal capacity of 8.1 mAh cm-2 under a lean electrolyte. This work will enlighten the rational design of structure-catalysis engineering of transition-metal-based nanomaterials for diverse applications.
Collapse
Affiliation(s)
- Zhengqing Ye
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ying Jiang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| |
Collapse
|
34
|
Xia L, Song H, Li X, Zhang X, Gao B, Zheng Y, Huo K, Chu PK. Hierarchical 0D-2D Co/Mo Selenides as Superior Bifunctional Electrocatalysts for Overall Water Splitting. Front Chem 2020; 8:382. [PMID: 32509725 PMCID: PMC7248173 DOI: 10.3389/fchem.2020.00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 11/13/2022] Open
Abstract
Development of efficient electrocatalysts combining the features of low cost and high performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) still remains a critical challenge. Here, we proposed a facile strategy to construct in situ a novel hierarchical heterostructure composed of 0D−2D CoSe2/MoSe2 by the selenization of CoMoO4 nanosheets grafted on a carbon cloth (CC). In such integrated structure, CoSe2 nanoparticles dispersed well and tightly bonded with MoSe2 nanosheets, which can not only enhance kinetics due to the synergetic effects, thus promoting the electrocatalytic activity, but also effectively improve the structural stability. Benefiting from its unique architecture, the designed CoSe2/MoSe2 catalyst exhibits superior OER and HER performance. Specifically, a small overpotential of 280 mV is acquired at a current density of 10 mA·cm−2 for OER with a small Tafel slope of 86.8 mV·dec−1, and the overpotential is 90 mV at a current density of 10 mA·cm−2 for HER with a Tafel slope of 84.8 mV·dec−1 in 1 M KOH. Furthermore, the symmetrical electrolyzer assembled with the CoSe2/MoSe2 catalysts depicts a small cell voltage of 1.63 V at 10 mA·cm−2 toward overall water splitting.
Collapse
Affiliation(s)
- Lu Xia
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China.,The College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Xingxing Li
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China.,Departments of Physics, Materials Science and Engineering, and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy and Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan, China
| | - Paul K Chu
- Departments of Physics, Materials Science and Engineering, and Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Illathvalappil R, Walko PS, Kanheerampockil F, Bhat SK, Devi RN, Kurungot S. Hierarchical Nanoflower Arrays of Co
9
S
8
‐Ni
3
S
2
on Nickel Foam: A Highly Efficient Binder‐Free Electrocatalyst for Overall Water Splitting. Chemistry 2020; 26:7900-7911. [DOI: 10.1002/chem.202000839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Rajith Illathvalappil
- Physical and Materials Chemistry DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Priyanka S. Walko
- Catalysis and Inorganic Chemistry DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Fayis Kanheerampockil
- Polymer Science and Engineering DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Suresh K. Bhat
- Polymer Science and Engineering DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - R. Nandini Devi
- Catalysis and Inorganic Chemistry DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry DivisionCSIR–National Chemical Laboratory Pune Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
36
|
Kwon IS, Kwak IH, Debela TT, Abbas HG, Park YC, Ahn JP, Park J, Kang HS. Se-Rich MoSe 2 Nanosheets and Their Superior Electrocatalytic Performance for Hydrogen Evolution Reaction. ACS NANO 2020; 14:6295-6304. [PMID: 32356967 DOI: 10.1021/acsnano.0c02593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional MoSe2 has emerged as a promising electrocatalyst for the hydrogen evolution reaction (HER), although its catalytic activity needs to be further improved. Herein, we report Se-rich MoSe2 nanosheets synthesized using a hydrothermal reaction, displaying much enhanced HER performance at the Se/Mo ratio of 2.3. The transition from the 2H to the 1T' phase occurred as Se/Mo exceeded 2. Structural analysis revealed the presence of Se adatoms as well as the formation of Se-Se bonding. Based on first-principles calculations, we propose two equally stable Se-rich structures. In the first one, excess Se atoms bridge two MoSe2 layers via the interlayer Se-Se bonds. In the second one, the Se atoms substitute for the Mo atoms, and extra Se atoms are added closest to the Mo-substituted Se. Calculation of Gibbs free energy along the reaction path indicates that the Se adatoms of the second model are the most active sites for HER.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - In Hye Kwak
- Department of Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Tekalign Terfa Debela
- Institute for Application of Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| | - Hafiz Ghulam Abbas
- Department of Nanoscience and Technology, Chonbuk National University, Chonju, Chonbuk 561-756, Republic of Korea
| | - Yun Chang Park
- Measurement and Analysis Division, National Nanofab Center (NNFC), Daejeon 305-806, Republic of Korea
| | - Jae-Pyoung Ahn
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | - Jeunghee Park
- Department of Chemistry, Korea University, Sejong 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea
| |
Collapse
|
37
|
Li X, Xu Y, Li Y, Fan X, Zhang G, Zhang F, Peng W. Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. J Colloid Interface Sci 2020; 577:101-108. [PMID: 32473473 DOI: 10.1016/j.jcis.2020.05.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Graphene based materials are considered as promising catalysts towards electro-catalytic water splitting. Heteroatoms doping and structure defects creation in graphene matrix could enhance the electro-catalytic activity effectively. In this work, a nitrogen and sulfur co-doped graphene is synthesized and then activated by KOH to involve a porous structure. The atomic ratios of doped heteroatoms are found increased surprisingly. This should be due to the better thermal stability of doped heteroatoms compared with the origin carbon atoms. More carbon atoms will be removed, thus leading to the increased heteroatoms doping percentages. The increased surface area, larger heteroatoms ratios, and abundant structure defects result in the improved catalytic activity towards electrochemical oxygen evolution reaction (OER). The overpotential for OER could achieve as early as 281 mV vs. RHE at 10 mA·cm-2 in 1 M KOH, better than most of the metal free catalysts. The obtained sample is active over a wide pH range in electrochemical hydrogen evolution reaction (HER), thus could be used as bifunctional materials for water splitting. This work provides a simple and low-cost approach to increase the ratios of doped heteroatoms, and thus should have great potential both for carbon materials synthesis and hydrogen production.
Collapse
Affiliation(s)
- Xintong Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yongsheng Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Guoliang Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
38
|
Liu Z, Zhang X, Song H, Yang Y, Zheng Y, Gao B, Fu J, Chu PK, Huo K. Electronic Modulation between Tungsten Nitride and Cobalt Dopants for Enhanced Hydrogen Evolution Reaction at a Wide Range of pH. ChemCatChem 2020. [DOI: 10.1002/cctc.202000391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhizhong Liu
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Xuming Zhang
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Hao Song
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
- Department of Physics Department of Materials Science & Engineering and Department of Biomedical EngineeringCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Yixuan Yang
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Yang Zheng
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
- Department of Physics Department of Materials Science & Engineering and Department of Biomedical EngineeringCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Paul K. Chu
- Department of Physics Department of Materials Science & Engineering and Department of Biomedical EngineeringCity University of Hong Kong Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and NanotechnologyWuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| |
Collapse
|
39
|
Leal-Rodríguez C, Rodríguez-Padrón D, Alothman ZA, Cano M, Giner-Casares JJ, Muñoz-Batista MJ, Osman SM, Luque R. Thermal and light irradiation effects on the electrocatalytic performance of hemoglobin modified Co 3O 4-g-C 3N 4 nanomaterials for the oxygen evolution reaction. NANOSCALE 2020; 12:8477-8484. [PMID: 32242199 DOI: 10.1039/d0nr00818d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER) plays a key role in the water splitting process and a high energy conversion efficiency is essential for the definitive advance of hydrogen-based technologies. Unfortunately, the green and sustainable development of electrocatalysts for water oxidation is nowadays a real challenge. Herein, a successful mechanochemical method is proposed for the synthesis of a novel hemoglobin (Hb) modified Co3O4/g-C3N4 composite nanomaterial. The controlled incorporation of cobalt entities as well as Hb functionalization, without affecting the g-C3N4 nanoarchitecture, was evaluated using different physicochemical techniques, such as X-ray diffraction, N2-physisorption, scanning electron microscopy, UV-visible spectroscopy and X-ray photoelectron spectroscopy. The beneficial effect of the resulting ternary bioconjugate together with the influence of the temperature and light irradiation was investigated by electrochemical analysis. At 60 °C and under light exposition, this electrocatalyst requires an overpotential of 370 mV to deliver a current density of 10 mA·cm-2, showing a Tafel slope of 66 mV·dec-1 and outstanding long-term stability for 600 OER cycles. This work paves a way for the controlled fabrication of multidimensional and multifunctional bio-electrocatalysts.
Collapse
Affiliation(s)
- Carlos Leal-Rodríguez
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie (C-3), N. IV-A, Km 396, E14014, Córdoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Peng J, Yu X, Meng Y, Tan H, Song P, Liu Z, Yan Q. Oxygen doped MoS 2 quantum dots for efficient electrocatalytic hydrogen generation. J Chem Phys 2020; 152:134704. [PMID: 32268743 DOI: 10.1063/1.5142204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we report an oxygen-doped MoS2 quantum dot (O-MoS2 QD) hybrid electrocatalyst for the hydrogen evolution reaction (HER). The O-MoS2 QDs were prepared with a one-pot microwave method by hydrazine-mediated oxygen-doping. The synthetic method is straightforward, time-saving, and can be applied in large scale preparation. Ultra-small O-MoS2 QDs with the average size of 5.83 nm and 1-4 layers can be uniformly distributed on the surface of reduced graphene oxide (RGO). Benefited from the unique structure and the doping effect of oxygen in the MoS2 QDs and the great number of active sites, the O-MoS2 QD hybrid displayed outstanding electrocatalytic performance toward HER. A low overpotential of 76 mV at 10 mA/cm2 and a Tafel slope of 58 mV/dec were obtained in an acidic solution toward HER. Additionally, the resultant O-MoS2 QD hybrid also exhibited excellent stability and durability toward HER, displaying negligible current density loss after 1000 cycles of cyclic voltammetry. The design and synthesis of the electrocatalyst in this work open up a prospective route to prepare active and stable electrocatalysts toward substituting precious metals for hydrogen generation.
Collapse
Affiliation(s)
- Juan Peng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Xueping Yu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Yang Meng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Huiteng Tan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pin Song
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zheng Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qingyu Yan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
41
|
Najafi L, Bellani S, Oropesa-Nuñez R, Martín-García B, Prato M, Pasquale L, Panda JK, Marvan P, Sofer Z, Bonaccorso F. TaS 2, TaSe 2, and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catal 2020; 10:3313-3325. [PMID: 33815892 PMCID: PMC8016161 DOI: 10.1021/acscatal.9b03184] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 02/10/2020] [Indexed: 12/16/2022]
Abstract
![]()
Metallic
two-dimensional transition-metal dichalcogenides (TMDs)
of the group 5 metals are emerging as catalysts for an efficient
hydrogen evolution reaction (HER). The HER activity of the group 5
TMDs originates from the unsaturated chalcogen edges and the highly
active surface basal planes, whereas the HER activity of the widely
studied group 6 TMDs originates solely from the chalcogen- or metal-unsaturated
edges. However, the batch production of such nanomaterials and their
scalable processing into high-performance electrocatalysts is still
challenging. Herein, we report the liquid-phase exfoliation of the
2H-TaS2 crystals by using 2-propanol to produce single/few-layer
(1H/2H) flakes, which are afterward deposited as catalytic films.
A thermal treatment-aided texturization of the catalytic films is
used to increase their porosity, promoting the ion access to the basal
planes of the flakes, as well as the number of catalytic edges of
the flakes. The hybridization of the H-TaS2 flakes and
H-TaSe2 flakes tunes the Gibbs free energy of the adsorbed
atomic hydrogen onto the H-TaS2 basal planes to the optimal
thermo-neutral value. In 0.5 M H2SO4, the heterogeneous
catalysts exhibit a low overpotential (versus RHE, reversible hydrogen
electrode) at the cathodic current of 10 mA cm–2 (η10) of 120 mV and high mass activity of 314 A
g–1 at an overpotential of 200 mV. In 1 M KOH, they
show a η10 of 230 mV and a mass activity of 220 A
g–1 at an overpotential of 300 mV. Our results provide
new insight into the usage of the metallic group 5 TMDs for the HER
through scalable material preparation and electrode processing.
Collapse
Affiliation(s)
- Leyla Najafi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | | | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Lea Pasquale
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Jaya-Kumar Panda
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Petr Marvan
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- BeDimensional Spa, via Albisola 121, 16163 Genova, Italy
| |
Collapse
|
42
|
He L, Gong L, Gao M, Yang CW, Sheng GP. In situ formation of NiCoP@phosphate nanocages as an efficient bifunctional electrocatalyst for overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135799] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Liu D, Wang D, Jing X, Zhao X, Xi D, Dang D, Meng L. Continuous phase regulation of MoSe2 from 2H to 1T for the optimization of peroxidase-like catalysis. J Mater Chem B 2020; 8:6451-6458. [DOI: 10.1039/d0tb00115e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Simultaneous and synergistic modulation of the crystal phase and disorder in MoSe2 to dramatically enhance their peroxidase-like activity.
Collapse
Affiliation(s)
- Daomeng Liu
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Daquan Wang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xunan Jing
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Xiaoping Zhao
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Duo Xi
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Dongfeng Dang
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| | - Lingjie Meng
- School of Chemistry
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
44
|
Martín-García B, Spirito D, Bellani S, Prato M, Romano V, Polovitsyn A, Brescia R, Oropesa-Nuñez R, Najafi L, Ansaldo A, D'Angelo G, Pellegrini V, Krahne R, Moreels I, Bonaccorso F. Extending the Colloidal Transition Metal Dichalcogenide Library to ReS 2 Nanosheets for Application in Gas Sensing and Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904670. [PMID: 31788951 DOI: 10.1002/smll.201904670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Among the large family of transition metal dichalcogenides, recently ReS2 has stood out due to its nearly layer-independent optoelectronic and physicochemical properties related to its 1T distorted octahedral structure. This structure leads to strong in-plane anisotropy, and the presence of active sites at its surface makes ReS2 interesting for gas sensing and catalysts applications. However, current fabrication methods use chemical or physical vapor deposition (CVD or PVD) processes that are costly, time-consuming and complex, therefore limiting its large-scale production and exploitation. To address this issue, a colloidal synthesis approach is developed, which allows the production of ReS2 at temperatures below 360 °C and with reaction times shorter than 2h. By combining the solution-based synthesis with surface functionalization strategies, the feasibility of colloidal ReS2 nanosheet films for sensing different gases is demonstrated with highly competitive performance in comparison with devices built with CVD-grown ReS2 and MoS2 . In addition, the integration of the ReS2 nanosheet films in assemblies together with carbon nanotubes allows to fabricate electrodes for electrocatalysis for H2 production in both acid and alkaline conditions. Results from proof-of-principle devices show an electrocatalytic overpotential competitive with devices based on ReS2 produced by CVD, and even with MoS2 , WS2 , and MoSe2 electrocatalysts.
Collapse
Affiliation(s)
- Beatriz Martín-García
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Davide Spirito
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Mirko Prato
- Materials Characterization Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Valentino Romano
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Anatolii Polovitsyn
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | | | - Leyla Najafi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Giovanna D'Angelo
- Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| | - Roman Krahne
- Optoelectronics Group, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Iwan Moreels
- Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000, Gent, Belgium
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
- BeDimensional Spa., Via Albisola 121, 16163, Genova, Italy
| |
Collapse
|
45
|
Liang Q, Zhong L, Du C, Luo Y, Zhao J, Zheng Y, Xu J, Ma J, Liu C, Li S, Yan Q. Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS NANO 2019; 13:7975-7984. [PMID: 31265235 DOI: 10.1021/acsnano.9b02510] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Heterostructures with abundant phase boundaries are compelling for surface-mediated electrochemical applications. However, rational design of such bifunctional electrocatalysts for efficient hydrogen and oxygen evolution reactions (HER and OER) is still challenging. Here, due to the well-matched lattice parameters, we easily achieved the epitaxy of two-dimensional ternary nickel thiophosphate (NiPS3) nanosheets with in-grown dinickel phosphide (Ni2P) through an in situ growth strategy. Density functional theory calculations reveal that the NiPS3/Ni2P heterojunction significantly decreases the kinetic barrier for hydrogen adsorption and accelerates electron transfer due to the built-in electric field at the epitaxial interfaces. The significantly improved electrocatalytic performance is shown to be closely related to the epitaxial interfacial area rather than the amount of secondary phase. Notably, the resultant NiPS3/Ni2P heterostructures enable an overall water splitting electrolyzer to achieve 50 mA cm-2 at a lower bias of 1.65 V compared to that for the pristine NiPS3 alone (2.02 V) and even the benchmark Pt/C//IrO2 electrocatalysts (1.69 V).
Collapse
Affiliation(s)
- Qinghua Liang
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Lixiang Zhong
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Chengfeng Du
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Yubo Luo
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Jin Zhao
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Yun Zheng
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Materials Research and Engineering , A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis #08-03, Singapore 138634
| | - Jianmin Ma
- School of Physics and Electronics , Hunan University , Changsha 138634 , China
- Key Laboratory of Materials Processing and Mold, Ministry of Education , Zhengzhou University , Zhengzhou 450002 , China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education , Zhengzhou University , Zhengzhou 450002 , China
| | - Shuzhou Li
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| | - Qingyu Yan
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798
| |
Collapse
|
46
|
Romano V, Martín-García B, Bellani S, Marasco L, Kumar Panda J, Oropesa-Nuñez R, Najafi L, Del Rio Castillo AE, Prato M, Mantero E, Pellegrini V, D'Angelo G, Bonaccorso F. Flexible Graphene/Carbon Nanotube Electrochemical Double-Layer Capacitors with Ultrahigh Areal Performance. Chempluschem 2019; 84:882-892. [PMID: 31943980 DOI: 10.1002/cplu.201900235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/28/2019] [Indexed: 11/08/2022]
Abstract
The fabrication of electrochemical double-layer capacitors (EDLCs) with high areal capacitance relies on the use of elevated mass loadings of highly porous active materials. Herein, we demonstrate a high-throughput manufacturing of graphene/carbon nanotubes hybrid EDLCs. The wet-jet milling (WJM) method is exploited to exfoliate the graphite into single-few-layer graphene flakes (WJM-G) in industrial volumes (production rate ca. 0.5 kg/day). Commercial single-/double-walled carbon nanotubes (SDWCNTs) are mixed with graphene flakes in order to act as spacers between the flakes during their film formation. The WJM-G/SDWCNTs films are obtained by one-step vacuum filtration of the material dispersions, resulting in self-standing, metal- and binder-free flexible EDLC electrodes with high active material mass loadings up to around 30 mg cm-2 . The corresponding symmetric WJM-G/SDWCNTs EDLCs exhibit electrode energy densities of 539 μWh cm-2 at 1.3 mW cm-2 and operating power densities up to 532 mW cm-2 (outperforming most of the reported EDLC technologies). The EDCLs show excellent cycling stability and outstanding flexibility even in highly folded states (up to 180°).
Collapse
Affiliation(s)
- Valentino Romano
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.,Dipartimento di Scienze Matematiche ed Informatiche Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | | | - Sebastiano Bellani
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Luigi Marasco
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Jaya Kumar Panda
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Reinier Oropesa-Nuñez
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.,BeDimensional Spa, Via Albisola 121, 16163, Genova, Italy
| | - Leyla Najafi
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | | | - Mirko Prato
- Materials Characterisation Facility, Istituto Italiano di Tecnologia, via morego 30, 16163, Genova, Italy
| | - Elisa Mantero
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| | - Vittorio Pellegrini
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.,BeDimensional Spa, Via Albisola 121, 16163, Genova, Italy
| | - Giovanna D'Angelo
- Dipartimento di Scienze Matematiche ed Informatiche Scienze Fisiche e Scienze della Terra, Università di Messina, Viale F. Stagno d'Alcontres 31, S. Agata, 98166, Messina, Italy
| | - Francesco Bonaccorso
- Graphene Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.,BeDimensional Spa, Via Albisola 121, 16163, Genova, Italy
| |
Collapse
|
47
|
Gao Y, Wang Q, He T, Zhang JY, Sun H, Zhao B, Xia BY, Yan Y, Chen Y. Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01005j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect-rich crystalline molybdenum phosphide nanoparticles anchored on reduced graphene oxide serve as an efficient bifunctional electrocatalyst for both hydrogen evolution and hydrazine oxidation reactions.
Collapse
Affiliation(s)
- Yan Gao
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- R China
| | - Qiang Wang
- Department of Applied Chemistry
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211880
- P. R. China
| | - Ting He
- School of Chemistry and Chemical Engineering
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- PR China
| | - Jun-Ye Zhang
- School of Chemistry and Chemical Engineering
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- PR China
| | - Hao Sun
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- R China
| | - Bin Zhao
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- R China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering
- Wuhan National Laboratory for Optoelectronics
- Huazhong University of Science and Technology (HUST)
- Wuhan 430074
- PR China
| | - Ya Yan
- School of Materials Science & Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- R China
| | - Yuan Chen
- The University of Sydney
- School of Chemical and Biomolecular Engineering
- Sydney
- Australia
| |
Collapse
|