1
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
2
|
Zheng JA, Holmes-Cerfon M, Pine DJ, Marbach S. Hopping and crawling DNA-coated colloids. Proc Natl Acad Sci U S A 2024; 121:e2318865121. [PMID: 39352927 PMCID: PMC11474044 DOI: 10.1073/pnas.2318865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the motion of particles with multivalent ligand-receptors is important for biomedical applications and material design. Yet, even among a single design, the prototypical DNA-coated colloids, seemingly similar micrometric particles hop or roll, depending on the study. We shed light on this problem by observing DNA-coated colloids diffusing near surfaces coated with complementary strands for a wide array of coating designs. We find colloids rapidly switch between 2 modes: They hop-with long and fast steps-and crawl-with short and slow steps. Both modes occur at all temperatures around the melting point and over various designs. The particles become increasingly subdiffusive as temperature decreases, in line with subsequent velocity steps becoming increasingly anticorrelated, corresponding to switchbacks in the trajectories. Overall, crawling (or hopping) phases are more predominant at low (or high) temperatures; crawling is also more efficient at low temperatures than hopping to cover large distances. We rationalize this behavior within a simple model: At lower temperatures, the number of bound strands increases, and detachment of all bonds is unlikely, hence, hopping is prevented and crawling favored. We thus reveal the mechanism behind a common design rule relying on increased strand density for long-range self-assembly: Dense strands on surfaces are required to enable crawling, possibly facilitating particle rearrangements.
Collapse
Affiliation(s)
| | - Miranda Holmes-Cerfon
- Department of Mathematics, University of British Columbia, Vancouver, BCV6T 1Z2, Canada
| | - David J. Pine
- Department of Physics, New York University, New York, NY10003
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY11201
| | - Sophie Marbach
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
- Department of Chemistry, CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, ParisF-75005, France
| |
Collapse
|
3
|
Park J, Choe JK, Bae J, Baek S. Rapid degradation of perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA) through bimetallic catalyst of Fe 2O 3/Mn 2O 3 and unravelling the effect of support SiO 2. Heliyon 2024; 10:e34199. [PMID: 39130433 PMCID: PMC11315117 DOI: 10.1016/j.heliyon.2024.e34199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/11/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Perfluoroalkyl substances (PFAS) are emerging contaminants present in various water sources. Their bioaccumulation and potential toxicity necessitate proper treatment to ensure safe water quality. Although iron-based monometallic photocatalysts have been reported to exhibit rapid and efficient PFAS degradation, the impact of bimetallic photocatalysts is unknown. In addition, the mechanistic effects of utilizing a support are poorly understood and solely based on physicochemical properties. This study investigates the efficacy of bimetallic photocatalysts (Fe2O3/Mn2O3) in inducing the photo-Fenton reaction for the degradation of perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) under various conditions. The rapid removal of both PFAS was observed within 10 min, with a maximum efficiency exceeding 97 % for PFOS under UV exposure, aided by the photocatalytic activation (photo-Fenton) of the oxidant (H2O2). Contrary to expectations, the use of the SiO2 support material did not significantly improve the removal efficiency. The efficacy of PFNA decreased despite SiO2 providing larger surface areas for Fe2O3/Mn2O3 loading. Further analysis revealed that the adsorption of PFAS onto the catalyst surfaces owing to electrostatic interactions contributed to the removal efficiency, where the degradation efficacy was worse than that of the catalyst with SiO2. This is because adsorption hindered the effective contact of H2O2 with catalytic reaction sites, thereby impeding the generation of hydroxyl (·OH) radicals. This study indicates the importance of considering chemical properties, including surface charge, in catalyst design to ensure effective degradation, focusing on physicochemical properties, such as surface area might overlook crucial factors.
Collapse
Affiliation(s)
- Junyoung Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jiyeol Bae
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, 10223, South Korea
| | - Soyoung Baek
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, 10223, South Korea
| |
Collapse
|
4
|
Yesmin S, Mahiuddin M, Nazmul Islam ABM, Karim KMR, Saha P, Khan MAR, Ahsan HM. Piper chaba Stem Extract Facilitated the Synthesis of Iron Oxide Nanoparticles as an Adsorbent to Remove Congo Red Dye. ACS OMEGA 2024; 9:10727-10737. [PMID: 38463303 PMCID: PMC10918656 DOI: 10.1021/acsomega.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, a straightforward, eco-friendly, and facile method for synthesizing iron oxide nanoparticles (IONPs) utilizing Piper chaba steam extract as a reducing and stabilizing agent has been demonstrated. The formation of stable IONPs coated with organic moieties was confirmed from UV-vis, FTIR, and EDX spectroscopy and DLS analysis. The produced IONPs are sufficiently crystalline to be superparamagnetic having a saturation magnetization value of 58 emu/g, and their spherical form and size of 9 nm were verified by XRD, VSM, SEM, and TEM investigations. In addition, the synthesized IONPs exhibited notable effectiveness in the removal of Congo Red (CR) dye with a maximum adsorption capacity of 88 mg/g. The adsorption kinetics followed pseudo-second-order kinetics, meaning the adsorption of CR on IONPs is mostly controlled by chemisorption. The adsorption isotherms of CR on the surface of IONPs follow the Langmuir isotherm model, indicating the monolayer adsorption on the homogeneous surface of IONPs through adsorbate-adsorbent interaction. The IONPs have revealed good potential for their reusability, with the adsorption efficiency remaining at about 85% after five adsorption-desorption cycles. The large-scale, safe, and cost-effective manufacturing of IONPs is made possible by this environmentally friendly process.
Collapse
Affiliation(s)
| | - Md. Mahiuddin
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | | | - Prianka Saha
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | - Habib Md. Ahsan
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| |
Collapse
|
5
|
Eigenfeld M, Wittmann L, Kerpes R, Schwaminger S, Becker T. Quantification methods of determining brewer's and pharmaceutical yeast cell viability: accuracy and impact of nanoparticles. Anal Bioanal Chem 2023; 415:3201-3213. [PMID: 37083758 PMCID: PMC10287788 DOI: 10.1007/s00216-023-04676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
For industrial processes, a fast, precise, and reliable method of determining the physiological state of yeast cells, especially viability, is essential. However, an increasing number of processes use magnetic nanoparticles (MNPs) for yeast cell manipulation, but their impact on yeast cell viability and the assay itself is unclear. This study tested the viability of Saccharomyces pastorianus ssp. carlsbergensis and Pichia pastoris by comparing traditional colourimetric, high-throughput, and growth assays with membrane fluidity. Results showed that methylene blue staining is only reliable for S. pastorianus cells with good viability, being erroneous in low viability (R2 = 0.945; [Formula: see text] = 5.78%). In comparison, the fluorescence microscopy-based assay of S. pastorianus demonstrated a coefficient of determination of R2 = 0.991 at [Formula: see text] ([Formula: see text] = 2.50%) and flow cytometric viability determination using carboxyfluorescein diacetate (CFDA), enabling high-throughput analysis of representative cell numbers; R2 = 0.972 ([Formula: see text]; [Formula: see text] = 3.89%). Membrane fluidity resulted in a non-linear relationship with the viability of the yeast cells ([Formula: see text]). We also determined similar results using P. pastoris yeast. In addition, we demonstrated that MNPs affected methylene blue staining by overestimating viability. The random forest model has been shown to be a precise method for classifying nanoparticles and yeast cells and viability differentiation in flow cytometry by using CFDA. Moreover, CFDA and membrane fluidity revealed precise results for both yeasts, also in the presence of nanoparticles, enabling fast and reliable determination of viability in many experiments using MNPs for yeast cell manipulation or separation.
Collapse
Affiliation(s)
- Marco Eigenfeld
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Leonie Wittmann
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
| | - Roland Kerpes
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| | - Sebastian Schwaminger
- Chair of Bioseparation Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstr. 15, 85748 Garching, Germany
- Division of Medicinal Chemistry, Medical University of Graz, Otto-Loewi Research Center, Neue Stiftingtalstr. 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, TUM School of Life Science, Weihenstephaner Steig 20, 85354 Freising, Germany
| |
Collapse
|
6
|
Jjagwe J, Olupot PW, Carrara S. Iron oxide nanoparticles/nanocomposites derived from steel and iron wastes for water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118236. [PMID: 37235992 DOI: 10.1016/j.jenvman.2023.118236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
Iron oxide nanoparticles (IONPs) are characterized by superior magnetic properties, high surface area to volume ratio, and active surface functional groups. These properties aid in removal of pollutants from water, through adsorption and/or photocatalysis, justifying the choice of IONPs in water treatment systems. IONPs are usually developed from commercial chemicals of ferric and ferrous salts alongside other reagents, a procedure that is costly, environmentally unfriendly and limits their mass production. On the other hand, steel and iron industries produce both solid and liquid wastes which in most cases are piled, discharged into water streams or landfilled as strategies to dispose them off. Such practices are detrimental to environmental ecosystems. Given the high content of iron present in these wastes, they can be used to generate IONPs. This work reviewed published literature through selected key words on the deployment of steel and/or iron-based wastes as IONPs precursors for water treatment. The findings reveal that steel waste-derived IONPs have properties such as specific surface area, particle sizes, saturation magnetization, and surface functional groups that are comparable or sometimes better than those synthesized from commercial salts. Furthermore, the steel waste-derived IONPs have high removal efficacy for heavy metals and dyes from water with possibilities of being regenerated. The performance of steel waste-derived IONPs can be enhanced by functionalization with different reagents such as chitosan, graphene, and biomass based activated carbons. Nonetheless, there is need to explore the potential of steel waste-based IONPs in removing contaminants of emerging concern, modifying pollutant detection sensors, their techno-economic feasibility in large treatment plants, toxicity of these nanoparticles when ingested into the human body, among other areas.
Collapse
Affiliation(s)
- Joseph Jjagwe
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Peter Wilberforce Olupot
- Department of Mechanical Engineering, College of Engineering, Design, Art and Technology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Sandro Carrara
- Integrated Circuits Laboratory, School of Engineering, Institute of Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel, Switzerland
| |
Collapse
|
7
|
Khumalo SPG, Lokhat D, Anwar CJT, Reddy H. Synthesis of Iron on Carbon Foam for Use in the Removal of Phenol from Aqueous Solutions. Molecules 2023; 28:molecules28031272. [PMID: 36770937 PMCID: PMC9920164 DOI: 10.3390/molecules28031272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The potential use of magnetic nanopowder for phenol adsorption mobilised on natural grain carbon foam from an aqueous solution was studied. Phenolic compounds are priority pollutants with high toxicity even at low concentrations. A magnetic nanopowder was synthesised by dissolving an iron sponge in nitric acid to produce iron nitrate, which was added to a natural grain mixture with flour as the main ingredient. The synthesised carbon foam was investigated for the effects of initial concentration, time, and TEM (transmission electron microscopy) characterisation. The phenol adsorption increased as the iron content of the carbon foam and the initial concentration increased. A kinetic study showed that the phenol adsorption data adequately covered all the carbon foam samples tested using an equation corresponding to a pseudo-first order chemical reaction. The Freundlich, Langmuir, and Temkin equations were tested for modelling the adsorption isotherms at equilibrium, and it was concluded that the Temkin model fit the experimental data adequately. Due to its exceptional physical and chemical properties, carbon magnetic nanopowder is regarded as an outstanding pollutant absorber in environmental investigations. R2 values derived from the pseudo-first-order model exceed 0.99. R2 > 0.94 indicates that the Freundlich isotherm provides the best fit to the equilibrium data.
Collapse
|
8
|
Oliveras J, Marcon L, Bastús NG, Puntes V. Functionalization of graphene nanostructures with inorganic nanoparticles and their use for the removal of pharmaceutical pollutants in water. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1084035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging pollutants such as pharmaceuticals are of special concern because despite their low environmental concentration, their biological activity can be intense, and they should be prevented to reach uncontrolledly to the environment. A graphene-based hybrid material decorated with Fe3O4 and TiO2 nanoparticles (NPs) has been prepared to effectively remove emerging pollutants as nonsteroidal anti-inflammatory drugs (NSAIDs) Ibuprofen and Diclofenac present in water at low environmental concentrations by a one-step functionalization process following a novel gentle and scalable surfactant depletion approach. Following this methodology, nanoparticles are progressively deprived of their original surfactant in the presence of graphene, leading to the formation of hybrid nanostructures composed of two different types of nanoparticles well dispersed over the graphene nanosheets. Ibuprofen and Diclofenac adsorption kinetics on the composites was investigated via UV-Vis spectroscopy. The as prepared hybrid material possesses high adsorption capacity, superparamagnetic properties, photocatalytic behavior, and good water dispersibility. Thanks to incorporating TiO2 nanoparticles as in situ catalysts, the adsorption performance of composites is restored after use, which could be a promising recycling pathway for the adsorbents in wastewater treatments.
Collapse
|
9
|
Adsorption Mechanism and Electrochemical Characteristic of Methyl Blue onto Calcium Ferrite Nanosheets. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/6999213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A rapid combustion process was applied to prepare CaFe2O4 nanomaterials using CaBr2·xH2O and Fe(NO3)3·9H2O as raw materials and CaFe2O4 nanomaterials were characterized by SEM, TEM, VSM, XRD, and FTIR techniques. The results showed that the prepared nanomaterials had a sheet-like structure, and for larger adsorption capacity of dyes, CaFe2O4 nanosheets prepared at 700°C for 2 h with average grain size was 93.3 nm, a thickness of 8.4 nm, and the saturation magnetization of 8.15 emu/g were employed as adsorbate for the removal of methyl blue (MB). The adsorption performance of MB onto CaFe2O4 nanosheets was investigated; CaFe2O4 nanosheets displayed favorable adsorption capacity, and the adsorption conformed to the pseudo-second-order model and the Freundlich model, which demonstrated that the adsorption process of MB on CaFe2O4 nanosheets belonged to multilayer chemisorption process. When the pH value reached 3, the adsorption capacity of MB by CaFe2O4 nanosheets kept maximum value of 478.07 mg/g; and after 5 regenerations, the removal efficiency of MB was reduced to 59.06% of the first time. The electrochemical behavior of MB onto the nanosheets was evaluated through CV in conjunction with EIS. The CaFe2O4 nanosheets revealed a promising prospect for the adsorption of dyes.
Collapse
|
10
|
Advanced Functionalized CeO 2/Al 2O 3 Nanocomposite Sensor for Determination of Opioid Medication Tramadol Hydrochloride in Pharmaceutical Formulations. NANOMATERIALS 2022; 12:nano12081373. [PMID: 35458081 PMCID: PMC9025318 DOI: 10.3390/nano12081373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND The exceptional characteristics of cerium oxide (CeO2) and aluminum oxide (Al2O3) nanoscales have inspired significant attention to those nanocomposites as possible electroactive resources for applications of sensing and biosensing. METHODS In this research, an innovative new factionalized CeO2/Al2O3 nanocomposite membrane sensor was presented to assess tramadol hydrochloride (TRD) in marketable products. RESULTS Tramadol-phosphomolybdate (TRD-PM) was formed by mixing tramadol hydrochloride and phosphomolybdic acid (PMA) in the attendance of polymeric matrix and o-nitrophenyloctyl ether solvent mediator. With 1.0 × 10-10-1.0 × 10-2 mol L-1 as a range of linearity and EmV = (57.567 ± 0.2) log [TRD] + 676.29 as a regression equation, the functionalized sensor using TRD-PM-CeO2/Al2O3 nanocomposite showed great selectivity and sensitivity for the discriminating and measurement of TRD. Using the regression equation EmV = (52.143 ± 0.4) log [TRD] + 431.45, the unmodified coated wire sensor of TRD-PM, on the other hand, showed a Nernstian response between 1.0 × 10-6 and 1.0 × 10-2 mol L-1, Using the methodology's specified guidelines, the proposed improved potentiometric system was validated against several criteria. CONCLUSION The suggested method is suitable for the determination of TRD in its products.
Collapse
|
11
|
Socoliuc V, Avdeev MV, Kuncser V, Turcu R, Tombácz E, Vékás L. Ferrofluids and bio-ferrofluids: looking back and stepping forward. NANOSCALE 2022; 14:4786-4886. [PMID: 35297919 DOI: 10.1039/d1nr05841j] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ferrofluids investigated along for about five decades are ultrastable colloidal suspensions of magnetic nanoparticles, which manifest simultaneously fluid and magnetic properties. Their magnetically controllable and tunable feature proved to be from the beginning an extremely fertile ground for a wide range of engineering applications. More recently, biocompatible ferrofluids attracted huge interest and produced a considerable increase of the applicative potential in nanomedicine, biotechnology and environmental protection. This paper offers a brief overview of the most relevant early results and a comprehensive description of recent achievements in ferrofluid synthesis, advanced characterization, as well as the governing equations of ferrohydrodynamics, the most important interfacial phenomena and the flow properties. Finally, it provides an overview of recent advances in tunable and adaptive multifunctional materials derived from ferrofluids and a detailed presentation of the recent progress of applications in the field of sensors and actuators, ferrofluid-driven assembly and manipulation, droplet technology, including droplet generation and control, mechanical actuation, liquid computing and robotics.
Collapse
Affiliation(s)
- V Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
| | - M V Avdeev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Joliot-Curie Str. 6, 141980 Dubna, Moscow Reg., Russia.
| | - V Kuncser
- National Institute of Materials Physics, Bucharest-Magurele, 077125, Romania
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Etelka Tombácz
- University of Szeged, Faculty of Engineering, Department of Food Engineering, Moszkvai krt. 5-7, H-6725 Szeged, Hungary.
- University of Pannonia - Soós Ernő Water Technology Research and Development Center, H-8800 Zrínyi M. str. 18, Nagykanizsa, Hungary
| | - L Vékás
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazu Ave. 24, 300223 Timisoara, Romania.
- Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| |
Collapse
|
12
|
Hamad HN, Idrus S. Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers (Basel) 2022; 14:783. [PMID: 35215695 PMCID: PMC8876036 DOI: 10.3390/polym14040783] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Over the last few years, various industries have released wastewater containing high concentrations of dyes straight into the ecological system, which has become a major environmental problem (i.e., soil, groundwater, surface water pollution, etc.). The rapid growth of textile industries has created an alarming situation in which further deterioration to the environment has been caused due to substances being left in treated wastewater, including dyes. The application of activated carbon has recently been demonstrated to be a highly efficient technology in terms of removing methylene blue (MB) from wastewater. Agricultural waste, as well as animal-based and wood products, are excellent sources of bio-waste for MB remediation since they are extremely efficient, have high sorption capacities, and are renewable sources. Despite the fact that commercial activated carbon is a favored adsorbent for dye elimination, its extensive application is restricted because of its comparatively high cost, which has prompted researchers to investigate alternative sources of adsorbents that are non-conventional and more economical. The goal of this review article was to critically evaluate the accessible information on the characteristics of bio-waste-derived adsorbents for MB's removal, as well as related parameters influencing the performance of this process. The review also highlighted the processing methods developed in previous studies. Regeneration processes, economic challenges, and the valorization of post-sorption materials were also discussed. This review is beneficial in terms of understanding recent advances in the status of biowaste-derived adsorbents, highlighting the accelerating need for the development of low-cost adsorbents and functioning as a precursor for large-scale system optimization.
Collapse
Affiliation(s)
| | - Syazwani Idrus
- Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| |
Collapse
|
13
|
Li W, Nagashima K, Hosomi T, Liu J, Takahashi T, Zhang G, Tanaka W, Kanai M, Yanagida T. Core-Shell Metal Oxide Nanowire Array to Analyze Adsorption Behaviors of Volatile Molecules. CHEM LETT 2022. [DOI: 10.1246/cl.220010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wenjun Li
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012 Japan
| | - Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
14
|
e Castro LL, Amorim CCC, Miranda JPV, Cassiano TDSA, Paula FLDO. The role of small separation interactions in ferrofluid structure. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Queiros Campos J, Boulares M, Raboisson-Michel M, Verger-Dubois G, García Fernández JM, Godeau G, Kuzhir P. Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin-Curcumin Inclusion Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14345-14359. [PMID: 34855402 DOI: 10.1021/acs.langmuir.1c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m2/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Collapse
Affiliation(s)
- J Queiros Campos
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - M Boulares
- University of Carthage, Faculty of Sciences of Bizerte, Centre des Recherches et des Technologies des Eaux (CERTE) Technopole de Borj-Cédria, Route touristique de Soliman BPn° 273, Soliman 8020, Tunisia
| | - M Raboisson-Michel
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - J M García Fernández
- Instituto de Investigaciones Qumicas, CSIC and Universidad de Sevilla, Av. Amrico Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - G Godeau
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - P Kuzhir
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| |
Collapse
|
16
|
From Adsorbent to Photocatalyst: The Sensitization Effect of SnO 2 Surface towards Dye Photodecomposition. Molecules 2021; 26:molecules26237123. [PMID: 34885705 PMCID: PMC8659128 DOI: 10.3390/molecules26237123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO2 and its SnO2/SnS2 heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO2 resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS2 content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics.
Collapse
|
17
|
Queiros Campos J, Checa-Fernandez BL, Marins JA, Lomenech C, Hurel C, Godeau G, Raboisson-Michel M, Verger-Dubois G, Bee A, Talbot D, Kuzhir P. Adsorption of Organic Dyes on Magnetic Iron Oxide Nanoparticles. Part II: Field-Induced Nanoparticle Agglomeration and Magnetic Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10612-10623. [PMID: 34436906 DOI: 10.1021/acs.langmuir.1c02021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper (part II) is devoted to the effect of molecular adsorption on the surface of magnetic iron oxide nanoparticles (IONP) on the enhancement of their (secondary) field-induced agglomeration and magnetic separation. Experimentally, we use Methylene Blue (MB) cationic dye adsorption on citrate-coated maghemite nanoparticles to provoke primary agglomeration of IONP in the absence of the field. The secondary agglomeration is manifested through the appearance of needlelike micron-sized agglomerates in the presence of an applied magnetic field. With the increasing amount of adsorbed MB molecules, the size of the field-induced agglomerates increases and the magnetic separation on a magnetized micropillar becomes more efficient. These effects are mainly governed by the ratio of magnetic-to-thermal energy α, suspension supersaturation Δ0, and Brownian diffusivity Deff of primary agglomerates. The three parameters (α, Δ0, and Deff) are implicitly related to the surface coverage θ of IONP by MB molecules through the hydrodynamic size of primary agglomerates exponentially increasing with θ. Experiments and developed theoretical models allow quantitative evaluation of the θ effect on the efficiency of the secondary agglomeration and magnetic separation.
Collapse
Affiliation(s)
- J Queiros Campos
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| | - B L Checa-Fernandez
- Department of Applied Physics, University of Granada, Avenida de la Fuente Nueva, 18071 Granada, Spain
- CEIT-Basque Research and Technology Alliance (BRTA) and Tecnun, University of Navarra, 20018 Donostia/San Sebastián, Spain
| | - J A Marins
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| | - C Lomenech
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| | - Ch Hurel
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| | - G Godeau
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| | - M Raboisson-Michel
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
- Axlepios Biomedical, 1ere Avenue 5eme rue, 06510 Carros, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1ere Avenue 5eme rue, 06510 Carros, France
| | - A Bee
- Sorbonne Université, CNRS, UMR 8234, PHENIX, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - D Talbot
- Sorbonne Université, CNRS, UMR 8234, PHENIX, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - P Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 Institute of Physics of Nice (INPHYNI), Parc Valrose, 06108 Nice, France
| |
Collapse
|