1
|
Maiorova LA, Gromova OA, Torshin IY, Bukreeva TV, Pallaeva TN, Nabatov BV, Dereven'kov IA, Bobrov YA, Bykov AA, Demidov VI, Kalacheva AG, Bogacheva TE, Grishina TR, Nikolskaya ED, Yabbarov NG. Nanoparticles of nucleotide-free analogue of vitamin B 12 formed in protein nanocarriers and their neuroprotective activity in vivo. Colloids Surf B Biointerfaces 2024; 244:114165. [PMID: 39217725 DOI: 10.1016/j.colsurfb.2024.114165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Recently, we have described the first supermolecular nanoentities of vitamin B12 derivative, viz. monocyano form of heptabutyl cobyrinate, unique nanoparticles with strong noncovalent intermolecular interactions, emerging optical and catalytic properties. Their nearest analogue, heptamethyl cobyrinate (ACCby), exhibits bioactivity. Here, we demonstrate the first example of the formation of nanoparticles of this nucleotide-free analogue of vitamin B12 in protein nanocarriers and neuroprotective activity in vivo of the own nanoform of the drug. The preparation and characterization of nanocarriers based on bovine serum albumin (BSA) loaded with vitamin B12 (viz. cyano- and aquacobalamins) and ACCby were performed. Nucleotide-free analogue of vitamin B12 is tightly retained by the protein structure and exists in an incorporated state in the form of nanoparticles. The effect of encapsulated drugs on the character and severity of primary generalized seizures in rats induced by the pharmacotoxicant thiosemicarbazide was studied. Cyanocobalamin and ACCby exhibited a neuroprotective effect. The best influence of the encapsulation on the effectiveness of the drugs was achieved in the case of AСCby, whose bioavailability as a neuroprotector did not change upon introduction in BSA particles, i.e., 33 % of surviving animals were observed upon ACCby administration in free form and in encapsulated state. No surviving rats were observed without the administration of drugs. Thus, BSA nanocarriers loaded by nanoparticles of nucleotide-free analogues of vitamin B12, including hydrophobic ones, can be recommended for neuroprotection and targeted delivery.
Collapse
Affiliation(s)
- Larissa A Maiorova
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia; Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia.
| | - Olga A Gromova
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
| | - Ivan Yu Torshin
- Federal Research Center Computer Science and Control of Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Bukreeva
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Tatiana N Pallaeva
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Boris V Nabatov
- Kurchatov Complex Crystallography and Photonics, National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Ilia A Dereven'kov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Ivanovo, Russia
| | | | | | - Vadim I Demidov
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Alla G Kalacheva
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Tatiana E Bogacheva
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Tatiana R Grishina
- Ivanovo State Medical University, Ministry of Health of Russia, Ivanovo, Russia
| | - Elena D Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina Street, Moscow, Russia
| | - Nikita G Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4 Kosygina Street, Moscow, Russia
| |
Collapse
|
2
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
3
|
Lacombe V, Lenaers G, Urbanski G. Diagnostic and Therapeutic Perspectives Associated to Cobalamin-Dependent Metabolism and Transcobalamins' Synthesis in Solid Cancers. Nutrients 2022; 14:2058. [PMID: 35631199 PMCID: PMC9145230 DOI: 10.3390/nu14102058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cobalamin or vitamin B12 (B12) is a cofactor for methionine synthase and methylmalonyl-CoA mutase, two enzymes implicated in key pathways for cell proliferation: methylation, purine synthesis, succinylation and ATP production. Ensuring these functions in cancer cells therefore requires important cobalamin needs and its uptake through the transcobalamin II receptor (TCII-R). Thus, both the TCII-R and the cobalamin-dependent metabolic pathways constitute promising therapeutic targets to inhibit cancer development. However, the link between cobalamin and solid cancers is not limited to cellular metabolism, as it also involves the circulating transcobalamins I and II (TCI or haptocorrin and TCII) carrier proteins, encoded by TCN1 and TCN2, respectively. In this respect, elevations of B12, TCI and TCII concentrations in plasma are associated with cancer onset and relapse, and with the presence of metastases and worse prognosis. In addition, TCN1 and TCN2 overexpressions are associated with chemoresistance and a proliferative phenotype, respectively. Here we review the involvement of cobalamin and transcobalamins in cancer diagnosis and prognosis, and as potential therapeutic targets. We further detail the relationship between cobalamin-dependent metabolic pathways in cancer cells and the transcobalamins' abundancies in plasma and tumors, to ultimately hypothesize screening and therapeutic strategies linking these aspects.
Collapse
Affiliation(s)
- Valentin Lacombe
- MitoLab Team, MitoVasc Institut, CNRS UMR6015, INSERM U1083, Angers University, 49000 Angers, France; (G.L.); (G.U.)
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 49000 Angers, France
| | - Guy Lenaers
- MitoLab Team, MitoVasc Institut, CNRS UMR6015, INSERM U1083, Angers University, 49000 Angers, France; (G.L.); (G.U.)
- Department of Neurology, Angers University Hospital, 49000 Angers, France
| | - Geoffrey Urbanski
- MitoLab Team, MitoVasc Institut, CNRS UMR6015, INSERM U1083, Angers University, 49000 Angers, France; (G.L.); (G.U.)
- Department of Internal Medicine and Clinical Immunology, Angers University Hospital, 49000 Angers, France
| |
Collapse
|
4
|
Borner T, Tinsley IC, Doyle RP, Hayes MR, De Jonghe BC. GLP-1 in diabetes care: Can glycemic control be achieved without nausea and vomiting? Br J Pharmacol 2021; 179:542-556. [PMID: 34363224 PMCID: PMC8810668 DOI: 10.1111/bph.15647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/28/2022] Open
Abstract
Introduced less than two decades ago, glucagon-like peptide-1 receptor agonists (GLP-1RAs) rapidly re-shaped the field of type 2 diabetes (T2DM) care by providing glycemic control in tandem with weight loss. However, FDA-approved GLP-1RAs are often accompanied by nausea and emesis, and in some lean T2DM patients, by undesired anorexia. Importantly, the hypophagic and emetic effects of GLP-1RAs are caused by central GLP-1R activation. This review summarizes two different approaches to mitigate the incidence/severity of nausea and emesis related to GLP-1RAs: conjugation with vitamin B12, or related corrin-ring containing compounds ("corrination"), and development of dual-agonists of the GLP-1R with glucose dependent-insulinotropic polypeptide (GIP). Such approaches could lead to the generation of GLP-1RAs with improved therapeutic efficacy thus, decreasing treatment attrition, increasing patient compliance, and extending treatment to a broader population of T2DM patients. The data reviewed show that it is possible to pharmacologically separate emetic effects of GLP-1RAs from glucoregulatory action.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, New York, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, United States.,Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, United States
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, United States.,Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Hernández-Romero D, Rosete-Luna S, López-Monteon A, Chávez-Piña A, Pérez-Hernández N, Marroquín-Flores J, Cruz-Navarro A, Pesado-Gómez G, Morales-Morales D, Colorado-Peralta R. First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213930] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Borner T, Workinger JL, Tinsley IC, Fortin SM, Stein LM, Chepurny OG, Holz GG, Wierzba AJ, Gryko D, Nexø E, Shaulson ED, Bamezai A, Da Silva VAR, De Jonghe BC, Hayes MR, Doyle RP. Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis. Cell Rep 2021; 31:107768. [PMID: 32553160 PMCID: PMC7376604 DOI: 10.1016/j.celrep.2020.107768] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/10/2019] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat type 2 diabetes mellitus often produce nausea, vomiting, and in some patients, undesired anorexia. Notably, these behavioral effects are caused by direct central GLP-1R activation. Herein, we describe the creation of a GLP-1R agonist conjugate with modified brain penetrance that enhances GLP-1R-mediated glycemic control without inducing vomiting. Covalent attachment of the GLP-1R agonist exendin-4 (Ex4) to dicyanocobinamide (Cbi), a corrin ring containing precursor of vitamin B12, produces a "corrinated" Ex4 construct (Cbi-Ex4). Data collected in the musk shrew (Suncus murinus), an emetic mammal, reveal beneficial effects of Cbi-Ex4 relative to Ex4, as evidenced by improvements in glycemic responses in glucose tolerance tests and a profound reduction of emetic events. Our findings highlight the potential for clinical use of Cbi-Ex4 for millions of patients seeking improved glycemic control without common side effects (e.g., emesis) characteristic of current GLP-1 therapeutics.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Samantha M Fortin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren M Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg G Chepurny
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | - George G Holz
- Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA
| | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Ebba Nexø
- Department of Clinical Biochemistry and Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Evan D Shaulson
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ankur Bamezai
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina A Rodriguez Da Silva
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY, USA; Department of Medicine, Upstate Medical University, State University of New York, Syracuse, NY, USA.
| |
Collapse
|
7
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
8
|
The avian retroviral receptor Tva mediates the uptake of transcobalamin bound vitamin B12 (cobalamin). J Virol 2021; 95:JVI.02136-20. [PMID: 33504597 PMCID: PMC8103681 DOI: 10.1128/jvi.02136-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Avian sarcoma and leukosis viruses (ASLVs) are important chicken pathogens. Some of the virus subgroups, including ASLV-A and K, utilize the Tva receptor for cell entrance. Though Tva was identified three decades ago, its physiological function remains unknown. Previously, we have noted an intriguing resemblance and orthology between the chicken gene coding for Tva and the human gene coding for CD320, a receptor involved in cellular uptake of transcobalamin (TC) in complex with vitamin B12/cobalamin (Cbl).Here we show that both the transmembrane and the glycosylphosphatidylinositol (GPI)-anchored form of Tva in the chicken cell line DF-1 promotes the uptake of Cbl with help of expressed and purified chicken TC. The uptake of TC-Cbl complex was monitored using an isotope- or fluorophore-labeled Cbl. We show that (i) TC-Cbl is internalized in chicken cells; and (ii) the uptake is lower in the Tva-knockout cells and higher in Tva-overexpressing cells when compared with wild type chicken cells. The relation between physiological function of Tva and its role in infection was elaborated by showing that infection with ASLV subgroups (targeting Tva) impairs the uptake of TC-Cbl, while this is not the case for cells infected with ASLV-B (not recognized by Tva). In addition, exposure of the cells to a high concentration of TC-Cbl alleviates the infection with Tva-dependent ASLV.IMPORTANCE: We demonstrate that the ASLV receptor Tva participates in the physiological uptake of TC-Cbl, because the viral infection suppresses the uptake of Cbl and vice versa. Our results pave the road for future studies addressing the issues: (i) whether a virus infection can be inhibited by TC-Cbl complexes in vivo; and (ii) whether any human virus employs the human TC-Cbl receptor CD320. In broader terms, our study sheds light on the intricate interplay between physiological roles of cellular receptors and their involvement in virus infection.
Collapse
|
9
|
Systemically Administered Plant Recombinant Holo-Intrinsic Factor Targets the Liver and is not Affected by Endogenous B12 levels. Sci Rep 2019; 9:12269. [PMID: 31439908 PMCID: PMC6706418 DOI: 10.1038/s41598-019-48555-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Precision targeting imaging agents and/or treatment agents to select cells or organs in the body remains a significant need and is an area of intense research. It has been hypothesized that the vitamin B12 (B12) dietary pathway, or components thereof, may be exploitable in this area. The question of whether gastric Intrinsic factor (IF), critical for B12 absorption in the GI tract via the cubilin receptor, could be used as a targeting moiety for the cubilin receptor systemically, has not been investigated. Cubilin is the only known receptor for holo-IF and is found primarily in the kidney and ear (outside of the ileum of the GI) offering significant scope for specific targeting. We utilized plant derived human gastric IF in fluorescent cell and PET based in vivo imaging and biodistribution studies and demonstrated that plant derived IF primarily targets the liver, likely a consequence of the unique glycosylation profile of the IF, and is not affected by endogenous B12 levels.
Collapse
|
10
|
The Continuing Evolution of Molecular Functional Imaging in Clinical Oncology: The Road to Precision Medicine and Radiogenomics (Part I). Mol Diagn Ther 2019; 23:1-26. [PMID: 30411216 DOI: 10.1007/s40291-018-0366-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present era of precision medicine sees 'cancer' as a consequence of molecular derangements occurring at the commencement of the disease process, with morphologic changes happening much later in the process of tumorigenesis. Conventional imaging techniques, such as computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI), play an integral role in the detection of disease at a macroscopic level. However, molecular functional imaging (MFI) techniques entail the visualisation and quantification of biochemical and physiological processes occurring during tumorigenesis, and thus has the potential to play a key role in heralding the transition from the concept of 'one size fits all' to 'precision medicine'. Integration of MFI with other fields of tumour biology such as genomics has spawned a novel concept called 'radiogenomics', which could serve as an indispensable tool in translational cancer research. With recent advances in medical image processing, such as texture analysis, deep learning, and artificial intelligence (AI), the future seems promising; however, their clinical utility remains unproven at present. Despite the emergence of novel imaging biomarkers, a majority of these require validation before clinical translation is possible. In this two-part review, we discuss the systematic collaboration across structural, anatomical, and molecular imaging techniques that constitute MFI. Part I reviews positron emission tomography, radiogenomics, AI, and optical imaging, while part II reviews MRI, CT and ultrasound, their current status, and recent advances in the field of precision oncology.
Collapse
|
11
|
Guo W, Deng L, Chen Z, Chen Z, Yu J, Liu H, Li T, Lin T, Chen H, Zhao M, Zhang L, Li G, Hu Y. Vitamin B12-conjugated sericin micelles for targeting CD320-overexpressed gastric cancer and reversing drug resistance. Nanomedicine (Lond) 2019; 14:353-370. [PMID: 30328369 DOI: 10.2217/nnm-2018-0321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Lizhi Deng
- PCFM Lab & GDHPPC Lab, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhaoyu Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhian Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Tian Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Mingli Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Liming Zhang
- PCFM Lab & GDHPPC Lab, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
12
|
Affiliation(s)
- Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sidra Hassan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
13
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
14
|
Zelder F. Modified vitamin B12 derivatives with a peptide backbone for biomimetic studies and medicinal applications. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s108842461830001x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This short review highlights the author’s group research on modified vitamin B[Formula: see text] derivatives with a peptide backbone as (1) inhibitors of B[Formula: see text]-dependent enzymes and as (2) models of cofactor B[Formula: see text]-protein complexes.
Collapse
Affiliation(s)
- Felix Zelder
- Department of Chemistry, University of Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
PURPOSE To image the uptake of cobalamin (Cbl) within malignant breast tumors in vivo. PROCEDURES Prior to surgery 20 female patients with clinically suspected breast tumors were intravenously administered 0.25 μg of an In-111 labeled 5-deoxyadenosylcobalamin (AC) analog ([111In]AC) and sequentially imaged with whole-body planar (WBP) and single-photon emission computed tomography (SPECT) between 2-5 h and 20-24 h post-injection (P.I.). The tumor to background (T/B) ratio for [111In]AC in breast tumors at 2-5 h was correlated to its expression of estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER2) receptors. Subsequent pulse chase (PC) experiments in nude mice burdened with the MDA-MB-231 triple-negative (TN) breast tumor xenograft measured the effect that pulses of AC or dexamethasone (DEX) had on [111In]AC uptake in both normal murine tissue and the TN breast tumor. RESULTS The mean [111In]AC T/B ratio of the patients' 18 resected tumors was 5.8. Comparing ER- and PR-positive tumors (n = 11) to TN and HER2-positive tumors (n = 7), the mean [111In]AC T/B ratios at 2-5 h P.I. were 3.2 (range 1.8-5.6) and 10.4 (range 3.3-22.5), respectively. Pulses of 2.0 μg of AC at 2, 8, or 24 h; or 40.0 μg of DEX at 24 h prior to injecting 0.5 μg of [111In]AC, increased mean tracer uptake in the MDA-MB-231 tumors by 26.4, 71.5, 92.6, and 49.1 %, respectively. Only the 2- and 24-h PC intervals concomitantly suppressed [111In]AC uptake in normal murine tissue while enhancing [111In]AC uptake in MDA-MB-231 tumors. CONCLUSION The uptake of Cbl within malignant breast tumors can be imaged clinically. Cbl uptake is greatest in TN and HER2-positive breast tumors. A solitary bolus of AC or DEX increases the [111In]AC uptake within a breast tumor in vivo. Investigating the cytogenetic mechanisms controlling the endocytosis of Cbl in malignant breast tumors is warranted.
Collapse
|
16
|
Mietlicki-Baase EG, Liberini CG, Workinger JL, Bonaccorso RL, Borner T, Reiner DJ, Koch-Laskowski K, McGrath LE, Lhamo R, Stein LM, De Jonghe BC, Holz GG, Roth CL, Doyle RP, Hayes MR. A vitamin B12 conjugate of exendin-4 improves glucose tolerance without associated nausea or hypophagia in rodents. Diabetes Obes Metab 2018; 20:1223-1234. [PMID: 29327400 PMCID: PMC5899935 DOI: 10.1111/dom.13222] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
AIMS While pharmacological glucagon-like peptide-1 receptor (GLP-1R) agonists are FDA-approved for treating type 2 diabetes mellitus (T2DM) and obesity, a major side effect is nausea/malaise. We recently developed a conjugate of vitamin B12 (B12) bound to the GLP-1R agonist exendin-4 (Ex4), which displays enhanced proteolytic stability and retention of GLP-1R agonism. Here, we evaluate whether the conjugate (B12-Ex4) can improve glucose tolerance without producing anorexia and malaise. MATERIALS AND METHODS We evaluated the effects of systemic B12-Ex4 and unconjugated Ex4 on food intake and body weight change, oral glucose tolerance and nausea/malaise in male rats, and on intraperitoneal glucose tolerance in mice. To evaluate whether differences in the profile of effects of B12-Ex4 vs unconjugated Ex4 are the result of altered CNS penetrance, rats received systemic injections of fluorescein-Ex4 (Flex), Cy5-B12 or Cy5-B12-Ex4 and brain penetrance was evaluated using confocal microscopy. Uptake of systemically administered Cy5-B12-Ex4 in insulin-containing pancreatic beta cells was also examined. RESULTS B12-Ex4 conjugate improves glucose tolerance, but does not elicit the malaise and anorexia produced by unconjugated Ex4. While Flex robustly penetrates into the brain (dorsal vagal complex, paraventricular hypothalamus), Cy5-B12 and Cy5-B12-Ex4 fluorescence were not observed centrally, supporting an absence of CNS penetrance, in line with observed reduction in CNS-associated Ex4 side effects. Cy5-B12-Ex4 colocalizes with insulin in the pancreas, suggesting direct pancreatic action as a potential mechanism underlying the hypoglycaemic effects of B12-Ex4. CONCLUSION These novel findings highlight the potential clinical utility of B12-Ex4 conjugates as possible future T2DM therapeutics with reduced incidence of adverse effects.
Collapse
Affiliation(s)
| | - Claudia G. Liberini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - David J. Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kieran Koch-Laskowski
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren E. McGrath
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rinzin Lhamo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lauren M. Stein
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Bart C. De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - George G. Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210
| | - Christian L. Roth
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA
| | - Robert P. Doyle
- Department of Chemistry, Syracuse University, Syracuse, NY 13244
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210
- Address correspondence to: Dr. Matthew R. Hayes, University of Pennsylvania, 125 South 31 St., Philadelphia, PA 19104, 215-573-6070, ; Dr. Robert P. Doyle, Syracuse University, 111 College Place, Syracuse, NY 13244, 315-443-3584,
| | - Matthew R. Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
- Address correspondence to: Dr. Matthew R. Hayes, University of Pennsylvania, 125 South 31 St., Philadelphia, PA 19104, 215-573-6070, ; Dr. Robert P. Doyle, Syracuse University, 111 College Place, Syracuse, NY 13244, 315-443-3584,
| |
Collapse
|