1
|
Bonnet N, Baaboura J, Castioni F, Woo SY, Ho CH, Watanabe K, Taniguchi T, Tizei LHG, Coenen T. Cathodoluminescence emission and electron energy loss absorption from a 2D transition metal dichalcogenide in van der Waals heterostructures. NANOTECHNOLOGY 2024; 35:405702. [PMID: 38604153 DOI: 10.1088/1361-6528/ad3d62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Nanoscale variations of optical properties in transition metal dichalcogenide (TMD) monolayers can be explored with cathodoluminescence (CL) and electron energy loss spectroscopy (EELS) using electron microscopes. To increase the CL emission intensity from TMD monolayers, the MoSe2flakes are encapsulated in hexagonal boron nitride (hBN), creating van der Waals (VdW) heterostructures. Until now, the studies have been exclusively focused on scanning transmission electron microscopy (STEM-CL) or scanning electron microscopy (SEM-CL), separately. Here, we present results, using both techniques on the same sample, thereby exploring a large acceleration voltage range. We correlate the CL measurements with STEM-EELS measurements acquired with different energy dispersions, to access both the low-loss region at ultra-high spectral resolution, and the core-loss region. This provides information about the weight of the various absorption phenomena including the direct TMD absorption, the hBN interband transitions, the hBN bulk plasmon, and the core losses of the atoms present in the heterostructure. The S(T)EM-CL measurements from the TMD monolayer only show emission from the A exciton. Combining the STEM-EELS and S(T)EM-CL measurements, we can reconstruct different decay pathways leading to the A exciton CL emission. The comparison with SEM-CL shows that this is also a good technique for TMD heterostructure characterization, where the reduced demands on sample preparation are appealing. To demonstrate the capabilities of SEM-CL imaging, we also measured on a SiO2/Si substrate, quintessential in the sample preparation of two-dimensional materials, which is electron-opaque and can only be measured in SEM-CL. The CL-emitting defects of SiO2make this substrate challenging to use, but we demonstrate that this background can be suppressed by using lower electron energy.
Collapse
Affiliation(s)
- Noémie Bonnet
- Delmic B.V., Kanaalweg 4, 2628 EB Delft, The Netherlands
| | - Jassem Baaboura
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Florian Castioni
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Steffi Y Woo
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Ching-Hwa Ho
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Toon Coenen
- Delmic B.V., Kanaalweg 4, 2628 EB Delft, The Netherlands
| |
Collapse
|
2
|
Khestanova E, Shahnazaryan V, Kozin VK, Kondratyev VI, Krizhanovskii DN, Skolnick MS, Shelykh IA, Iorsh IV, Kravtsov V. Electrostatic Control of Nonlinear Photonic-Crystal Polaritons in a Monolayer Semiconductor. NANO LETTERS 2024. [PMID: 38855978 DOI: 10.1021/acs.nanolett.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Integration of 2D semiconductors with photonic crystal slabs provides an attractive approach to achieving strong light-matter coupling and exciton-polariton formation in a chip-compatible geometry. However, for the development of practical devices, it is crucial that polariton excitations are easily tunable and exhibit a strong nonlinear response. Here we study neutral and charged exciton-polaritons in an electrostatically gated photonic crystal slab with an embedded monolayer semiconductor MoSe2 and experimentally demonstrate a novel approach to optical control based on polariton nonlinearity. We show that spatial modulation of the dielectric environment within the photonic crystal unit cell results in the formation of two distinct excitonic species with significantly different nonlinear responses of the corresponding charged exciton-polaritons under optical pumping. This behavior enables optical switching with ultrashort laser pulses and can be sensitively controlled via an electrostatic gate voltage. Our results open new avenues toward the development of active polaritonic devices in a compact chip-compatible implementation.
Collapse
Affiliation(s)
- Ekaterina Khestanova
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Vanik Shahnazaryan
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | - Valerii K Kozin
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Valeriy I Kondratyev
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| | | | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Ivan A Shelykh
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
| | - Ivan V Iorsh
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
3
|
Sebek M, Thanh NTK, Su X, Teng J. A Genetic Algorithm for Universal Optimization of Ultrasensitive Surface Plasmon Resonance Sensors with 2D Materials. ACS OMEGA 2023; 8:20792-20800. [PMID: 37323412 PMCID: PMC10268016 DOI: 10.1021/acsomega.3c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
We present a general optimization technique for surface plasmon resonance, (SPR) yielding a range of ultrasensitive SPR sensors from a materials database with an enhancement of ∼100%. Applying the algorithm, we propose and demonstrate a novel dual-mode SPR structure coupling SPP and a waveguide mode within GeO2 featuring an anticrossing behavior and an unprecedented sensitivity of 1364 deg/RIU. An SPR sensor operating at wavelengths of 633 nm having a bimetal Al/Ag structure sandwiched between hBN can achieve a sensitivity of 578 deg/RIU. For a wavelength of 785 nm, we optimized a sensor as a Ag layer sandwiched between hBN/MoS2/hBN heterostructures achieving a sensitivity of 676 deg/RIU. Our work provides a guideline and general technique for the design and optimization of high sensitivity SPR sensors for various sensing applications in the future.
Collapse
Affiliation(s)
- Matej Sebek
- UCL
Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
- Biophysics
Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Nguyen Thi Kim Thanh
- UCL
Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom
- Biophysics
Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Xiaodi Su
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
| | - Jinghua Teng
- Institute
of Materials Research and Engineering, Agency for Science, Technology and Research, Innovis, Singapore 138634 Singapore
| |
Collapse
|
4
|
Yan J, Yang X, Liu X, Du C, Qin F, Yang M, Zheng Z, Li J. Van der Waals Heterostructures With Built-In Mie Resonances For Polarization-Sensitive Photodetection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207022. [PMID: 36683160 PMCID: PMC10037953 DOI: 10.1002/advs.202207022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Few-layer transition metal dichalcogenides (TMDs) and their combination as van der Waals heterostructures provide a promising platform for high-performance optoelectronic devices. However, the ultrathin thickness of TMD flakes limits efficient light trapping and absorption, which triggers the hybrid construction with optical resonant cavities for enhanced light absorption. The optical structure enriched photodetectors can also be wavelength- and polarization-sensitive but require complicated fabrication. Herein, a new-type TMD-based photodetector embedded with nanoslits is proposed to enhance light trapping. Taking ReS2 as an example, strong anisotropic Mie-type optical responses arising from the intrinsic in-plane anisotropy and nanoslit-enhanced anisotropy are discovered. Owing to the nanoslit-enhanced optical resonances and band engineering, excellent photodetection performances are demonstrated with high responsivity of 27 A W-1 and short rise/decay times of 3.7/3.7 ms. More importantly, through controlling the angle between the nanoslit orientation and the polarization direction to excite different resonant modes, polarization-sensitive photodetectors with anisotropy ratios from 5.9 to 12.6 can be achieved, representing one of the most polarization-sensitive TMD-based photodetectors. The depth and orientation of nanoslits are demonstrated crucial for optimizing the anisotropy ratio. The findings bring an effective scheme to construct high-performance and polarization-sensitive photodetectors.
Collapse
Affiliation(s)
- Jiahao Yan
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xinzhu Yang
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xinyue Liu
- Institute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Chun Du
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443P. R. China
| | - Fei Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and CommunicationsInstitute of Photonics TechnologyJinan UniversityGuangzhou511443P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics TechnologySchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics TechnologySchool of Materials and EnergyGuangdong University of TechnologyGuangzhou510006P. R. China
| | - Jingbo Li
- Institute of SemiconductorsSouth China Normal UniversityGuangzhou510631P. R. China
| |
Collapse
|
5
|
Canales A, Kotov O, Shegai TO. Perfect Absorption and Strong Coupling in Supported MoS 2 Multilayers. ACS NANO 2023; 17:3401-3411. [PMID: 36799766 PMCID: PMC9979649 DOI: 10.1021/acsnano.2c08947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Perfect absorption and strong coupling are two highly sought-after regimes of light-matter interactions. Both regimes have been studied as separate phenomena in excitonic 2D materials, particularly in MoS2. However, the structures used to reach these regimes often require intricate nanofabrication. Here, we demonstrate the occurrence of perfect absorption and strong coupling in thin MoS2 multilayers supported by a glass substrate. We measure reflection spectra of mechanically exfoliated MoS2 flakes at various angles beyond the light-line via Fourier plane imaging and spectroscopy and find that absorption in MoS2 monolayers increases up to 74% at the C-exciton by illuminating at the critical angle. Perfect absorption is achieved for ultrathin MoS2 flakes (4-8 layers) with a notable angle and frequency sensitivity to the exact number of layers. By calculating zeros and poles of the scattering matrix in the complex frequency plane, we identify perfect absorption (zeros) and strong coupling (poles) conditions for thin (<10 layers) and thick (>10 layers) limits. Our findings reveal rich physics of light-matter interactions in bare MoS2 flakes, which could be useful for nanophotonic and light harvesting applications.
Collapse
Affiliation(s)
- Adriana Canales
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| | - Timur O. Shegai
- Department of Physics, Chalmers
University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
6
|
Liu S, Deng F, Zhuang W, He X, Huang H, Chen JD, Pang H, Lan S. Optical Introduction and Manipulation of Plasmon-Exciton-Trion Coupling in a Si/WS 2/Au Nanocavity. ACS NANO 2022; 16:14390-14401. [PMID: 36067213 DOI: 10.1021/acsnano.2c04721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strong plasmon-exciton coupling, which has potential applications in nanophotonics, plasmonics, and quantum electrodynamics, has been successfully demonstrated by using metallic nanocavities and two-dimensional materials. Dynamical control of plasmon-exciton coupling strength, especially by using optical methods, remains a big challenge although it is highly desirable. Here, we report the optical introduction and manipulation of plasmon-exciton-trion coupling realized in a dielectric-metal hybrid nanocavity, which is composed of a silicon (Si) nanoparticle and a thin gold (Au) film, with an embedded tungsten disulfide (WS2) monolayer. We employ scattering and photoluminescence spectra to characterize the coupling strength between plasmons and excitons in Si/WS2/Au nanocavities constructed by using Si nanoparticles with different diameters. We enhance the plasmon-exciton and plasmon-trion coupling strength by injecting excitons and trions into the WS2 monolayer with a 488 nm laser beam. It is revealed that the emission intensities of excitons and trions with respect to the reference WS2 monolayer can be modified through the change in the coupling strength induced by the laser light. Interestingly, the coupling strength between the plasmons and the excitons/trions can be manipulated from weak to strong coupling regime by simply increasing the laser power, which is clearly resolved in the scattering spectra of Si/WS2/Au nanocavities. More importantly, the plasmon-exciton-trion coupling induced by the laser light is confirmed by the energy exchange between excitons and trions. Our findings indicate the possibility for optically manipulating plasmon-exciton interaction and suggest the practical applications of dielectric-metal hybrid nanocavities in nanoscale plasmonic devices.
Collapse
Affiliation(s)
- Shimei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Fu Deng
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Weijie Zhuang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Xiaobing He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jing-Dong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Li J, Yao K, Huang Y, Fang J, Kollipara PS, Fan DE, Zheng Y. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200656. [PMID: 35793202 PMCID: PMC9420800 DOI: 10.1002/adma.202200656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light-matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all-optical switches and sensors.
Collapse
Affiliation(s)
- Jingang Li
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yun Huang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jie Fang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
8
|
Niu Y, Xu H, Wei H. Unified Scattering and Photoluminescence Spectra for Strong Plasmon-Exciton Coupling. PHYSICAL REVIEW LETTERS 2022; 128:167402. [PMID: 35522488 DOI: 10.1103/physrevlett.128.167402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The strong coupling between excitons and single plasmonic nanocavities enables plexcitonic states in nanoscale systems at room temperature. Here we demonstrate the strong coupling of surface plasmon modes of metal nanowires and excitons in monolayer semiconductors, with Rabi splitting manifested in both scattering and photoluminescence (PL) spectra. By utilizing the propagation properties of surface plasmons on the nanowires, the PL emitted through the scattering of plasmon-exciton hybrid modes is extracted. The analytically calculated scattering and PL spectra well reproduce the experimental results. These findings unify the scattering and PL spectra in the plexcitonic system and eliminate the ambiguities of PL emission, shedding new light on understanding the rich spectral phenomena in the plasmon-exciton strong coupling regime.
Collapse
Affiliation(s)
- Yijie Niu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongxing Xu
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hong Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
9
|
Tang Y, Zhang Y, Liu Q, Wei K, Cheng X, Shi L, Jiang T. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. LIGHT, SCIENCE & APPLICATIONS 2022; 11:94. [PMID: 35422032 PMCID: PMC9010435 DOI: 10.1038/s41377-022-00754-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 05/10/2023]
Abstract
Searching for ideal materials with strong effective optical nonlinear responses is a long-term task enabling remarkable breakthroughs in contemporary quantum and nonlinear optics. Polaritons, hybridized light-matter quasiparticles, are an appealing candidate to realize such nonlinearities. Here, we explore a class of peculiar polaritons, named plasmon-exciton polaritons (plexcitons), in a hybrid system composed of silver nanodisk arrays and monolayer tungsten-disulfide (WS2), which shows giant room-temperature nonlinearity due to their deep-subwavelength localized nature. Specifically, comprehensive ultrafast pump-probe measurements reveal that plexciton nonlinearity is dominated by the saturation and higher-order excitation-induced dephasing interactions, rather than the well-known exchange interaction in traditional microcavity polaritons. Furthermore, we demonstrate this giant nonlinearity can be exploited to manipulate the ultrafast nonlinear absorption properties of the solid-state system. Our findings suggest that plexcitons are intrinsically strongly interacting, thereby pioneering new horizons for practical implementations such as energy-efficient ultrafast all-optical switching and information processing.
Collapse
Affiliation(s)
- Yuxiang Tang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Yanbin Zhang
- Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China
| | - Qirui Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Ke Wei
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
- State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, 410073, Changsha, China
- Beijing Institute for Advanced Study, National University of Defense Technology, 100000, Beijing, China
| | - Xiang'ai Cheng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Lei Shi
- Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Department of Physics, Fudan University, 200433, Shanghai, China.
| | - Tian Jiang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China.
- Beijing Institute for Advanced Study, National University of Defense Technology, 100000, Beijing, China.
| |
Collapse
|
10
|
Fang J, Yao K, Zhang T, Wang M, Jiang T, Huang S, Korgel BA, Terrones M, Alù A, Zheng Y. Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108721. [PMID: 35170105 PMCID: PMC9012685 DOI: 10.1002/adma.202108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light-matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2 , the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near-intrinsic linewidth can be observed at RT when monolayer WS2 is coupled with a moderate-refractive-index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2 through the nanosphere-supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD-based nanophotonics and optoelectronics.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Suichu Huang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
12
|
Deng F, Huang H, Chen JD, Liu S, Pang H, He X, Lan S. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS 2/Au Nanocavities. NANO LETTERS 2022; 22:220-228. [PMID: 34962400 DOI: 10.1021/acs.nanolett.1c03576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A strong light-matter interaction is highly desirable from the viewpoint of both fundamental research and practical application. Here, we propose a dielectric-metal hybrid nanocavity composed of a silicon (Si) nanoparticle and a thin gold (Au) film and investigate numerically and experimentally the coupling between the plasmons supported by the nanocavity and the excitons in an embedded tungsten disulfide (WS2) monolayer. When a Si/WS2/Au nanocavity is excited by the surface plasmon polariton generated on the surface of the Au film, greatly enhanced plasmon-exciton coupling originating from the hybridization of the surface plasmon polariton, the mirror-image-induced magnetic dipole, and the exciton modes is clearly revealed in the angle- or size-resolved scattering spectra. A Rabi splitting as large as ∼240 meV is extracted by fitting the experimental data with a coupled harmonic oscillator model containing three oscillators. Our findings open new horizons for constructing nanoscale photonic devices by exploiting dielectric-metal hybrid nanocavities.
Collapse
Affiliation(s)
- Fu Deng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing-Dong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Shimei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xiaobing He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
13
|
Anantharaman SB, Jo K, Jariwala D. Exciton-Photonics: From Fundamental Science to Applications. ACS NANO 2021; 15:12628-12654. [PMID: 34310122 DOI: 10.1021/acsnano.1c02204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Semiconductors in all dimensionalities ranging from 0D quantum dots and molecules to 3D bulk crystals support bound electron-hole pair quasiparticles termed excitons. Over the past two decades, the emergence of a variety of low-dimensional semiconductors that support excitons combined with advances in nano-optics and photonics has burgeoned an advanced area of research that focuses on engineering, imaging, and modulating the coupling between excitons and photons, resulting in the formation of hybrid quasiparticles termed exciton-polaritons. This advanced area has the potential to bring about a paradigm shift in quantum optics, as well as classical optoelectronic devices. Here, we present a review on the coupling of light in excitonic semiconductors and previous investigations of the optical properties of these hybrid quasiparticles via both far-field and near-field imaging and spectroscopy techniques. Special emphasis is given to recent advances with critical evaluation of the bottlenecks that plague various materials toward practical device implementations including quantum light sources. Our review highlights a growing need for excitonic material development together with optical engineering and imaging techniques to harness the utility of excitons and their host materials for a variety of applications.
Collapse
Affiliation(s)
- Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Muckel F, Guye KN, Gallagher SM, Liu Y, Ginger DS. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films. NANO LETTERS 2021; 21:6124-6131. [PMID: 34269589 DOI: 10.1021/acs.nanolett.1c01504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As easy-to-grow quantum wells with narrow excitonic features at room temperature, two-dimensional (2D) Ruddleson-Popper perovskites are promising for realizing novel nanophotonic devices based on exciton-photon interactions. Here, we demonstrate a distinct hybrid exciton-photon Fano resonance in (C4H9NH3)2PbI4 thin films prepared via spin coating. Using a classical coupled-oscillator model and finite-difference time-domain simulations, we link the Fano interference to the coupling of the exciton with the Rayleigh-like scattering of the film microstructure. Combining colloidal plasmonic cavities with the 2D perovskite films, we demonstrate tuning of the Fano resonance. In combination with silver nanoparticles, the exciton-photon Fano interference couples to the in-plane plasmonic modes with indications of Rabi splitting. By creating a nanoparticle on mirror geometry, we address the out-of-plane excitonic component, reaching an intermediate coupling regime. These structures suggest possible photonic targets for biomolecular self-assembly applications.
Collapse
Affiliation(s)
- Franziska Muckel
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Electroenergetic Functional Materials and CENIDE, University Duisburg-Essen, 47057 Duisburg, Germany
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Shaun M Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yun Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
15
|
Pang H, Huang H, Zhou L, Mao Y, Deng F, Lan S. Strong Dipole-Quadrupole-Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1619. [PMID: 34203113 PMCID: PMC8235324 DOI: 10.3390/nano11061619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short GNR perpendicular to each other and revealed that the dark quadrupole mode of the long GNR can be activated by utilizing the dipole mode excited in the short GNR. It was found that the strong coupling between the dipole and quadrupole modes can be achieved by exciting the T-shaped GNR dimer with a plane wave. Then, we demonstrated the realization of strong dipole-quadrupole-exciton coupling by placing a T-shaped GNR on a tungsten disulfide (WS2) monolayer, which leads to a Rabi splitting as large as ~299 meV. It was confirmed that the simulation results can be well fitted by using a Hamiltonian based on the coupled harmonic oscillator model and the coupling strengths for dipole-quadrupole, dipole-exciton and quadrupole-exciton can be extracted from the fitting results. Our findings open new horizons for realizing strong plasmon-exciton coupling in simple systems and pave the way for constructing novel plasmonic devices for practical applications.
Collapse
Affiliation(s)
- Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Lidan Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Yuheng Mao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| | - Fu Deng
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China; (H.P.); (H.H.); (L.Z.); (Y.M.)
| |
Collapse
|
16
|
Sun J, Li Y, Hu H, Chen W, Zheng D, Zhang S, Xu H. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. NANOSCALE 2021; 13:4408-4419. [PMID: 33605947 DOI: 10.1039/d0nr08592h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving strong coupling between emitters and cavity photons holds an important position in the light-matter interaction due to its applications such as polariton lasing, all-optical switches, and quantum information processing. However, room-temperature polaritonic devices with subwavelength dimensions based on strong light-matter coupling are difficult to realize using traditional emitter-cavity coupled systems. In recent years, coupled systems constructed from plasmonic nanostructures and transition metal dichalcogenides (TMDs) have shown their potential in achieving room-temperature strong coupling and robustness in the nanofabrication processes. This minireview presents the recent progress in strong plasmon-exciton coupling in such plasmonic-TMD hybrid structures. Differing from a broader scope of strong coupling, we focus on the plasmon-exciton coupling between excitons in TMDs and plasmons in single nanoparticles, nanoparticle-over-mirrors, and plasmonic arrays. In addition, we discuss the future perspectives on the strong plasmon-exciton coupling at few-excitons level and the nonlinear response of these hybrid structures in the strong coupling regime.
Collapse
Affiliation(s)
- Jiawei Sun
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Yang Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Huatian Hu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Wen Chen
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Di Zheng
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Shunping Zhang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China and School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
17
|
Lawless J, Hrelescu C, Elliott C, Peters L, McEvoy N, Bradley AL. Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46406-46415. [PMID: 32960560 DOI: 10.1021/acsami.0c09261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rabi splitting between the longitudinal plasmon of a gold nano-bipyramid and the A exciton of monolayer MoS2 is observed at room temperature. The dependence of the Rabi splitting on the physical dimensions of the nano-bipyramid is reported. The impact of bipyramid length, aspect ratio, and tip radius on the coupling strength is investigated. The mode volume of the nanoresonator is significantly reduced because of the sharp tips of the bipyramid, and the Rabi splitting increases with tip sharpness. The results also reveal that greater Rabi splitting is observed for larger bipyramids, contrasting with results previously reported for different nanoresonator shapes. This shows, for the first time, how the magnitude of the splitting has a different response for particular nanoresonators when tuning the size, without increasing the number of excitons coupled into the system. The Rabi splitting, at zero energy detuning between plasmon and A exciton, increases from ∼55 meV with a 70 nm-long bipyramid to ∼80 meV with a 100 nm-long bipyramid. The increase in coupling strength with size arises because of increasing confinement of the field enhancement at the bipyramid tip.
Collapse
Affiliation(s)
- Julia Lawless
- School of Physics and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Calin Hrelescu
- School of Physics and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Carolyn Elliott
- School of Physics and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
- IPIC, Tyndall National Institute, Cork T12 R5CP, Ireland
| | - Lisanne Peters
- School of Chemistry and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Niall McEvoy
- School of Chemistry and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - A Louise Bradley
- School of Physics and AMBER, Trinity College Dublin, College Green, Dublin 2, Ireland
- IPIC, Tyndall National Institute, Cork T12 R5CP, Ireland
| |
Collapse
|
18
|
Nagarajan K, George J, Thomas A, Devaux E, Chervy T, Azzini S, Joseph K, Jouaiti A, Hosseini MW, Kumar A, Genet C, Bartolo N, Ciuti C, Ebbesen TW. Conductivity and Photoconductivity of a p-Type Organic Semiconductor under Ultrastrong Coupling. ACS NANO 2020; 14:10219-10225. [PMID: 32806034 DOI: 10.1021/acsnano.0c03496] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past decade, it has been shown that light-matter strong coupling of materials can lead to modified and often improved properties which has stimulated considerable interest. While charge transport can be enhanced in n-type organic semiconductors by coupling the electronic transition and thereby splitting the conduction band into polaritonic states, it is not clear whether the same process can also influence carrier transport in the valence band of p-type semiconductors. Here we demonstrate that it is indeed possible to enhance both the conductivity and photoconductivity of a p-type semiconductor rr-P3HT that is ultrastrongly coupled to plasmonic modes. It is due to the hybrid light-matter character of the virtual polaritonic excitations affecting the linear response of the material. Furthermore, in addition to being enhanced, the photoconductivity of rr-P3HT shows a modified spectral response due to the formation of the hybrid polaritonic states. This illustrates the potential of engineering the vacuum electromagnetic environment to improve the optoelectronic properties of organic materials.
Collapse
Affiliation(s)
| | - Jino George
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Anoop Thomas
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Eloise Devaux
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Thibault Chervy
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Stefano Azzini
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Kripa Joseph
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Abdelaziz Jouaiti
- CNRS, Laboratoire de Tectonique Moléculaire and icFRC, Institut Le Bel, University of Strasbourg, 67070 Strasbourg, France
| | - Mir W Hosseini
- CNRS, Laboratoire de Tectonique Moléculaire and icFRC, Institut Le Bel, University of Strasbourg, 67070 Strasbourg, France
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Cyriaque Genet
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| | - Nicola Bartolo
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, Paris 75013, France
| | - Cristiano Ciuti
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, Paris 75013, France
| | - Thomas W Ebbesen
- CNRS, ISIS, and icFRC, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|