1
|
Cho JY, Ryu DH, Hamayun M, Lee SH, Jung JH, Kim HY. Scent Knows Better: Utilizing Volatile Organic Compounds as a Robust Tool for Identifying Higher Cannabidiol- and Tetrahydrocannabinol-Containing Cannabis Cultivars in Field Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24711-24723. [PMID: 39468951 DOI: 10.1021/acs.jafc.4c06652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The primary cannabinoids cannabidiol (CBD) and tetrahydrocannabinol (THC), found in cannabis, are known to originate from genetic diversity, resulting in distinct characteristics. This study aimed to identify VOC markers to distinguish between higher CBD and THC cannabis cultivars under field conditions. Among the 58 VOCs, β-caryophyllene and α-humulene were primary VOCs across all cannabis cultivars. Intriguingly, certain terpene VOCs exhibited contrasting trends between higher CBD and higher THC cannabis cultivars. Eudesma-3,7(11)-diene and α-guaiol consistently appeared as highlighted compounds, suggesting their potential to distinguish between higher CBD and THC cannabis cultivars. ROC curve analysis revealed approximately 94% predictive accuracy for these putative markers. Given the current focus on VOCs as sensor markers for plant health, growth, and quality, the identified VOC markers─applicable across varieties and growth stages─could enable nondestructive, rapid, and accurate identification of CBD- and THC-rich cannabis species in field conditions.
Collapse
Affiliation(s)
- Jwa Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Da Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Muhammad Hamayun
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Nowshera Mardan Rd, Mardan 23200, Pakistan
| | - Su Hyeon Lee
- Department of southern area crop science, National institute of crop science, Rural development administration, Miryang, Gyeongnam 50424, Republic of Korea
| | - Je Hyeong Jung
- Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
- Natural Product Applied Science, KIST school, University of Science and Technology (UST), Gangneung, Gangwon 25451, Republic of Korea
| |
Collapse
|
2
|
Hancock J, Livingston SJ, Samuels L. Building a biofactory: Constructing glandular trichomes in Cannabis sativa. CURRENT OPINION IN PLANT BIOLOGY 2024; 80:102549. [PMID: 38761520 DOI: 10.1016/j.pbi.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024]
Abstract
Flowers of Cannabis sativa L. are densely covered with glandular trichomes containing cannabis resin that is used for medicinal and recreational purposes. The highly productive glandular trichomes have been described as 'biofactories.' In this review, we use this analogy to highlight recent advances in cannabis cell biology, metabolomics, and transcriptomics. The biofactory is built by epidermal outgrowths that differentiate into peltate-like glandular trichome heads, consisting of a disc of interconnected secretory cells with unique cellular structures. Cannabinoid and terpenoid products are warehoused in the extracellular storage cavity. Finally, multicellular stalks raise the glandular heads above the epidermis, giving cannabis flower their frosty appearance.
Collapse
Affiliation(s)
- Jessica Hancock
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
Wright DW, Koziel JA, Kuhrt FW, Iwasinska A, Eaton DK, Wahe L. Odor-Cued Grab Air Sampling for Improved Investigative Odorant Prioritization Assessment of Transient Downwind Environmental Odor Events. ACS OMEGA 2024; 9:29290-29299. [PMID: 39005806 PMCID: PMC11238200 DOI: 10.1021/acsomega.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
A critical prelude to any community odor assessment should be the prioritization of specific chemical odorants that are most responsible for targeted downwind odors. Unfortunately, and historically, this is a step that has often been bypassed or overlooked. However, correct understanding of the specific impactful volatile organic compounds (VOCs) can inform the follow-on sampling, analytical, and remediation strategies that are most appropriate and efficient, based upon the chemistry behind the issue. With this understanding, the techniques and sampling strategies presented herein should be viewed as a qualitative prelude rather than an addendum to a follow-up routine, automated downwind odor monitoring. Downwind odor characteristics can vary depending upon the size of the upwind source, interim topography, and wind conditions. At one extreme, the downwind odor plume from a relatively large source located on a flat open plain and under stable, near-straight line wind conditions can be rather broad, sustained, and predictable. In contrast, the plume from a small point source (e.g., a roof vent stack) located on irregular topography and under rapidly shifting wind conditions can be intermittent and fleeting ("spikes" or "bursts"). These transient odor events can be surprisingly intense and offensive, despite their fleeting occurrence and perception. This work reports on improving and optimizing an environmental sampling strategy for odorant prioritization from such transient downwind odor conditions. This optimization addresses the challenges of (1) sampling of transient odor "spikes" and (2) prioritizing odors/odorants from multiple, closely colocated point sources under transient event conditions. Prioritizing is defined as identifying the key impactful odorants downwind. Grab air sampling protocol refinement has emerged from actual community environmental odor assessment projects. The challenge of assessing transient odor events has been mitigated by utilizing (a) rapid, odor-cued whole-air grab sampling (i.e., activated by and synchronous with the perceived sensory spikes) into metalized fluorinated ethylene polymer (m-FEP) gas sampling bags; (b) immediate transfer from bags onto solid-phase microextraction (SPME) fibers or sorbent tubes; and (c) maintaining refrigerated storage and shipment conditions between field collection and in-laboratory analysis. Results demonstrated approximately 11-fold increases in target odorant yields for 900 mL air sample capture on sorbent tube transfers from 2 to 3 s "burst" odor event bag captures compared to equivalent direct collections (with sorbent tubes) at the same downwind receptor location but during perceived (stable) odor "lull" periods. An application targeting general odor sampling and point-source differentiation utilizing tracer gases is also presented.
Collapse
Affiliation(s)
- Donald W Wright
- Don Wright & Associates, LLC, Georgetown, Texas 78628, United States
| | - Jacek A Koziel
- USDA-ARS, Conservation and Production Research Laboratory, Bushland, Texas 79012, United States
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Fred W Kuhrt
- Volatile Analysis Corp. Inc., Grant, Alabama 35747, United States
| | - Anna Iwasinska
- Volatile Analysis Corp. Inc., Grant, Alabama 35747, United States
| | - David K Eaton
- The Epsilon Company, Round Rock, Texas 78664, United States
| | - Landon Wahe
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Paryani T, Sosa ME, Page MFZ, Martin TJ, Hearvy MV, Ojeda MA, Koby KA, Grandy JJ, Melshenker BG, Skelly I, Oswald IWH. Nonterpenoid Chemical Diversity of Cannabis Phenotypes Predicts Differentiated Aroma Characteristics. ACS OMEGA 2024; 9:28806-28815. [PMID: 38973868 PMCID: PMC11223244 DOI: 10.1021/acsomega.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
The recent increase in legality of Cannabis Sativa L. has led to interest in developing new varieties with unique aromatic or effect-driven traits. Selectively breeding plants for the genetic stability and consistency of their secondary metabolite profiles is one application of phenotyping. While this horticultural process is used extensively in the cannabis industry, few studies exist examining the chemical data that may differentiate phenotypes aromatically. To gain insight into the diversity of secondary metabolite profiles between progeny, we analyzed five ice water hash rosin extracts created from five different phenotypes of the same crossing using comprehensive 2-dimensional gas chromatography coupled to time-of-flight mass spectrometry, flame ionization detection, and sulfur chemiluminescence detection. These results were then correlated to results from a human sensory panel, which revealed specific low-concentration compounds that strongly influence sensory perception. We found aroma differences between certain phenotypes that are driven by key minor, nonterpenoid compounds, including the newly reported 3-mercaptohexyl hexanoate. We further report the identification of octanoic and decanoic acids, which are implicated in the production of cheese-like aromas in cannabis. These results establish that even genetically similar phenotypes can possess diverse and distinct aromas arising not from the dominant terpenes, but rather from key minor volatile compounds. Moreover, our study underscores the value of detailed chemical analyses in enhancing cannabis selective breeding practices, offering insights into the chemical basis of aroma and sensory differences.
Collapse
Affiliation(s)
- Twinkle
R. Paryani
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Manuel E. Sosa
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Michael F. Z. Page
- Science,
Engineering, and Mathematics Division, Cerritos
College, 11110 Alondra
Blvd, Norwalk, California 90650, United States
| | - Thomas J. Martin
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Melissa V. Hearvy
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Marcos A. Ojeda
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Kevin A. Koby
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| | - Jonathan J. Grandy
- Sepsolve
Analytical, Schauenburg Analytics, Waterloo, Ontario N2J
4G8, Canada
| | - Bradley G. Melshenker
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Ian Skelly
- 710
Laboratories, 8149 Santa
Monica Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Iain W. H. Oswald
- Research
and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92780, United States
| |
Collapse
|
5
|
Spadafora ND, Felletti S, Chenet T, Sirangelo TM, Cescon M, Catani M, De Luca C, Stevanin C, Cavazzini A, Pasti L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal Bioanal Chem 2024; 416:3797-3809. [PMID: 38702447 PMCID: PMC11180634 DOI: 10.1007/s00216-024-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Claudia Stevanin
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Council for Agricultural Research and Economics, CREA, Via Della Navicella 2/4, 00184, Rome, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
6
|
Kaminski KP, Hoeng J, Goffman F, Schlage WK, Latino D. Opportunities, Challenges, and Scientific Progress in Hemp Crops. Molecules 2024; 29:2397. [PMID: 38792258 PMCID: PMC11124073 DOI: 10.3390/molecules29102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
The resurgence of cannabis (Cannabis sativa L.) has been propelled by changes in the legal framework governing its cultivation and use, increased demand for hemp-derived products, and studies recognizing the industrial and health benefits of hemp. This has led to the creation of novel high-cannabidiol, low-Δ9-tetrahydrocannabinol varieties, enabling hemp crop expansion worldwide. This review elucidates the recent implications for hemp cultivation in Europe, with a focus on the legislative impacts on the cultivation practices, prospective breeding efforts, and dynamic scientific landscape surrounding this crop. We also review the current cultivars' cannabinoid composition of the European hemp market and its major differences with that of the United States.
Collapse
Affiliation(s)
| | - Julia Hoeng
- Vectura Fertin Pharma, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
7
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
8
|
Arathala P, Musah RA. Theoretical Insights into the Gas-Phase Oxidation of 3-Methyl-2-butene-1-thiol by the OH Radical: Thermochemical and Kinetic Analysis. J Phys Chem A 2024; 128:2136-2149. [PMID: 38466809 PMCID: PMC10961829 DOI: 10.1021/acs.jpca.3c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
3-Methyl-2-butene-1-thiol ((CH3)2C═CH-CH2-SH; MBT) is a recently identified volatile organosulfur compound emitted from Cannabis sativa and is purported to contribute to its skunky odor. To understand its environmental fate, hydroxyl radical (•OH)-mediated oxidation of MBT was conducted using high-level quantum chemical and theoretical kinetic calculations. Three stable conformers were identified for the title molecule. Abstraction and addition pathways are possible for the MBT + OH radical reaction, and thus, potential energy surfaces involving H-abstraction and •OH addition were computed at the CCSD(T)/aug-cc-pV(T+d)Z//M06-2X/aug-cc-pV(T+d)Z level of theory. The barrier height for the addition of the OH radical to a C atom of the alkene moiety, leading to the formation of a C-centered MBT-OH radical, was computed to be -4.1 kcal mol-1 below the energy of the starting MBT + OH radical-separated reactants. This reaction was found to be dominant compared to other site-specific H-abstraction and addition paths. The kinetics of all the site-specific abstraction and addition reactions associated with the most stable MBT + OH radical reaction were assessed using the MESMER kinetic code between 200 and 320 K. Further, we considered the contributions from two other conformers of MBT to the overall reaction of MBT + OH radical. The estimated global rate coefficient for the oxidation of MBT with respect to its reactions with the OH radical was found to be 6.1 × 10-11 cm3 molecule-1 s-1 at 298 K and 1 atm pressure. The thermodynamic parameters and atmospheric implications of the MBT + OH reaction are discussed.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
9
|
Irawan A, Puerto-Hernandez GM, Ford HR, Busato S, Ates S, Cruickshank J, Ranches J, Estill CT, Trevisi E, Bionaz M. Feeding spent hemp biomass to lactating dairy cows: Effects on performance, milk components and quality, blood parameters, and nitrogen metabolism. J Dairy Sci 2024; 107:258-277. [PMID: 37690708 DOI: 10.3168/jds.2023-23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023]
Abstract
The legalization of industrial hemp by the 2018 Farm Bill in the United States has driven a sharp increase in its cultivation, including for cannabinoid extraction. Spent hemp biomass (SHB), produced from the extraction of cannabinoids, can potentially be used as feed for dairy cows; however, it is still illegal to do so in the United States, according to the US Food and Drug Administration Center for Veterinary Medicine, due to the presence of cannabinoids and the lack of data on the effect on animals. To assess the safety of this byproduct as feed for dairy cows, late-lactation Jersey cows (245 ± 37 d in milk; 483 ± 38 kg body weight; 10 multiparous and 8 primiparous) received a basal total mixed ration (TMR) diet plus 13% alfalfa pellet (CON) or 13% pelleted SHB for 4 wk (intervention period [IP]) followed by 4 wk of withdrawal period (WP), where all cows received only the basal TMR during WP. The dry matter intake (DMI), body weight, body condition score, milk yield, milk components, and fatty acid profile, blood parameters, N metabolism, methane emission, and activity were measured. Results indicated that feeding SHB decreased DMI mainly due to the low palatability of the SHB pellet, as the cows consumed only 7.4% of the total TMR with 13.0% SHB pellet offered in the ration. However, milk yield was not affected during the IP and was higher than CON during the WP, leading to higher milk yield/DMI. Milk components were not affected, except for a tendency in decreased fat percentage. Milk fat produced by cows fed SHB had a higher proportion of oleate and bacteria-derived fatty acids than CON. The activity of the cows was not affected, except for a shorter overall lying time in SHB versus CON cows during the IP. Blood parameters related to immune function were not affected. Compared with CON, cows fed SHB had a lower cholesterol concentration during the whole experiment and higher β-hydroxybutyric acid during the WP, while a likely low-grade inflammation during the IP was indicated by higher ceruloplasmin and reactive oxidative metabolites. Other parameters related to liver health and inflammatory response were unaffected, except for a tendency for higher activity of alkaline phosphatase during IP and a lower activity of gamma-glutamyl transferase during WP in the SHB group versus CON. The bilirubin concentration was increased in cows fed SHB, suggesting a possible decrease in the clearance ability of the liver. Digestibility of the dry matter and protein and methane emission were not affected by feeding SHB. The urea, purine derivatives, and creatinine concentration in urine was unaffected, but cows fed SHB had higher N use efficiency and lower urine volume. Altogether, our data revealed a relatively low palatability of SHB affecting DMI with minimal biological effects, except for a likely low-grade inflammation, a higher N use efficiency, and a possible decrease in liver clearance. Overall, the data support the use of SHB as a safe feed ingredient for lactating dairy cows.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Universitas Sebelas Maret, Surakarta, 57126 Central Java, Indonesia
| | | | - Hunter Robert Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Jenifer Cruickshank
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Juliana Ranches
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331; Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331.
| |
Collapse
|
10
|
Milani NBL, van Gilst E, Pirok BWJ, Schoenmakers PJ. Comprehensive two-dimensional gas chromatography- A discussion on recent innovations. J Sep Sci 2023; 46:e2300304. [PMID: 37654057 DOI: 10.1002/jssc.202300304] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Although comprehensive 2-D GC is an established and often applied analytical method, the field is still highly dynamic thanks to a remarkable number of innovations. In this review, we discuss a number of recent developments in comprehensive 2-D GC technology. A variety of modulation methods are still being actively investigated and many exciting improvements are discussed in this review. We also review interesting developments in detection methods, retention modeling, and data analysis.
Collapse
Affiliation(s)
- Nino B L Milani
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Eric van Gilst
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Bob W J Pirok
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| | - Peter J Schoenmakers
- Van't Hoff Institute for Molecular Science (HIMS), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Oswald IWH, Paryani TR, Sosa ME, Ojeda MA, Altenbernd MR, Grandy JJ, Shafer NS, Ngo K, Peat JR, Melshenker BG, Skelly I, Koby KA, Page MFZ, Martin TJ. Minor, Nonterpenoid Volatile Compounds Drive the Aroma Differences of Exotic Cannabis. ACS OMEGA 2023; 8:39203-39216. [PMID: 37901519 PMCID: PMC10601067 DOI: 10.1021/acsomega.3c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023]
Abstract
Cannabis sativa L. produces a wide variety of volatile secondary metabolites that contribute to its unique aroma. The major volatile constituents include monoterpenes, sesquiterpenes, and their oxygenated derivates. In particular, the compounds ß-myrcene, D-(+)-limonene, ß-caryophyllene, and terpinolene are often found in greatest amounts, which has led to their use in chemotaxonomic classification schemes and legal Cannabis sativa L. product labeling. While these compounds contribute to the characteristic aroma of Cannabis sativa L. and may help differentiate varieties on a broad level, their importance in producing specific aromas is not well understood. Here, we show that across Cannabis sativa L. varieties with divergent aromas, terpene expression remains remarkably similar, indicating their benign contribution to these unique, specific scents. Instead, we found that many minor, nonterpenoid compounds correlate strongly with nonprototypical sweet or savory aromas produced by Cannabis sativa L. Coupling sensory studies to our chemical analysis, we derive correlations between groups of compounds, or in some cases, individual compounds, that produce many of these diverse scents. In particular, we identified a new class of volatile sulfur compounds (VSCs) containing the 3-mercaptohexyl functional group responsible for the distinct citrus aromas in certain varieties and skatole (3-methylindole) as the key source of the chemical aroma in others. Our results provide not only a rich understanding of the chemistry of Cannabis sativa L. but also highlight how the importance of terpenes in the context of the aroma of Cannabis sativa L. has been overemphasized.
Collapse
Affiliation(s)
- Iain W. H. Oswald
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Twinkle R. Paryani
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Manuel E. Sosa
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
- Chemistry
and Biochemistry Department, Cal Poly Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Marcos A. Ojeda
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Mark R. Altenbernd
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Jonathan J. Grandy
- Sepsolve
Analytical Schauenburg Analytics, 826 King Street North Unit 15, Waterloo, Ontario N2J4G8, Canada
| | - Nathan S. Shafer
- Markes
International-Schauenburg Analytics, 2355 Gold Meadow Drive, Gold River, California 95670, United States
| | - Kim Ngo
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Jack R. Peat
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Bradley G. Melshenker
- 710
Labs, 8149 Santa Monica
Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Ian Skelly
- 710
Labs, 8149 Santa Monica
Boulevard Suite 298, Los Angeles, California 90046, United States
| | - Kevin A. Koby
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| | - Michael F. Z. Page
- Chemistry
and Biochemistry Department, Cal Poly Pomona, 3801 West Temple Avenue, Pomona, California 91768, United States
| | - Thomas J. Martin
- Department
of Research and Development, Abstrax Tech, 2661 Dow Avenue, Tustin, California 92618, United States
| |
Collapse
|
12
|
Wise K, Phan N, Selby-Pham J, Simovich T, Gill H. Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour. PLoS One 2023; 18:e0284842. [PMID: 37098051 PMCID: PMC10128932 DOI: 10.1371/journal.pone.0284842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Cannabis flower odour is an important aspect of product quality as it impacts the sensory experience when administered, which can affect therapeutic outcomes in paediatric patient populations who may reject unpalatable products. However, the cannabis industry has a reputation for having products with inconsistent odour descriptions and misattributed strain names due to the costly and laborious nature of sensory testing. Herein, we evaluate the potential of using odour vector modelling for predicting the odour intensity of cannabis products. Odour vector modelling is proposed as a process for transforming routinely produced volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informative to the overall product odour (sensory descriptor; SD). However, the calculation of OI requires compound odour detection thresholds (ODT), which are not available for many of the compounds present in natural volatile profiles. Accordingly, to apply the odour vector modelling process to cannabis, a QSPR statistical model was first produced to predict ODT from physicochemical properties. The model presented herein was produced by polynomial regression with 10-fold cross-validation from 1,274 median ODT values to produce a model with R2 = 0.6892 and a 10-fold R2 = 0.6484. This model was then applied to terpenes which lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis samples and the accuracy of the predictions across the two datasets was compared. Out of the 13 SD categories modelled, OI profiles performed equally well or better than the volatile profiles for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p = 0.031). The work herein is the first example of the application of odour vector modelling to complex volatile profiles of natural products and demonstrates the utility of OI profiles for the prediction of cannabis odour. These findings advance both the understanding of the odour modelling process which has previously only been applied to simple mixtures, and the cannabis industry which can utilise this process for more accurate prediction of cannabis odour and thereby reduce unpleasant patient experiences.
Collapse
Affiliation(s)
- Kimber Wise
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Nicholas Phan
- Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Jamie Selby-Pham
- School of Science, RMIT University, Bundoora, Victoria, Australia
- Nutrifield, Sunshine West, Victoria, Australia
| | - Tomer Simovich
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
- PerkinElmer Inc., Glen Waverley, Victoria, Australia
| | - Harsharn Gill
- School of Science, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
13
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
14
|
Polito JT, Lange BM. Standard operating procedures for the comprehensive and reliable analysis of cannabis terpenes. Methods Enzymol 2023; 680:381-419. [PMID: 36710020 DOI: 10.1016/bs.mie.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Terpenes are the primary determinants of cannabis flower aroma, and ongoing research tests their potential for impacting the overall experience. Frustratingly, despite the importance of terpenes in cannabis physiology and commercial uses, literature reports vary widely regarding the major constituents of volatile blends and the concentrations of individual terpenes. In this article, we provide detailed descriptions of complementary approaches that will allow researchers to determine the identity and quantity of cannabis terpenes unequivocally and reliably. These standard operating procedures will guide decisions about which method to employ to address specific analytical goals. We are including two application examples to illustrate the utility of different approaches for tackling the analysis of terpenes in cannabis flower samples.
Collapse
Affiliation(s)
- Joshua T Polito
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States
| | - B Markus Lange
- Institute of Biological Chemistry and M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, United States; Dewey Scientific LLC, Pullman, WA, United States.
| |
Collapse
|
15
|
Affiliation(s)
- David Love
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| | - Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
- 70113 Street, N.W., Suite 750, Washington, DC, 20005-3967, USA
| |
Collapse
|
16
|
Koyama S, Mori E, Ueha R. Insight into the mechanisms of olfactory dysfunction by COVID-19. Auris Nasus Larynx 2022:S0385-8146(22)00230-9. [PMID: 36529610 PMCID: PMC9731926 DOI: 10.1016/j.anl.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
One of the unique symptoms of COVID-19 is chemosensory dysfunction. Almost three years since the beginning of the pandemic of COVID-19, there have been many studies on the symptoms, progress, and possible causes, and also studies on methods that may facilitate recovery of the senses. Studies have shown that some people recover their senses even within a couple of weeks whereas there are other patients that fail to recover chemosensory functions fully for several months and some never fully recover. Here we summarize the symptoms and the progress, and then review the papers on the causation as well as the treatments that may help facilitate the recovery of the symptoms. Depending on the differences in the levels of severity and the locations where the main pathological venues are, what is most effective in facilitating recovery can vary largely across patients and thus may require individualized strategies for each patient. The goal of this paper is to provide some thoughts on these choices depending on the differences in the causes and severity.
Collapse
Affiliation(s)
- Sachiko Koyama
- Indiana University, School of Medicine, Department of Medicine, United States,Correspondence author at: Indiana University, Richard L. Roudebush VA Medical Center, 1481 W Tenth St., Indianapolis, IN, 46202, United States
| | - Eri Mori
- Department of Otorhinolaryngology, Jikei University, School of Medicine, Japan
| | - Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Japan,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, the University of Tokyo, Japan
| |
Collapse
|
17
|
Schwabe AL, Naibauer SK, McGlaughlin ME, Gilbert AN. Human olfactory discrimination of genetic variation within Cannabis strains. Front Psychol 2022; 13:942694. [PMID: 36389460 PMCID: PMC9651054 DOI: 10.3389/fpsyg.2022.942694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cannabis sativa L. is grown and marketed under a large number of named strains. Strains are often associated with phenotypic traits of interest to consumers, such as aroma and cannabinoid content. Yet genetic inconsistencies have been noted within named strains. We asked whether genetically inconsistent samples of a commercial strain also display inconsistent aroma profiles. We genotyped 32 samples using variable microsatellite regions to determine a consensus strain genotype and identify genetic outliers (if any) for four strains. Results were used to select 15 samples for olfactory testing. A genetic outlier sample was available for all but one strain. Aroma profiles were obtained by 55 sniff panelists using quantitative sensory evaluation of 40 odor descriptors. Within a strain, aroma descriptor frequencies for the genetic outlier were frequently at odds with those of the consensus samples. It appears that within-strain genetic differences are associated with differences in aroma profile. Because these differences were perceptible to untrained panelists, they may also be noticed by retail consumers. Our results could help the cannabis industry achieve better control of product consistency.
Collapse
Affiliation(s)
- Anna L. Schwabe
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
- *Correspondence: Anna L. Schwabe,
| | - Samantha K. Naibauer
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, United States
| | | | | |
Collapse
|
18
|
Parker NB, Bionaz M, Ford HR, Irawan A, Trevisi E, Ates S. Assessment of spent hemp biomass as a potential ingredient in ruminant diet: nutritional quality and effect on performance, meat and carcass quality, and hematological parameters in finishing lambs. J Anim Sci 2022; 100:skac263. [PMID: 35953240 PMCID: PMC9584163 DOI: 10.1093/jas/skac263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Spent hemp biomass (SHB), a byproduct of cannabinoid extraction from the production of industrial hemp has not been approved by FDA-CVM since its effects on animal health, performance, and product quality are unknown. Our objective was to investigate the effects of feeding two levels of SHB and a 4-wk withdrawal period on performance, carcass characteristic, meat quality, and hematological parameters in finishing lambs. A total of 35 weaned, Polypay male lambs kept in single pens were randomly assigned to five feeding treatments (n = 7) and fed diets containing either no SHB (CON) or SHB at 10% (LH1) or 20% (HH1) for 4 wk with 4 wk of clearing period from SHB, or SHB at 10% (LH2) or 20% (HH2) for 8 wk. Chemical analysis revealed SHB to have a nutritive quality similar to alfalfa with no mycotoxin, terpenes, or organic residuals as a result of the extraction process. Feed intake of lambs was negatively affected by 20% SHB in period 1 but not in period 2 where feed intake was the greatest in HH1 and LH2. In contrast, none of the performance data, including liveweight gains, were different across the groups and periods. In period 1, blood glucose, cholesterol, calcium, paraoxonase, and tocopherol were decreased by the level of SHB fed, while bilirubin and alkaline phosphatase (ALP) were increased. In period 2, the concentration in blood of urea, magnesium, bilirubin, ALP, and ferric reducing ability of the plasma (FRAP) were higher in LH2 and HH2 as compared with CON, while β-hydroxybutyrate was lower in HH2. Blood parameters related to liver health, kidney function, immune status, and inflammation were unaffected by feeding SHB. Most carcass and meat quality parameters did not differ across feeding groups either. Except carcass purge loss and meat cook loss were larger in lambs that were fed 20% SHB. Although lower feed intake of lambs that were fed 20% SHB initially in period 1 suggested SHB was not palatable to the lambs, increased feed intake at a lower level of inclusion at 10% in period 2 may point to a positive long-term effect of feeding SHB.
Collapse
Affiliation(s)
- Nathan B Parker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Hunter R Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122 Piacenza PC, Italy
| | - Serkan Ates
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Cheung C, Baker JD, Byrne JM, Perrault KA. Investigating volatiles as the secondary metabolome of Piper methysticum from root powder and water extracts using comprehensive two-dimensional gas chromatography. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115346. [PMID: 35533912 DOI: 10.1016/j.jep.2022.115346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kava (Piper methysticum G. Forst) is a plant grown in the Pacific that is used in traditional medicines. The roots are macerated and powdered for consumption as a beverage in social settings as well as in ceremonies. Other types of preparations can also be used as traditional medicines. There has been an increase in demand for kava as there is continued traditional use and as it is becoming utilized more both socially and medicinally outside of Oceania. Currently, most research of this plant has focused on bioactive kavalactones and flavokawains, and there are few studies focusing on the other compounds that kava contains, such as volatile and semivolatile components. AIM OF THE STUDY This study investigated the kava volatile organic compound (VOC) profile from nine different commercially available samples of dried, powdered kava root sourced across the Pacific region. MATERIALS AND METHODS The headspace above the kava samples was analyzed, both from the root powder as originally purchased and by performing a scaled-down extraction into water mimicking traditional preparation of the beverage. The headspace of each sample was extracted using solid-phase microextraction arrow (SPME Arrow), followed by analysis using comprehensive two-dimensional gas chromatography - quadrupole mass spectrometry/flame ionization detection (GC×GC-qMS/FID). The superior peak capacity of GC×GC was invaluable in effectively separating the complex mixture of compounds found in all samples, which enabled improved monitoring of minor differences between batches. RESULTS Dry root powder samples contained high levels of β-caryophyllene while water extracted samples showed high levels of camphene. Many alcohols, aldehydes, ketones, terpenes, terpenoids, and aromatics were also characterized from both types of samples. All water extracted samples from the different brands followed similar trends in terms of compounds being detected or not. Additional major compounds found in water extracts included benzaldehyde, hexanal, methoxyphenyloxime, camphor, limonene, 1-hexanol, endoborneol, and copaene. While some samples could be differentiated based on brand, samples did not group by purported geographic origin. CONCLUSIONS This study provides foundational data about a different subset of compounds within kava than previous research has studied, and also informs the community of the compounds that transfer into the consumed beverage during the traditional means of preparing kava.
Collapse
Affiliation(s)
- Cynthia Cheung
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Jonathan D Baker
- School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Julianne M Byrne
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| | - Katelynn A Perrault
- Laboratory of Forensic and Bioanalytical Chemistry, Forensic Sciences Unit, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, 3140 Waialae Avenue, Honolulu, HI, 96816, USA.
| |
Collapse
|
20
|
Pushie MJ, Sylvain NJ, Hou H, Hackett MJ, Kelly ME, Webb SM. X-ray fluorescence microscopy methods for biological tissues. Metallomics 2022; 14:mfac032. [PMID: 35512669 PMCID: PMC9226457 DOI: 10.1093/mtomcs/mfac032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022]
Abstract
Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Nicole J Sylvain
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
- Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8 Canada
| | - Huishu Hou
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Austrailia 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Perth, Western Austrailia 6845, Australia
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
21
|
Koziel JA, Guenther A, Vizuete W, Wright DW, Iwasinska A. "Skunky" Cannabis: Environmental Odor Troubleshooting and the "Need-for-Speed". ACS OMEGA 2022; 7:19043-19047. [PMID: 35722010 PMCID: PMC9201892 DOI: 10.1021/acsomega.2c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Although the "skunky" odor characteristic of cannabis has been widely referenced, its cause has been historically misassigned to unspecified "skunky terpenes". Recent reports from two independent research groups, the Koziel team (March and April 2021) and Oswald team (August and November 2021), have corrected this misassignment by linking the "skunky" character of industrial hemp and cannabis to 3-methyl-2-butene-1-thiol (321MBT). A recent USPTO patent application review clearly indicated that the Oswald team should take full credit for the discovery of this link with respect to cannabis. However, the August 19, 2021 publication of their patent application appears to be their formal public disclosure of 321MBT as the primary source odorant which is responsible for the targeted "skunky" odor. This date is well after the March and April 2021 public disclosures by the Koziel team for the 321MBT/"skunky" odor link relative to both cannabis and industrial hemp. This Viewpoint summarizes the investigative strategy leading to the public disclosure of this historically elusive link. It is presented from the perspective of the rapid multidimensional-gas chromatography-mass spectrometry-olfactometry (i.e., MDGC-MS-O) based odorant-prioritization "screening" approach, as applied by the Koziel team.
Collapse
Affiliation(s)
- Jacek A. Koziel
- Department
of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Alex Guenther
- Byers
Scientific, Bloomington, Indiana 47404, United
States
| | | | - Donald W. Wright
- Don
Wright & Associates, LLC, Georgetown, Texas 78626, United States
| | - Anna Iwasinska
- Volatile
Analysis Corporation, Grant, Alabama 35747, United States
| |
Collapse
|
22
|
Seltenrich N. Odor Control in the Cannabis Industry: Lessons from the New Kid on the Block. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:62001. [PMID: 35759387 PMCID: PMC9236214 DOI: 10.1289/ehp11449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
|
23
|
de Ferreyro Monticelli D, Bhandari S, Eykelbosh A, Henderson SB, Giang A, Zimmerman N. Cannabis Cultivation Facilities: A Review of Their Air Quality Impacts from the Occupational to Community Scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2880-2896. [PMID: 35138823 DOI: 10.1021/acs.est.1c06372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review addresses knowledge gaps in cannabis cultivation facility (CCF) air emissions by synthesizing the peer-reviewed and gray literature. Focus areas include compounds emitted, air quality indoors and outdoors, odor assessment, and the potential health effects of emitted compounds. Studies suggest that β-myrcene is a tracer candidate for CCF biogenic volatile organic compounds (BVOCs). Furthermore, β-myrcene, d-limonene, terpinolene, and α-pinene are often reported in air samples collected in and around CCF facilities. The BVOC emission strength per dry weight of plant is higher than most conventional agriculture crops. Nevertheless, reported total CCF BVOC emissions are lower compared with VOCs from other industries. Common descriptors of odors coming from CCFs include "skunky", "herbal", and "pungent". However, there are few peer-reviewed studies addressing the odor impacts of CCFs outdoors. Atmospheric modeling has been limited to back trajectory models of tracers and ozone impact assessment. Health effects of CCFs are mostly related to odor annoyance or occupational hazards. We identify 16 opportunities for future studies, including an emissions database by strain and stage of life (growing cycle) and odor-related setback guidelines. Exploration and implementation of key suggestions presented in this work may help regulators and the industry reduce the environmental footprint of CCF facilities.
Collapse
Affiliation(s)
- Davi de Ferreyro Monticelli
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sahil Bhandari
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Angela Eykelbosh
- National Collaborating Centre for Environmental Health, Vancouver, British Columbia, Canada V5Z 4R4
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, Vancouver, British Columbia, Canada V5Z 4R4
| | - Amanda Giang
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Naomi Zimmerman
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
24
|
Why cannabis reeks of skunk. Nature 2021. [PMID: 34887582 DOI: 10.1038/d41586-021-03650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|