1
|
Ivashchenko O. Designing iron oxide & silver nanocomposites with phyto- and fungo chemicals for biomedicine: lessons learned. J Mater Chem B 2025; 13:1500-1517. [PMID: 39757969 DOI: 10.1039/d4tb02284j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Multifunctional nanoparticles for biomedical applications are widely researched and constantly developed because they provide wider possibilities for therapy and diagnostics. This work aims to summarise our findings towards the design of multifunctional complex iron oxide and silver nanoparticles (NPs) produced from the plants Zingiber officinale and Hypericum perforatum and mushrooms Amanita muscaria and Sparassis crispa. It was revealed that the antimicrobial and anticancer properties of the NPs were a consequence of the combination of silver and phyto- and fungo-chemicals originating from natural species. Moreover, the photoactive properties of the complex iron oxide and silver nanoparticles promoted photodynamic therapy (λexc = 405 nm) that significantly improved the antibacterial (E. coli, S. aureus, B. pumilus, P. fluorescence) and anticancer (HeLa, U2OS cells) effects. Notably, the gel formulations of the NPs based on hyaluronic and alginic acids had advantages over the aqueous dispersions of the NPs. For instance, being embedded into a hyaluronic acid gel, the NPs were more effective against cancer cells due to the improved uptake of hyaluronic acid by cancer cells. Another advantage of gel formulations of the NPs was connected with their microstructural properties; the nanocomposite gel adjusted its microstructure to the substrate topology, mimicking the substrate scale and pattern. Thus, complex ultrasmall iron oxide and silver nanoparticle NPs synthesized with natural extracts and their gel formulations may find diverse applications in the biomedical field, particularly for local cancer treatment and as post-operative bone or tissue scaffold after cancer or chronic osteomyelitis surgery.
Collapse
Affiliation(s)
- Olena Ivashchenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, 61614 Poznań, Poland.
| |
Collapse
|
2
|
Karpitskiy DA, Bessonova EA, Shishov AY, Kartsova LA. Handshake of deep eutectic solvent and ionic liquid: Two liquid-liquid microextraction procedures for plant analysis. Talanta 2025; 282:126947. [PMID: 39342670 DOI: 10.1016/j.talanta.2024.126947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Plants are subjects of interest due to the secondary metabolites in their extracts which are promising as new pharmaceuticals. Phytochemistry do not have united system of sample preparation or analysis still due to different structure of plant cells, wide broad range of chemical properties and concentrations of bioactive compounds. Such challenges can be addressed in a green chemistry manner using new approaches through smart materials in routine monitoring and researches. Liquid smart materials, such as ionic liquids (ILs) and deep eutectic solvents (DESs) are attractive due to flexible properties, lots of extraction approaches, recycle potential, and direct compatibility with powerful analytical methods. In this study DES-based microextraction procedure with pH-switching was developed. Four choline chloride DESs were suggested as selective extraction phases for polar compounds from acetonitrile extracts. Method was successfully tested on four plants (Iris sibirica L., Hypericum perforatum L., Scutellaria baicalensis G, Citrus reticulata B.). Developed procedure was optimized and validated for the choline chloride - urea (1:2 mol/mol) DES that demonstrated better results in extraction. LOD for rutin was found as 0.05 mg ml-1. For low-polar compound, imidazolium ionic liquid-based dispersive liquid-liquid microextraction procedure was developed. 1-hexyl-3-methylimidazolium salts have demonstrated desired selectivity. The main factors influencing the extraction efficiency have been identified and optimized by design of experiment on two model plants (Iris sibirica L. and Scutellaria baicalensis G.). Validation procedures were done for thymol. LOD for thymol was found as 0.021 mg ml-1. The methods were compared with each other and traditional methanol extraction. The selectivity of the smart materials supports each other, usage of such extraction phases provides same or better results as obtained with methanol.
Collapse
Affiliation(s)
- Dmitriy Alexeyevich Karpitskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia.
| | - Elena Andreyevna Bessonova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| | - Andrey Yuryevich Shishov
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| | - Lyudmila Alexeyevna Kartsova
- Institute of Chemistry, Saint Petersburg State University, Universitetskiy pr., 26, 198504, Peterhof, Saint Petersburg, Russia
| |
Collapse
|
3
|
Pazarcı P, Kaplan HM. In Vitro Apoptotic and Antiproliferative Activity of Hypericum Perforatum Extract on Human Osteosarcoma Cell Line. J Med Food 2025; 28:38-43. [PMID: 39585205 DOI: 10.1089/jmf.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Hypericum perforatum (HP) has been widely used as an alternative medicine due to its active pharmacological properties. While the antiproliferative effects of components such as hypericin and hyperforin have been demonstrated in malignant cell lines, most studies have focused on the pharmacological properties of the HP extract itself. Recent research has indicated that HP and its active substances possess anticancer activities; however, there is a lack of studies examining its effects on osteosarcoma. In addition, HP has demonstrated the ability to mitigate the toxicity of several drugs, including chemotherapeutic agents. Hence, the primary objective of this study was to explore the potential anticancer properties of HP in relation to osteosarcoma cells. MG-63 human osteosarcoma cells were cultured and treated with HP extract. Apoptotic factors were analyzed using ELISA, while cell viability was assessed using the MTT test. The results revealed a significant increase in the activities of proapoptotic proteins GRP78, Wee1, apoptosis-inducing factor (AIF), GADD153, Bax, and cleaved caspase-3 in MG-63 osteosarcoma cells after 48 hours of treatment with HP at a concentration of 0.8%. Conversely, the activity of Bcl-2, an antiapoptotic protein, significantly decreased. Moreover, HP extract demonstrated a dose-dependent reduction in cell viability in MG-63 cells. In conclusion, HP extract induces apoptosis in MG-63 osteosarcoma cells by upregulating the expressions of proapoptotic proteins GRP78, Wee1, AIF, GADD153, Bax, and cleaved caspase-3. This study will assist researchers in understanding the importance of alternative treatments using HP in the context of human osteosarcoma therapy, which many researchers are currently unaware of.
Collapse
Affiliation(s)
- Percin Pazarcı
- Department of Medical Biology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Halil M Kaplan
- Department of Pharmacology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
4
|
Laina KT, Drosou C, Stergiopoulos C, Eleni PM, Krokida M. Optimization of Combined Ultrasound and Microwave-Assisted Extraction for Enhanced Bioactive Compounds Recovery from Four Medicinal Plants: Oregano, Rosemary, Hypericum, and Chamomile. Molecules 2024; 29:5773. [PMID: 39683930 DOI: 10.3390/molecules29235773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
This study presents the synergistic application of ultrasound- and microwave-assisted extraction (UAE-MAE) as a novel and efficient method for recovering bioactive compounds from the medicinal plants oregano, rosemary, Hypericum perforatum, and chamomile. Extraction parameters, including microwave (MW) power, ultrasound (US) power, and extraction time, were optimized using the response surface methodology (RSM), with ethanol as the solvent. Extracts were evaluated for total phenolic content (TPC) via the Folin-Ciocalteu method and antioxidant activity (IC50) using the DPPH assay. High-performance liquid chromatography with diode array detection (HPLC-DAD) identified the main bioactive compounds contributing to their antioxidant and therapeutic potential. The optimized UAE-MAE conditions enhanced phenolic recovery and antioxidant potential across all plants. Notably, Hypericum perforatum exhibited the highest TPC (53.7 mg GAE/g) and strongest antioxidant activity (IC50 29.8 mg extract/g) under 200 W MW, 450 W US, and 12 min, yielding 14.5%. Rosemary achieved the highest yield (23.36%) with a TPC of 26.35 mg GAE/g and an IC50 of 40.75 mg extract/g at 200 W MW, 700 W US, and 8 min. Oregano's optimal conditions (500 W MW, 700 W US, 12 min) produced a TPC of 34.99 mg GAE/g and an IC50 of 50.31 mg extract/g. Chamomile extracts demonstrated lower phenolic content and antioxidant activity but achieved significant yields under 500 W MW, 700 W US, and 5 min. This study highlights UAE-MAE's superior efficiency, showcasing its potential to maximize phenolic recovery sustainably, making it a promising technique for industrial and therapeutic applications.
Collapse
Affiliation(s)
- Konstantina Theodora Laina
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Christina Drosou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Chrysanthos Stergiopoulos
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Panagiota Maria Eleni
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechneiou St. Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
5
|
Gandhi Y, Mishra SK, Kumar V, Rawat H, Kumar R, Singh R, Singh A, Narasimhaji CV, Srikanth N, Acharya R. Effects of geographical variation on the phytochemicals gallic acid, corilagin, and ellagic acid, as well as medicinal properties of Emblica officinalis Gaertn (Fruit). FOOD AND HUMANITY 2024; 3:100372. [DOI: 10.1016/j.foohum.2024.100372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Zivari-Ghader T, Shokouhi B, Kosari-Nasab M, Davaran S, Hamishehkar H, Farahpour MR, Rashidi MR, Mehrali M. Hypericum Perforatum Callus Extract-Loaded Composite Hydrogel with Diverse Bioactivities for Enhanced Wound Healing and Fibrosis Prevention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407112. [PMID: 39498666 DOI: 10.1002/smll.202407112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Indexed: 11/07/2024]
Abstract
Plant Callus are a valuable source of pluripotent stem cells and bioactive phytochemicals. Meanwhile, the Hypericum perforatum callus extract (HPCE) is particularly rich in compounds such as hyperforin, hypericin, quercetin, and other phenolic and flavonoid derivatives. These phytochemicals exhibit strong antibacterial, antioxidant, anti-inflammatory, and anti-fibrotic properties, making them promising for wound healing. One of the most critical challenges following wound healing is the formation of fibrosis, which can compromise the complex structural integrity of skin. To address this issue, a poly(vinyl alcohol)/chitosan/alginate (PCA) wound dressing loaded with HPCE is developed. This hydrogel dressing features a porous structure with suitable mechanical properties and a high swelling capacity, potentially enhancing its effectiveness in promoting tissue regeneration and wound healing. In vitro studies have confirmed its biocompatibility, cell proliferation, and cell adhesion properties. Additionally, the dressing has demonstrated the ability to inhibit the proliferation of certain antibiotic-resistant bacteria. The in vivo studies revealed the anti-inflammatory properties, promotion of angiogenesis, facilitation of re-epithelialization, and stimulation of collagen deposition of the dressing under investigation. Moreover, the immunohistochemistry analysis of the two key markers, p16 and p53, has shown that the application of the dressing helps prevent fibrosis after wound healing.
Collapse
Affiliation(s)
- Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Behrooz Shokouhi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
| | - Morteza Kosari-Nasab
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, 57159-14338, Iran
| | - Mohammad-Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 51664-14766, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
7
|
Li Z, Du Y, Lu Y, Ma X, Li F, Zeng P, Zhang T, He Y, Luo P, Wu J. Hypericum perforatum-derived exosomes-like nanovesicles for adipose tissue photodynamic therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155854. [PMID: 39032276 DOI: 10.1016/j.phymed.2024.155854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Recent investigations underscore the capacity of photodynamic therapy (PDT) to induce adipocyte apoptosis, thereby mitigating obesity. Nonetheless, extant synthetic photosensitizers manifest limitations that hinder their clinical viability. PURPOSE In the current study, we used Hypericum perforatum-derived exosomes-like nanovesicles (HPExos) as a novel photosensitizer, and investigated its PDT effects in adipose tissue during obesity. METHOD HPExos-were administered to high fat diet mice via intraperitoneal injection, followed by targeted irradiation with specialized LED lights. Mass spectrometric analysis was analyzed in adipose tissues. CCK8 assay and Oil Red O staining were used to investigate lipid accumulation in 3T3-L1 cells to clarify adipocyte differentiation. The expression levels of related markers associated with adipogenesis and lipogenesis were assessed by RT-PCR. Apoptosis analysis was performed by TUNEL staining of and western blotting. RESULTS HPExos combined with PDT accumulated in visceral white adipose tissues results in a reduced body weight and improved insulin sensitivity. HPExos combined with PDT induced apoptosis by driving high levels of ROS. In addition, HPExos combined with PDT significantly downregulated the expression of transcription factors, PPARγ, C/EBPα, and SREBP and lipogenesis protein FABP4 both in vitro and in vivo, associated with a decreased FFA levels. CONCLUSION These findings suggest that HPExos could act as an effective photosensitizer in regulating glucose hemostasis by inhibiting adipocyte differentiation and lipogenesis, offering a promising approach for obesity treatment.
Collapse
Affiliation(s)
- Ziyu Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yu Du
- Department of Rheumatology and Immunology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yu Lu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoyu Ma
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Fei Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peiyuan Zeng
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tao Zhang
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuqian He
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; State Key Laboratory of Quality Research in Chinese Medicine (Macau University of Science and Technology), Avenida Wai Long, Taipa, Macau, China
| | - Jianbo Wu
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Ministry of Education, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Fifere N, Ardeleanu R, Doroftei F, Dobromir M, Airinei A. Tailoring the Structural and Optical Properties of Cerium Oxide Nanoparticles Prepared by an Ecofriendly Green Route Using Plant Extracts. Int J Mol Sci 2024; 25:681. [PMID: 38203851 PMCID: PMC10779659 DOI: 10.3390/ijms25010681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The present study explores an environmentally friendly green approach to obtain cerium oxide nanoparticles via a biomediated route using Mellisa officinalis and Hypericum perforatum plant extracts as reducing agents. The as-prepared nanoparticles were studied for their structural and morphological characteristics using XRD diffractometry, scanning electron microscopy, Raman, fluorescence and electronic absorption spectra, and X-ray photoelectron spectroscopy (XPS). The XRD pattern has shown the centered fluorite crystal structure of cerium oxide nanoparticles with average crystallite size below 10 nm. These observations were in agreement with the STEM data. The cubic fluorite structure of the cerium oxide nanoparticles was confirmed by the vibrational mode around 462 cm-1 due to the Ce-08 unit. The optical band gap was estimated from UV-Vis reflectance spectra, which was found to decrease from 3.24 eV to 2.98 eV. A higher specific area was determined for the sample using M. officinalis aqueous extract. The EDX data indicated that only cerium and oxygen are present in the green synthesized nanoparticles.
Collapse
Affiliation(s)
- Nicusor Fifere
- Petru Poni Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.F.); (R.A.)
| | - Rodinel Ardeleanu
- Petru Poni Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.F.); (R.A.)
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.F.); (R.A.)
| | - Marius Dobromir
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.F.); (R.A.)
| |
Collapse
|
9
|
Ahmadzadeh AM, Pourali G, Mirheidari SB, Shirazinia M, Hamedi M, Mehri A, Amirbeik H, Saghebdoust S, Tayarani-Najaran Z, Sathyapalan T, Forouzanfar F, Sahebkar A. Medicinal Plants for the Treatment of Neuropathic Pain: A Review of Randomized Controlled Trials. Curr Pharm Biotechnol 2024; 25:534-562. [PMID: 37455451 DOI: 10.2174/1389201024666230714143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is a disabling condition caused by various diseases and can profoundly impact the quality of life. Unfortunately, current treatments often do not produce complete amelioration and can be associated with potential side effects. Recently, herbal drugs have garnered more attention as an alternative or a complementary treatment. In this article, we summarized the results of randomized clinical trials to evaluate the effects of various phytomedicines on neuropathic pain. In addition, we discussed their main bioactive components and potential mechanisms of action to provide a better view of the application of herbal drugs for treating neuropathic pain.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Matin Shirazinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Hamedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Amirbeik
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Zahra Tayarani-Najaran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Allam Diabetes Centre Hull Royal Infirmary Anlaby Road HU3 2JZ, Hull, UK.m
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Siddique N, Ved A, Shukla KS, Nigam AK. Standardization and Pharmacological Evaluation of Ziziphus mauritiana Extract for Sedative and Anticonvulsant Activity in Mice and Rat. Antiinflamm Antiallergy Agents Med Chem 2024; 23:31-38. [PMID: 38279726 DOI: 10.2174/0118715230276586231215045816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Ziziphus mauritiana, sometimes called Indian jujube or Ber, belongs to the Rhamnaceae group of plants. The aqueous and ethanolic Ziziphus mauritiana formulations were shown to have analgesic, antipyretic, potent analgesic, anti-inflammatory, and anti-emetic properties. AIMS & OBJECTIVES The aim of this study is to investigate the sedative and anticonvulsant activities of Ziziphus mauritiana extract by governing 200 and 400 mg/kg body weight orally. MATERIALS AND METHODS The leaves are extracted with ethanol and lukewarm water with a soxhlet apparatus for 72 hours. After that acute extract toxicity study was performed and then locomotor activity, pentobarbital induced sleeping time and anticonvulsant activity were performed with the extract. RESULTS Oral administration of extract at dosages of 200 & 400 mg/kg was employed after an immediate toxicity test. At a dosage of 400 mg/kg, the number of locomotions was reduced significantly lengthened the period of time spent sleeping and there was showed a dosage-dependent reduction in all phases of an epileptic episode. CONCLUSION In this study, the extract reduced locomotor activity, however, it had a superior profile for an antiepileptic action than phenytoin since it decreased locomotor activity to a lesser level. The considerable increase in pentobarbitone sleep hours with the extracts at a higher dose supported the sedative action of Z. mauritiana.
Collapse
Affiliation(s)
- Nadim Siddique
- Department of Pharmacy, Goel Institute of Pharmaceutical Sciences, Lucknow, India
| | - Akash Ved
- Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, India
| | | | | |
Collapse
|
11
|
Antoniadou M, Rozos G, Vaiou N, Zaralis K, Ersanli C, Alexopoulos A, Tzora A, Varzakas T, Voidarou C(C. The In Vitro Assessment of Antibacterial and Antioxidant Efficacy in Rosa damascena and Hypericum perforatum Extracts against Pathogenic Strains in the Interplay of Dental Caries, Oral Health, and Food Microbiota. Microorganisms 2023; 12:60. [PMID: 38257885 PMCID: PMC10819596 DOI: 10.3390/microorganisms12010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The rising demand for novel antibiotic agents prompts an investigation into natural resources, notably plant-derived compounds. In this study, various extracts (aqueous, ethanolic, aqueous-ethanolic, and enzymatic) of Rosa damascena and Hypericum perforatum were systematically evaluated against bacterial strains isolated from dental lesions (n = 6) and food sources (raw milk and broiler carcass, n = 2). Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antibiofilm activity, and time-kill kinetics were assessed across a range of extract concentrations, revealing a dose-responsive effect. Notably, some extracts exhibited superior antibacterial efficacy compared to standard clinical antibiotics, and the time-kill kinetics demonstrated a rapid elimination of bacterial loads within 24 h. The susceptibility pattern proved strain-specific, contingent upon the extract type, yet all tested pathogens exhibited sensitivity. The identified extracts, rich in phenolic and polyphenolic compounds, as well as other antioxidant properties, contributed to their remarkable antibiotic effects. This comprehensive investigation not only highlights the potential of Rosa damascena and Hypericum perforatum extracts as potent antibacterial agents against diverse bacterial strains including caries pathogens, but also underscores their rapid action and dose-dependent efficacy. The findings suggest a promising avenue for harnessing plant-derived compounds in the development of novel antimicrobial strategies against dental caries and other oral inflammations, bridging the gap between natural resources and antibiotic discovery.
Collapse
Affiliation(s)
- Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- CSAP, Executive Mastering Program in Systemic Management, University of Piraeus, 18534 Piraeus, Greece
| | - Georgios Rozos
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Natalia Vaiou
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Konstantinos Zaralis
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece; (G.R.); (K.Z.)
| | - Caglar Ersanli
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Athanasios Alexopoulos
- Laboratory of Microbiology, Biotechnology & Hygiene, Department of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Athina Tzora
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| | - Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Chrysoula (Chrysa) Voidarou
- Department of Agriculture, School of Agriculture, University of Ioannina, 47100 Arta, Greece; (C.E.); (A.T.)
| |
Collapse
|
12
|
Gandhi Y, Rawat H, Singh Dhanjal D, Kumar V, Charde V, Soni H, Mishra SK, Singh G, Singh S, Sharma P, Shakya SK, Narsimhaji CV, Meena AK, Singh A, Singh R, Srikanth N, Acharya R. A Comparative Analysis of Phytochemicals, Metal Ions, Volatile Metabolites in Heart Wood, Stem Bark and Leaves of Salix alba L. along with in Vitro Antioxidant, Antacid, Antimicrobial Activities for Sake of Environment Conservation by Substitution of Stem Bark With Leaf. Chem Biodivers 2023; 20:e202301234. [PMID: 37867394 DOI: 10.1002/cbdv.202301234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
The genus of Salix is used in food, medicine and nutraceuticals, and standardized by using the single marker compound Salicin only. Stem bark is the official part used for the preparation of various drugs, nutraceuticals and food products, which may lead to overexploitation and damage of tree. There is need to search substitution of the stem bark with leaf of Salix alba L. (SA), which is yet not reported. Comparative phytochemicals viz. Salicin, Procyanidin B1 and Catechin were quantified in the various parts of SA viz. heart wood (SA-HW), stem bark (SA-SB) and leaves (SA-L) of Salix alba L.by using newly developed HPLC method. It was observed that SA-HW and SA-L contained far better amount of Salicin, Procyanidin B and Catechin as compared to SA-SB (SA-HW~SA-L≫SA-SB). Essential and toxic metal ions of all three parts were analysed using newly developed ICP-OES method, where SA-L were founded as a rich source of micronutrients and essential metal ions as compared to SA-SB and SA-HW. GC-MS analysis has shown the presence of fatty acids and volatile compounds. The observed TPC and TFC values for all three parts were ranged from 2.69 to 32.30 mg GAE/g of wt. and 37.57 to 220.76 mg QCE/g of wt. respectively. In DPPH assay the IC50 values of SA-SB, SA-HW, and SA-L were 1.09 (±0.02), 5.42 (±0.08), and 8.82 (±0.10) mg/mL, respectively. The order of antibacterial activities against E. coli, S. aureus, P. aeruginosa, and B. subtilis strains was SA-L>SA-HW>SA-SB with strong antibacterial activities against S. aureus, and B. subtilis strains. The antacid activities order was SA-L>SA-SB>SA-HW. The leaves of SA have shown significant source of nutrients, phytochemicals and medicinal properties than SA-HW and SA-SB. The leaves of SA may be considered as substitute of stem bark to save the environment or to avoid over exploitation, but after the complete pharmacological and toxicological studies.
Collapse
Affiliation(s)
- Yashika Gandhi
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Hemant Rawat
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | | | - Vijay Kumar
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Vaibhav Charde
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Hemant Soni
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Gagandeep Singh
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | | | - Preeti Sharma
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| | - Santosh K Shakya
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - C V Narsimhaji
- Central Ayurveda Research Institute, 284003, Jhansi, Uttar Pradesh, India
| | - Ajay K Meena
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| | - Arjun Singh
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| | - Ravindra Singh
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| | - Naryanam Srikanth
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| | - Rabinarayan Acharya
- Regional Ayurveda Research Institute, 474001, Gwalior, Madhya Pradesh, India
| |
Collapse
|
13
|
Alzahrani MA, Ofisan SB, Alshumaymiri NI, Alghuwainem M, Altamimi M, Alali AY, Rabie M, AboSkena AK, Almaymuni K, Almannie R, Binsaleh S. Effect of St. John's Wort ( Hypericum perforatum L.) on Male Sexual and Reproductive Health: A Narrative Review. Biomedicines 2023; 11:2800. [PMID: 37893173 PMCID: PMC10604084 DOI: 10.3390/biomedicines11102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Hypericum species are widely acknowledged for their biological attributes, with notable attention being paid to Hypericum perforatum, commonly known as St. John's wort (SJW) within the Hypericum section of the Hypericaceae family. This species is among the most thoroughly investigated herbal medicines, particularly in terms of its application in the management of mild to moderate depression. SJW is used to treat depression, menopausal symptoms, attention-deficit hyperactivity disorder (ADHD), somatic symptom disorder, obsessive-compulsive disorder, and skin conditions, such as wounds and muscle pain. However, the usefulness and effectiveness of SJW for male sexual and reproductive health (SRH) are not well known. OBJECTIVE To assess the current evidence in the literature on the effect of SJW on male SRH. METHODS This narrative review followed a predetermined protocol and used MEDLINE and PubMed to identify articles published in English on the effects of SJW on male SRH. The search used various keywords, such as "Hypericum Perforatum", "St. John's Wort", and terms related to sexual and reproductive health issues. Articles published between the inception of the database and August 2023 were included. RESULTS We identified 12 articles published from 1999 to 2019, the majority of which were experimental and conducted on animals. These studies demonstrate variability in terms of design, sample size, type of SJW extract used, the dosage administered, and duration of treatment. Studies have indicated potential sexual dysfunction (SD) due to SJW, which includes reduced libido, delayed ejaculation, delayed orgasm, and erectile dysfunction. Additionally, reproductive toxicity has been suggested, as evidenced by spermicidal effects through the inhibition of sperm motility, abnormal spermatozoa, chromosomal aberrations, and DNA denaturation. Furthermore, some studies have reported potential adverse events during maternal exposure, inhibition of fertilization, and disruption of reproductive parameters. CONCLUSIONS Our review suggests that the safety and efficacy of SJW in the treatment of human SRH remain unclear. Further comprehensive, well-designed studies with larger samples, longer exposure periods, and specific dosages are needed to clarify SJW's effects of SJW. Therefore, consultation with healthcare professionals before using herbal remedies or supplements is crucial.
Collapse
Affiliation(s)
- Meshari A. Alzahrani
- Department of Urology, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Salman Bin Ofisan
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Nasser I. Alshumaymiri
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Muath Alghuwainem
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Muath Altamimi
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Ali Y. Alali
- College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Muhammad Rabie
- College of Science, Alexandria University, Alexandria 21568, Egypt
| | - Ahmed K. AboSkena
- Department of Pharmaceutical, College of Pharmacy, Ahram Canadian University (ACU), 6th of October 12451, Egypt
| | - Khalid Almaymuni
- College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Raed Almannie
- Division of Urology, Department of Surgery, Faculty of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Saleh Binsaleh
- Division of Urology, Department of Surgery, Faculty of Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
14
|
Gandhi MY, Prasad SB, Kumar V, Soni H, Rawat H, Mishra SK, Grewal J, Singh S, Charde V, Gupta A, Jha SK, Singh G, Tandon S, Mrkute A, Ramamurthy PC, Narasimhaji CV, Singh A, Singh R, Srikanth N, Acharya R, Webster TJ. Quantification of Phytochemicals and Metal Ions as well as the Determination of Volatile Compounds, Antioxidant, Antimicrobial and Antacid Activities of the Mimosa pudica L. Leaf: Exploration of Neglected and Under-Utilized Part. Chem Biodivers 2023; 20:e202301049. [PMID: 37728228 DOI: 10.1002/cbdv.202301049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Mimosa pudica L. (MP) is well-known plant in traditional medicinal system, especially in India. Unfortunately, leaves of MP are less explored. To determine the food and nutritional value of the neglected part of Mimosa pudica L. (MP), that is MP leaves, phytochemicals and metal ions of MP were quantified by newly developed HPLC and ICPOES-based methods. The content of phytochemicals observed using HPLC analysis for chlorogenic acid, catechin, and epicatechin was 141.823 (±8.171), 666.621 (±11.432), and 293.175 (±12.743) μg/g, respectively. Using GC/MS/MS analysis, fatty acid like oleic acid were identified. In ICP-OES analysis, a significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The observed TPC and TFC for MP leaf extracts was 44.327 (±1.041) mg GAE/ g of wt. and 214.217 (±4.372) mg QCE/ g of wt., respectively. The DPPH assay depicted a strong antioxidant activity of MP leaf extracts with IC50 values of 0.796 (±0.081) mg/mL and a TEAC value of 0.0356 (±0.0003). A significant antacid activity (666 mg MP+400 mg CaCO3 >400 mg CaCO3 ≫666 mg Gelusil) of MP leaves was noticed. The methanolic extract of MP leaves demonstrated anti-microbial activity against Staphylococcus aureus (15±2mm), Pseudomonas aeruginosa (12±2mm) and Escherichia coli (10±2mm). In silico studies confirmed the in vitro results obtained for antioxidant, antiacid, and anti-microbial activities. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the MP leaves. In summary, this study demonstrated the medicinal significance of MP leaves and the conversion of agro-waste or the under-utilized part of MP into pharmaceutical potent materials. Consequently, the present study highlighted that MP leaves alone have medicinal importance with good nutritional utility and possess large promise in the pharma industry along with improving bio-valorization and the environment.
Collapse
Affiliation(s)
- Ms Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shyam Baboo Prasad
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Soni
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Jyotika Grewal
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | - Vaibhav Charde
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Akhil Gupta
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | - Gagandeep Singh
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Smriti Tandon
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Akshada Mrkute
- Indira College Of Pharmacy Nanded, Maharashtra, 431606, India
| | | | | | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Narayan Srikanth
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
15
|
Sherif MM, Elshikh HH, Abdel-Aziz MM, Elaasser MM, Yosri M. In Vitro Antibacterial and Phytochemical Screening of Hypericum perforatum Extract as Potential Antimicrobial Agents against Multi-Drug-Resistant (MDR) Strains of Clinical Origin. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6934398. [PMID: 37090192 PMCID: PMC10121355 DOI: 10.1155/2023/6934398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 02/20/2023] [Indexed: 04/25/2023]
Abstract
Background The perennial plant Hypericum perforatum is widely distributed around the world. It has been used for many years in conventional medicine to treat a variety of illnesses, including stress, mild to moderate depression, and minor injuries. This study examined the antimicrobial activity of the H. perforatum total extract and its fractions (n-hexane, ethyl acetate, chloroform, and aqueous) against multi-drug-resistant (MDR) isolates that were gathered from clinical samples, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Klebsiella pneumonia. Materials and Methods Aerial parts of H. perforatum were collected and extracted using various solvents and were tested versus different isolated bacterial species. The inhibition zone of tested extracts was detected using an agar diffusion assay, and MICs were measured. Phytochemical analysis of promising H. perforatum extract was done using LC-ESI-MS/MS. Ultrastructure examination for the most altered bacteria used transmission electron microscopy. Antioxidant assays were done using DPPH and ABTS scavenging capacity methods. Cytotoxicity was reported versus Vero cells. Results Different extracts of H. perforatum showed promising antibacterial activity against the pathogens. While the subfractions of the total extract were observed to show lesser inhibition zones and higher MIC values than the total extract of H. perforatum against MDR strains, the total extract of H. perforatum demonstrated the most potent antimicrobial action with an inhibition zone range of 17.9-27.9 mm. MDR-K. pneumoniae was discovered to be the most susceptible strain, which is consistent with the antibacterial inhibitory action of H. perforatum whole extract. Additionally, after treatment at the minimum inhibitory concentration (MIC 3.9 μg/ml), the transmission electron microscope showed alterations in the ultrastructure of the K. pneumoniae cells. Methanol extract from H. perforatum has a CC50 value of 976.75 μg/ml. Conclusion Future inhibitors that target MDR strains may be revealed by these findings. Additionally, the extracts that were put to the test demonstrated strong antioxidant effects as shown by DPPH or ABTS radical-scavenging assays.
Collapse
Affiliation(s)
- Momen M. Sherif
- Department of Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11841, Egypt
| | - Hussien H. Elshikh
- Department of Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11841, Egypt
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, 11787 Nasr City, Cairo, Egypt
| |
Collapse
|
16
|
Kakouri E, Trigas P, Daferera D, Skotti E, Tarantilis PA, Kanakis C. Chemical Characterization and Antioxidant Activity of Nine Hypericum Species from Greece. Antioxidants (Basel) 2023; 12:antiox12040899. [PMID: 37107274 PMCID: PMC10135362 DOI: 10.3390/antiox12040899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hypericum L. comprises about 500 species distributed almost worldwide. Research has mainly focused on H. perforatum with confirmed biological activity on the alleviation of depression symptoms, among others. The compounds responsible for such activity are considered naphthodianthrones and acylphloroglucinols. Other Hypericum species are less studied or not studied, and further research is needed to complete the characterization of the genus. In this study we evaluated the qualitative and quantitative phytochemical profile of nine Hypericum species native to Greece, namely H. perforatum, H. tetrapterum, H. perfoliatum, H. rumeliacum subsp. apollinis, H. vesiculosum, H. cycladicum, H. fragile, H. olympicum and H. delphicum. Qualitative analysis was performed using the LC/Q-TOF/HRMS technique, while quantitative data were calculated with the single point external standard method. Additionally, we estimated the antioxidant activity of the extracts using DPPH and ABTS assays. Three species endemic to Greece (H. cycladicum, H. fragile, H. delphicum) were studied for the first time. Our results indicated that all studied species are rich in secondary metabolites, mainly of the flavonoids family, with strong antioxidant activity.
Collapse
Affiliation(s)
- Eleni Kakouri
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Panayiotis Trigas
- Laboratory of Systematic Botany, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitra Daferera
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Efstathia Skotti
- Department of Food Science and Technology, Ionian University, Terma Leoforou Vergoti, 281 00 Argostoli, Cephalonia, Greece
| | - Petros A Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Charalabos Kanakis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
17
|
Soto KM, Pérez Bueno JDJ, Mendoza López ML, Apátiga-Castro M, López-Romero JM, Mendoza S, Manzano-Ramírez A. Antioxidants in Traditional Mexican Medicine and Their Applications as Antitumor Treatments. Pharmaceuticals (Basel) 2023; 16:ph16040482. [PMID: 37111239 PMCID: PMC10145960 DOI: 10.3390/ph16040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Traditional medicine in Latin America and mainly in Mexico represents an essential alternative for treating different diseases. The use of plants as medicine is the product of a rich cultural tradition of the indigenous peoples, in which a great variety of species are used for the treatment of gastrointestinal, respiratory, and mental diseases and some other sicknesses; the therapeutic efficacy that they possess is due to the properties that derive from the active ingredients of plants principally antioxidants, such as phenolic compounds, flavonoids, terpenes, and tannins. An antioxidant is a substance that, at low concentrations, delays or prevents substrate oxidation through the exchange of electrons. Different methods are used to determine the antioxidant activity and the most commonly used are described in the review. Cancer is a disease in which some cells multiply uncontrollably and spread to other parts of the body, a process known as metastasis. These cells can lead to the formation of tumors, which are lumps of tissue that can be cancerous (malignant) or noncancerous (benign). Generally, the treatment of this disease consists of surgery, radiotherapy, or chemotherapy, which have side effects that decrease the quality of life of patients, so new treatments, focusing on natural resources such as plants, can be developed. This review aims to gather scientific evidence on the antioxidant compounds present in plants used in traditional Mexican medicine, specifically as antitumor treatment in the most common cancer types worldwide (e.g., breast, liver, and colorectal cancer).
Collapse
Affiliation(s)
- Karen M Soto
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| | - José de Jesús Pérez Bueno
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, S.C., Parque Tecnológico, Querétaro-Sanfandila, Pedro Escobedo, Santiago de Querétaro 76703, Mexico
| | - Maria Luisa Mendoza López
- Tecnológico Nacional de México, Instituto Tecnológico de Querétaro, Av. Tecnológico s/n, Esq. Mariano, Escobedo Colonia Centro, Santiago de Querétaro 76000, Mexico
| | - Miguel Apátiga-Castro
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, A.P. 1-1010, Querétaro 76230, Mexico
| | - José M López-Romero
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| | - Sandra Mendoza
- Research and Graduate Program in Food Science, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico
| | - Alejandro Manzano-Ramírez
- Centro de Investigaciones y de Estudios Avanzados del I.P.N., Unidad Querétaro, Querétaro 76230, Mexico
| |
Collapse
|
18
|
Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review. Molecules 2023; 28:molecules28052308. [PMID: 36903553 PMCID: PMC10004803 DOI: 10.3390/molecules28052308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Medicinal plants are an important source of bioactive compounds with a wide spectrum of practically useful properties. Various types of antioxidants synthesized in plants are the reasons for their application in medicine, phytotherapy, and aromatherapy. Therefore, reliable, simple, cost-effective, eco-friendly, and rapid methods for the evaluation of antioxidant properties of medicinal plants and products on their basis are required. Electrochemical methods based on electron transfer reactions are promising tools to solve this problem. Total antioxidant parameters and individual antioxidant quantification can be achieved using suitable electrochemical techniques. The analytical capabilities of constant-current coulometry, potentiometry, various types of voltammetry, and chrono methods in the evaluation of total antioxidant parameters of medicinal plants and plant-derived products are presented. The advantages and limitations of methods in comparison to each other and traditional spectroscopic methods are discussed. The possibility to use electrochemical detection of the antioxidants via reactions with oxidants or radicals (N- and O-centered) in solution, with stable radicals immobilized on the electrode surface, via oxidation of antioxidants on a suitable electrode, allows the study of various mechanisms of antioxidant actions occurring in living systems. Attention is also paid to the individual or simultaneous electrochemical determination of antioxidants in medicinal plants using chemically modified electrodes.
Collapse
|
19
|
Bagheri R, Bohlouli S, Maleki Dizaj S, Shahi S, Memar MY, Salatin S. The Antimicrobial and Anti-Biofilm Effects of Hypericum perforatum Oil on Common Pathogens of Periodontitis: An In Vitro Study. Clin Pract 2022; 12:1009-1019. [PMID: 36547112 PMCID: PMC9777146 DOI: 10.3390/clinpract12060104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The antibacterial and anti-biofilm effects of Hypericum perforatum oil against the common pathogens of periodontitis (Escherichia coli, Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, Porphyromonas gingivalis) was investigated. Disk diffusion (DD), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) approaches were applied to test the antimicrobial effects. In order to determine the anti-biofilm effects, the amount of bacterial biofilm formation was assessed using the microtiter plate technique. The anti-biofilm effects were then confirmed by determining the minimum biofilm inhibitor concentration (MBIC). The MIC, MBC, MBIC, and DD values were 64, 256, 512 μg/mL, and 14 mm for Staphylococcus aureus; 128, 256, 512 μg/mL, and 16 mm for Streptococcus mutans; 256, 512, 256 μg/mL, and 20 mm for Escherichia coli; 32, 128, 512 µg/mL, and 16 mm for Enterococcus faecalis; and 64, 128, 256 µg/mL, and 15 mm for Porphyromonas gingivalis, respectively. According to our results, Hypericum perforatum oil has antibacterial and anti-biofilm properties against the common bacteria associated with periodontitis.
Collapse
Affiliation(s)
- Reza Bagheri
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Correspondence: (S.M.D.); (M.Y.M.)
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
- Correspondence: (S.M.D.); (M.Y.M.)
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz 51548-53431, Iran
| |
Collapse
|
20
|
Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J, Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115524. [PMID: 35811028 DOI: 10.1016/j.jep.2022.115524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has a long history in many countries of being used as a herbal medicine. It is also widely used in Chinese herbal medicine for the treatment of infections. Hypericin, a main component extracted from Hypericum perforatum L., has attracted the attention of many researchers for its remarkable antiviral, antitumor and antidepressant effects. AIM OF THE STUDY To find plant molecules that inhibit the alkaline nuclease (AN) of herpes simplex virus type 1 (HSV-1) and suppress viral replication. MATERIALS AND METHODS Bioinformatics methods were used to determine which compounds from a variety of natural compounds in our laboratory interact with AN. By this means we predicted that hypericin may interact with AN and suppress HSV-1 replication. Experiments were then carried out to verify whether hypericin inhibits the bioactivity of AN. The Pichia pastoris expression system was used to obtain recombinant AN. The exonuclease and endonuclease activity of AN treated with hypericin were tested by electrophoresis. Immunohistochemical staining of the HSV-1 nucleocapsids was used to find out whether hypericin inhibits the intracellular function of AN. Real-time PCR and western blotting analysis were performed to test viral gene expression and viral protein synthesis. The extent of viral replication inhibited by hypericin was determined by a plaque assay and a time of addition assay. RESULTS Recombinant AN was obtained by Pichia pastoris expression system. The exonuclease and endonuclease activity of recombinant AN were inhibited by hypericin in the electrophoresis assay. Hypericin showed no inhibitory effect on BeyoZonase™ Super Nuclease or DNase I. T5 Exonuclease activity was inhibited partially by10 μM hypericin, and was completely suppressed by 50 μM hypericin. Hind Ⅲ was inhibited by hypericin at concentrations greater than 100 μM, but EcoR I, BamH I, and Sal I were not inhibited by hypericin. HSV-1 nucleocapsids gathered in the nucleus when the viruses were treated with hypericin. Plaque formation was significantly reduced by hypericin (EC50 against HSV-1 F is 2.59 ± 0.08 μM and EC50 against HSV-1 SM44 is 2.94 ± 0.10 μM). UL12, ICP27, ICP8, gD, and UL53 gene expression (P < 0.01, 4.0 μM hypericin treated group vs control group) and ICP4 (P < 0.05, 6.0 μM hypericin treated group vs control group), ICP8 and gD (P < 0.05, 2.0 μM hypericin treated group vs control group) protein synthesis were inhibited by hypericin. In the time of addition assay, HSV-1 was suppressed by hypericin in the early stages of viral replication. Hypericin exhibits potent virucidal activity against HSV-1 and inhibits the adsorption and penetration of HSV-1. CONCLUSION Hypericin inhibits the bioactivity of AN and suppresses HSV-1 replication. The data revealed a novel mechanism of the antiherpetic effect of hypericin.
Collapse
Affiliation(s)
- Kang Cao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Yan Zhang
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China; Department of Pathology, Fourth People's Hospital of Zhenjiang City, Zhenjiang, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yanjuan Peng
- Department of Pharmacology, Chengdu Medical College, Chengdu, China
| | - Qu Pan
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Qiuxia Jiao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qian Zhang
- Department of Nursing, The Second People's Hospital of Xindu District, Chengdu, China
| | - Ran Guo
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiali Zhang
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tian Chen
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
21
|
Lacret R, Puerta A, Granica S, González-Bakker A, Hevia D, Teng Y, Sánchez-Mateo CC, Pérez de Paz PL, Padrón JM. Bioactive Potential: A Pharmacognostic Definition through the Screening of Four Hypericum Species from the Canary Islands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186101. [PMID: 36144833 PMCID: PMC9505652 DOI: 10.3390/molecules27186101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
In this work, we propose a general methodology to assess the bioactive potential (BP) of extracts in the quest of vegetable-based drugs. To exemplify the method, we studied the anticancer potential (AP) of four endemic species of genus Hypericum (Hypericum canariense L, Hypericum glandulosum Aiton, Hypericum grandifolium Choisy and Hypericum reflexum L.f) from the Canary Islands. Microextracts were obtained from the aerial parts of these species and were tested against six human tumor cell lines, A549 (non-small-cell lung), HBL-100 (breast), HeLa (cervix), SW1573 (non-small-cell lung), T-47D (breast) and WiDr (colon). The methanol–water microextracts were evaluated further for cell migration, autophagy and cell death. The most promising bioactive polar microextracts were analyzed by UHPLC–DAD–MS. The extraction yield, the bioactivity evaluation and the chemical profiling by LC–MS suggested that H. grandifolium was the species with the highest AP. Label-free live-cell imaging studies on HeLa cells exposed to the methanol–water microextract of H. grandifolium enabled observing cell death and several apoptotic hallmarks. Overall, this study allows us to select Hypericum grandifolium Choisy as a source of new chemical entities with a potential interest for cancer treatment.
Collapse
Affiliation(s)
- Rodney Lacret
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
- Departamento de Medicina Física y Farmacología, Facultad de Farmacia, Universidad de La Laguna, Tenerife, 38200 La Laguna, Spain
- Correspondence:
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Sebastian Granica
- Microbiota Lab, Centre of Preclinical Studies, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Danela Hevia
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Yiling Teng
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Candelaria C. Sánchez-Mateo
- Departamento de Medicina Física y Farmacología, Facultad de Farmacia, Universidad de La Laguna, Tenerife, 38200 La Laguna, Spain
| | - Pedro Luis Pérez de Paz
- Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de Farmacia, Universidad de La Laguna, Tenerife, 38200 La Laguna, Spain
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| |
Collapse
|
22
|
Chemical Composition and Antibacterial and Antioxidant Activities of Stem Bark Essential Oil and Extracts of Solanecio gigas. Biochem Res Int 2022; 2022:4900917. [PMID: 35855890 PMCID: PMC9288319 DOI: 10.1155/2022/4900917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Herbal medication developed from natural resources has to have antibacterial and antioxidant effects. The aim of this research is to look at the chemical makeup of Solanecio gigas (S. gigas) stem bark essential oil (EO), as well as the effectiveness of EO and extracts (chloroform, ethyl acetate, and methanol) against human pathogenic bacteria and their antioxidant activity. The GC-MS analysis identified 23 components, accounting for 98.7% of the total oil containing Methylene chloride (49.2%), sabinene (10.5%), 1-nonene (11.3%), Terpinen-4-ol (6.9%), Camphene (4.3%), γ-terpinene (3.6%), α-phellandrene (2.9%) β-myrcene (2.6%), 1,2,5-Oxadiazol-3-carboxamide, 4,4′-azobis-2,2′-dioxide (2.4%), α-terpinene (1.9%), 1-Octanamine, N-methyl- (1.9%), ρ-cymene (1.6%) as major components. The antibacterial efficacy of the EO and extracts (25, 50, 100, and 200 mg/ml) was demonstrated by the inhibitory zones (8.5 ± 0.47–23.3 ± 0.36 and 7.2 ± 0.25–22.0 ± 0.45 mm), respectively. The MIC values of the extracts and the EO were 120–150 and 240 to <1100 μg/ml, respectively. The EO also demonstrated a significant antibacterial impact. The EO and methanolic extract had free radical scavenging activities with IC50 value, 13.8 ± 0.48 and 4.2 ± 0.04 μg/ml, respectively. In comparison to the other extracts, the methanolic extract had the greatest phenolics (100.2 ± 0.13 μg GAE/mg of dry extract) and flavonoid contents (112.1 ± 0.18 μg CE/mg of dry extract).
Collapse
|
23
|
Alahmad A, Al-Zereini WA, Hijazin TJ, Al-Madanat OY, Alghoraibi I, Al-Qaralleh O, Al-Qaraleh S, Feldhoff A, Walter JG, Scheper T. Green Synthesis of Silver Nanoparticles Using Hypericum perforatum L. Aqueous Extract with the Evaluation of Its Antibacterial Activity against Clinical and Food Pathogens. Pharmaceutics 2022; 14:pharmaceutics14051104. [PMID: 35631691 PMCID: PMC9144328 DOI: 10.3390/pharmaceutics14051104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The rapid development of nanotechnology and its applications in medicine has provided the perfect solution against a wide range of different microbes, especially antibiotic-resistant ones. In this study, a one-step approach was used in preparing silver nanoparticles (AgNPs) by mixing silver nitrate with hot Hypericum perforatum (St. John’s wort) aqueous extract under high stirring to prevent agglomeration. The formation of silver nanoparticles was monitored by continuous measurement of the surface plasma resonance spectra (UV-VIS). The effect of St. John’s wort aqueous extract on the formation of silver nanoparticles was evaluated and fully characterized by using different physicochemical techniques. The obtained silver nanoparticles were spherical, monodisperse, face-centered cubic (fcc) crystal structures, and the size ranges between 20 to 40 nm. They were covered with a capping layer of organic compounds considered as a nano dimension protective layer that prevents agglomeration and sedimentation. AgNPs revealed antibacterial activity against both tested Gram-positive and Gram-negative bacterial strains causing the formation of 13–32 mm inhibition zones with MIC 6.25–12.5 µg/mL; Escherichia coli strains were resistant to tested AgNPs. The specific growth rate of S. aureus was significantly reduced due to tested AgNPs at concentrations ≥½ MIC. AgNPs did not affect wound migration in fibroblast cell lines compared to control. Our results highlighted the potential use of AgNPs capped with plant extracts in the pharmaceutical and food industries to control bacterial pathogens’ growth; however, further studies are required to confirm their wound healing capability and their health impact must be critically evaluated.
Collapse
Affiliation(s)
- Abdalrahim Alahmad
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Wael A. Al-Zereini
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Tahani J. Hijazin
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
| | - Osama Y. Al-Madanat
- Department of Chemistry, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan
- Correspondence: or (A.A.); (W.A.A.-Z.); (O.Y.A.-M.); Tel.: +49-511-7622773 (A.A.); +962-3-2372380 (W.A.A.-Z. & O.Y.A.-M.)
| | - Ibrahim Alghoraibi
- Physics Department, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria;
| | - Omar Al-Qaralleh
- Department of Biological Sciences, Faculty of Scince, Mutah University, P.O. Box 7, Mutah 61710, Jordan; (T.J.H.); (O.A.-Q.)
| | - Samer Al-Qaraleh
- Faculty of Medicine, Mutah University, P.O. Box 7, Mutah 61710, Jordan;
| | - Armin Feldhoff
- Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannove, Callinstraße 3A, 30167 Hannover, Germany;
| | - Johanna-Gabriela Walter
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
| | - Thomas Scheper
- Institut für Technische Chemie, Leibniz Universität Hannove, Callinstraße 5, 30167 Hannover, Germany; (J.-G.W.); (T.S.)
| |
Collapse
|