1
|
Delgado-Corrales BJ, Chopra V, Chauhan G. Gold nanostars and nanourchins for enhanced photothermal therapy, bioimaging, and theranostics. J Mater Chem B 2025; 13:399-428. [PMID: 39575861 DOI: 10.1039/d4tb01420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Photothermal therapy (PTT), a recently emerging method for eradicating tumors, utilizes hyperthermia induced by photo-absorbing materials to generate heat within cancer cells. Gold nanoparticles (AuNPs) have gained reliability for in vitro and in vivo applications in PTT due to their strong light absorbance, stability, and biocompatibility. Yet, their potential is limited by their spherical shape, impacting their size capabilities, electromagnetic enhancement effects, and localized surface plasmon resonance (LSPR). Anisotropic shapes have been tested and implemented in this treatment to overcome the limitations of spherical AuNPs. Nanostars (AuNSs) and nanourchins (AuNUs) offer unique properties, such as increased local electron density, improved catalytic activity, and an enhanced electromagnetic field, which have proven to be effective in PTT. Additionally, these shapes can easily reach the NIR-I and NIR-II window while exhibiting improved biological properties, including low cytotoxicity and high cellular uptake. This work covers the critical characteristics of AuNS and AuNUs, highlighting rough surface photothermal conversion enhancement, significantly impacting recent PTT and its synergy with other treatments. Additionally, the bioimaging and theranostic applications of these nanomaterials are discussed, highlighting their multifaceted utility in advanced cancer therapies.
Collapse
Affiliation(s)
- Beverly Jazmine Delgado-Corrales
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Vianni Chopra
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico.
| |
Collapse
|
2
|
Peng J, Song Y, Lin Y, Huang Z. Introduction and Development of Surface-Enhanced Raman Scattering (SERS) Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1648. [PMID: 39452983 PMCID: PMC11510290 DOI: 10.3390/nano14201648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Since its discovery, the phenomenon of Surface Enhanced Raman Scattering (SERS) has gradually become an important tool for analyzing the composition and structure of substances. As a trace technique that can efficiently and nondestructively detect single molecules, the application of SERS has expanded from environmental and materials science to biomedical fields. In the past decade or so, the explosive development of nanotechnology and nanomaterials has further boosted the research of SERS technology, as nanomaterial-based SERS substrates have shown good signal enhancement properties. So far, it is widely recognized that the morphology, size, composition, and stacking mode of nanomaterials have a very great influence on the strength of the substrate SERS effect. Herein, an overview of methods for the preparation of surface-enhanced Raman scattering (SERS) substrates is provided. Specifically, this review describes a variety of common SERS substrate preparation methods and explores the potential and promise of these methods for applications in chemical analysis and biomedical fields. By detailing the influence of different nanomaterials (e.g., metallic nanoparticles, nanowires, and nanostars) and their structural features on the SERS effect, this article aims to provide a comprehensive understanding of SERS substrate preparation techniques.
Collapse
Affiliation(s)
- Jianping Peng
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yutao Song
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Yue Lin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (Y.S.); (Y.L.)
| | - Zhenkai Huang
- School of Materials and Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
3
|
Aligholizadeh D, Johnson M, Hondrogiannis E, Devadas MS. Detection with NO Modification: (N═O)-Au Interactions for Instantaneous Label-Free Detection of N-Nitrosodiphenylamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7405-7411. [PMID: 38551809 DOI: 10.1021/acs.langmuir.3c03739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Increasing concerns have been raised about dangerous, yet nearly undetectable levels of nitrosamines in foods, medications, and drinking water. Their ubiquitous presence and carcinogenicity necessitates a method of sensitive and selective detection of these potent toxins. While the detection of two major nitrosamines─N-nitrosodimethylamine and N-nitrosodiethylamine─has seen success, low detection limits are scarcer for the other members of this class. One member, N-nitrosodiphenylamine (NDPhA), has had little progress not only in its detection in low quantities but also in its detection at all. NDPhA has unique difficulty in its identification due to its aromaticity, making it far more problematic to distinguish in the common GC-MS or LC-MS/MS methods used for nitrosamine sensing. Despite this detection barrier, it has been listed among the top 6 carcinogenic nitrosamines by the Food and Drug Administration as of 2023. Due to its evasive nature, a unique methodology must be applied to facilitate its sensitive identification. Herein, we describe the use of surface-enhanced Raman spectroscopy for the first account of liquid-phase detection of NDPhA using cysteamine-functionalized gold nanostars and a portable Raman spectrometer. Our methodology requires no chemical modification to the nitrosated structure as well as the usage of two well-understood biocompatible materials: cysteamine and gold nanoparticles.
Collapse
Affiliation(s)
| | - Mansoor Johnson
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Ellen Hondrogiannis
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Mary Sajini Devadas
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
4
|
Canning AJ, Vo-Dinh T. Caged gold nanostars: a novel plasmonic nanoplatform with potential theranostic applications. NANOSCALE 2024. [PMID: 38572521 DOI: 10.1039/d3nr04130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Here, we first introduce caged gold nanostars (C-GNS), a novel hybrid nanoplatform combining the exceptional plasmonic properties of nanostars with the loading capability of hollow-shell structures. We present two synthetic routes used to produce C-GNS particles and highlight the benefits of the galvanic replacement-free approach. FEM simulations explore the enhanced plasmonic properties of this novel nanoparticle morphology. Finally, in a proof-of-concept study, we successfully demonstrate in vivo hyperspectral imaging and photothermal treatment of tumors in a mouse model with the C-GNS nanoplatform.
Collapse
Affiliation(s)
- Aidan J Canning
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
5
|
Hang Y, Wang A, Wu N. Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy. Chem Soc Rev 2024; 53:2932-2971. [PMID: 38380656 DOI: 10.1039/d3cs00793f] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Silver and gold nanoparticles have found extensive biomedical applications due to their strong localized surface plasmon resonance (LSPR) and intriguing plasmonic properties. This review article focuses on the correlation among particle geometry, plasmon properties and biomedical applications. It discusses how particle shape and size are tailored via controllable synthetic approaches, and how plasmonic properties are tuned by particle shape and size, which are embodied by nanospheres, nanorods, nanocubes, nanocages, nanostars and core-shell composites. This article summarizes the design strategies for the use of silver and gold nanoparticles in plasmon-enhanced fluorescence, surface-enhanced Raman scattering (SERS), electroluminescence, and photoelectrochemistry. It especially discusses how to use plasmonic nanoparticles to construct optical probes including colorimetric, SERS and plasmonic fluorescence probes (labels/reporters). It also demonstrates the employment of Ag and Au nanoparticles in polymer- and paper-based microfluidic devices for point-of-care testing (POCT). In addition, this article highlights how to utilize plasmonic nanoparticles for in vitro and in vivo bio-imaging based on SERS, fluorescence, photoacoustic and dark-field models. Finally, this article shows perspectives in plasmon-enhanced photothermal and photodynamic therapy.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Anyang Wang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
6
|
Michałowska A, Kudelski A. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123786. [PMID: 38128327 DOI: 10.1016/j.saa.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Due to its great practical importance, the detection and determination of many biomolecules in body fluids and other samples is carried out in a large number of laboratories around the world. One of the most promising analytical techniques now being widely introduced into medical analysis is surface-enhanced Raman scattering (SERS) spectroscopy. SERS is one of the most sensitive analytical methods, and in some cases, a good quality SERS spectrum dominated by the contribution of even a single molecule can be obtained. Highly sensitive SERS measurements can only be carried out on substrates generating a very high SERS enhancement factor and a low Raman spectral background, and so using of right nanomaterials is a key element in the success of SERS biochemical analysis. In this review article, we present progress that has been made in the preparation of nanomaterials used in SERS spectroscopy for detecting various kinds of biomolecules. We describe four groups of nanomaterials used in such measurements: nanoparticles of plasmonic metals and deposits of plasmonic nanoparticles on macroscopic substrates, nanocomposites containing plasmonic and non-plasmonic parts, nanostructured macroscopic plasmonic metals, and nanostructured macroscopic non-plasmonic materials covered by plasmonic films. We also describe selected SERS biochemical analyses that utilize the nanomaterials presented. We hope that this review will be useful for researchers starting work in this fascinating field of science and technology.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Butler M, Hrncirova J, Clark M, Dutta S, Cooper JB. Quantification of Antiviral Drug Tenofovir (TFV) by Surface-Enhanced Raman Spectroscopy (SERS) Using Cumulative Distribution Functions (CDFs). ACS OMEGA 2024; 9:1310-1319. [PMID: 38222633 PMCID: PMC10785616 DOI: 10.1021/acsomega.3c07641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive spectroscopic technique that generates signal-enhanced fingerprint vibrational spectra of small molecules. However, without rigorous control of SERS substrate active sites, geometry, surface area, or surface functionality, SERS is notoriously irreproducible, complicating the consistent quantitative analysis of small molecules. While evaporatively prepared samples yield significant SERS enhancement resulting in lower detection limits, the distribution of these enhancements along the SERS surface is inherently stochastic. Acquiring spatially resolved SERS spectra of these dried surfaces, we have shown that this enhancement is governed by a power law as a function of analyte concentration. Consequently, by definition, there is no true mean of SERS enhancement, requiring an alternative approach to achieve reproducible quantitative results. In this study, we introduce a new method of analysis of SERS data using a cumulative distribution function (CDF). The antiviral drug tenofovir (TFV) in an aqueous matrix was quantified down to a clinically relevant concentration of 25 ng/mL using hydroxylamine-reduced silver colloids evaporated to dryness. The data presented in this study provide a rationale for the benefits of combining a novel statistical approach using CDFs with simple and inexpensive experimental techniques to increase the precision, accuracy, and analytical sensitivity of aqueous TFV quantification by SERS. TFV calibration curves generated using CDF analysis showed higher analytical sensitivity (in the form of a normalized calibration curve average slope increase of 0.25) compared to traditional SERS intensity calculations. A second aliquot of nanoparticles and analyte dried on the SERS surface followed by CDF analysis showed further analytical sensitivity with a normalized calibration curve slope increase of 0.23 and decreased variation among replicates represented by an average standard deviation decrease of 0.02 with a second aliquot. The quantitative analysis of SERS data using CDFs presented here shows promise to be a reproducible method for quantitative analysis of SERS data, a significant step toward implementing SERS as an analytical method in clinical and industrial settings.
Collapse
Affiliation(s)
- Marguerite
R. Butler
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Jana Hrncirova
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
- Department
of Physical and Macromolecular Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic
| | - Meredith Clark
- Department
of Obstetrics and Gynecology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - Sucharita Dutta
- Department
of Obstetrics and Gynecology, Eastern Virginia
Medical School, Norfolk, Virginia 23507, United States
| | - John B. Cooper
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| |
Collapse
|
8
|
Jia J, Metzkow N, Park SM, Wu YL, Sample AD, Diloknawarit B, Jung I, Odom TW. Spike Growth on Patterned Gold Nanoparticle Scaffolds. NANO LETTERS 2023. [PMID: 38048438 DOI: 10.1021/acs.nanolett.3c03778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
This work reports a scaffold-templated, bottom-up synthesis of 3D anisotropic nanofeatures on periodic arrays of gold nanoparticles (AuNPs). Our method relies on substrate-bound AuNPs as large seeds with hemispherical shapes and smooth surfaces after the thermal annealing of as-fabricated particles. Spiky features were grown by immersing the patterned AuNPs into a growth solution consisting of a gold salt and Good's buffer; the number and length of spikes could be tuned by changing the solution pH and buffer concentration. Intermediate structures that informed the growth mechanism were characterized as a function of time by correlating the optical properties and spike features. Large-area (cm2) spiky AuNP arrays exhibited surface-enhanced Raman spectroscopy enhancement that was associated with increased numbers of high-aspect-ratio spikes formed on the AuNP seeds.
Collapse
Affiliation(s)
- Jin Jia
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nadia Metzkow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sang-Min Park
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuhao Leo Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander D Sample
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bundit Diloknawarit
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Insub Jung
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Van Vu S, Nguyen AT, Cao Tran AT, Thi Le VH, Lo TNH, Ho TH, Pham NNT, Park I, Vo KQ. Differences between surfactant-free Au@Ag and CTAB-stabilized Au@Ag star-like nanoparticles in the preparation of nanoarrays to improve their surface-enhanced Raman scattering (SERS) performance. NANOSCALE ADVANCES 2023; 5:5543-5561. [PMID: 37822906 PMCID: PMC10563836 DOI: 10.1039/d3na00483j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
In this study, we assessed the controlled synthesis and efficacy of surface-enhanced Raman scattering (SERS) on two distinct types of star-like Au@Ag core-shell nanoarrays. These nanoarrays were designed based on gold nanostars (AuNSs), which were synthesized with and without CTAB surfactant (AuNSs-CTAB and AuNSs-FS, respectively). The AuNS-FS nanoparticles were synthesized via a novel modification process, which helped overcome the previous limitations in the free-surfactant preparation of AuNSs by significantly increasing the number of branches, increasing the sharpness of the branches and minimizing the adsorption of the surfactant on the surface of AuNSs. Furthermore, the differences in the size and morphology of these AuNSs in the created nanoarrays were studied. To create the nanoarrays, a three-step method was employed, which involved the controlled synthesis of gold nanostars, covering them with a silver layer (AuNSs-FS@Ag and AuNSs-CTAB@Ag), and finally self-assembling the AuNS@Ag core-shelled nanoparticles via the liquid/liquid self-assembly method. AuNSs-FS@Ag showed higher ability in forming self-assembled nanoarrays than the nanoparticles prepared using CTAB, which can be attributed to the decrease in the repulsion between the nanoparticles at the interface. The nano-substrates developed with AuNSs-FS@Ag possessed numerous "hot spots" on their surface, resulting in a highly effective SERS performance. AuNSs-FS featured a significantly higher number of sharp branches than AuNSs-CTAB, making it the better choice for creating nanoarrays. It is worth mentioning that AuNSs-CTAB did not exhibit the same benefits as AuNSs-FS. The morphology of AuNSs with numerous branches was formed by controlling the seed boiling temperature and adding a specific amount of silver ions. To compare the SERS activity between the as-prepared nano-substrates, i.e., AuNS-CTAB@Ag and AuNS-FS@Ag self-assembled nanoarrays, low concentrations of crystal violet aqueous solution were characterized. The results showed that the developed AuNSs-FS@Ag could detect CV at trace concentrations ranging from 1.0 ng mL-1 to 10 ng mL-1 with a limit of detection (LOD) of 0.45 ng mL-1 and limit of quantification (LOQ) of 1.38 ng mL-1. The nano-substrates remained stable for 42 days with a decrease in the intensity of the characteristic Raman peaks of CV by less than 7.0% after storage. Furthermore, the spiking method could detect trace amounts of CV in natural water from the Dong Nai River with concentrations as low as 1 to 100 ng mL-1, with an LOD of 6.07 ng mL-1 and LOQ of 18.4 ng mL-1. This method also displayed good reproducibility with an RSD value of 5.71%. To better understand the impact of CTAB stabilization of the Au@Ag star-like nanoparticles on their surface-enhanced Raman scattering (SERS) performance, we conducted density functional theory (DFT) calculations. Our research showed that the preparation of AuNSs-FS@Ag via self-assembly is an efficient, simple, and fast process, which can be easily performed in any laboratory. Furthermore, the research and development results presented herein on nanoarrays have potential application in analyzing and determining trace amounts of organic compounds in textile dyeing wastewater.
Collapse
Affiliation(s)
- Sy Van Vu
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh-Thu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Anh-Thi Cao Tran
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Viet-Ha Thi Le
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - Tien Nu Hoang Lo
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH) 89 Yangdaegiro-gil, Ipjang-myeon Cheonan 31056 South Korea
- KITECH School, University of Science and Technology (UST) 176 Gajeong-dong, Yuseong-gu Daejeon 34113 South Korea
| | - Thi H Ho
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyet N T Pham
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| | - In Park
- Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH) 89 Yangdaegiro-gil, Ipjang-myeon Cheonan 31056 South Korea
- KITECH School, University of Science and Technology (UST) 176 Gajeong-dong, Yuseong-gu Daejeon 34113 South Korea
| | - Khuong Quoc Vo
- Faculty of Chemistry, University of Science, Vietnam National University - Ho Chi Minh City 227 Nguyen Van Cu Street, Ward 4, District 5 Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Li K, Liu Y, Lou B, Tan Y, Chen L, Liu Z. DNA-Guided Metallization of Nanomaterials and Their Biomedical Applications. Molecules 2023; 28:molecules28093922. [PMID: 37175332 PMCID: PMC10180097 DOI: 10.3390/molecules28093922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Precise control of the structure of metallic nanomaterials is critical for the advancement of nanobiotechnology. As DNA (deoxyribonucleic acid) can readily modify various moieties, such as sulfhydryl, carboxyl, and amino groups, using DNA as a directing ligand to modulate the morphology of nanomaterials is a promising strategy. In this review, we focus on the use of DNA as a template to control the morphology of metallic nanoparticles and their biomedical applications, discuss the use of DNA for the metallization of gold and silver, explore the factors that influence the process, and outline its biomedical applications. This review aims to provide valuable insights into the DNA-guided growth of nanomaterials. The challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Molecular Imaging Research Center of Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Soleimany A, Khoee S, Dias S, Sarmento B. Exploring Low-Power Single-Pulsed Laser-Triggered Two-Photon Photodynamic/Photothermal Combination Therapy Using a Gold Nanostar/Graphene Quantum Dot Nanohybrid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20811-20821. [PMID: 37083346 PMCID: PMC10165604 DOI: 10.1021/acsami.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined photodynamic/photothermal therapy (PDT/PTT) has emerged as a promising cancer treatment modality due to its potential synergistic effects and identical treatment procedures. However, its clinical application is hindered by long treatment times and complicated treatment operations when separate illumination sources are required. Here, we present the development of a new nanohybrid comprising thiolated chitosan-coated gold nanostars (AuNS-TCS) as the photothermal agent and riboflavin-conjugated N,S-doped graphene quantum dot (Rf-N,S-GQD) as the two-photon photosensitizer (TP-PS). The nanohybrid demonstrated combined TP-PDT/PTT when a low-power, single-pulsed laser irradiation was applied, and the localized surface plasmon resonance of AuNS was in resonance with the TP-absorption wavelength of Rf-N,S-GQD. The TCS coating significantly enhanced the colloidal stability of AuNSs while providing a suitable substrate to electrostatically anchor negatively charged Rf-N,S-GQDs. The plasmon-enhanced singlet oxygen (1O2) generation effect led to boosted 1O2 production both extracellularly and intracellularly. Notably, the combined TP-PDT/PTT exhibited significantly improved phototherapeutic outcomes compared to individual strategies against 2D monolayer cells and 3D multicellular tumor spheroids. Overall, this study reveals a successful single-laser-triggered, synergistic combined TP-PDT/PTT based on a plasmonic metal/QD hybrid, with potential for future investigation in clinical settings.
Collapse
Affiliation(s)
- Amir Soleimany
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Sofia Dias
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
12
|
Deriu C, Thakur S, Tammaro O, Fabris L. Challenges and opportunities for SERS in the infrared: materials and methods. NANOSCALE ADVANCES 2023; 5:2132-2166. [PMID: 37056617 PMCID: PMC10089128 DOI: 10.1039/d2na00930g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In the wake of a global, heightened interest towards biomarker and disease detection prompted by the SARS-CoV-2 pandemic, surface enhanced Raman spectroscopy (SERS) positions itself again at the forefront of biosensing innovation. But is it ready to move from the laboratory to the clinic? This review presents the challenges associated with the application of SERS to the biomedical field, and thus, to the use of excitation sources in the near infrared, where biological windows allow for cell and through-tissue measurements. Two main tackling strategies will be discussed: (1) acting on the design of the enhancing substrate, which includes manipulation of nanoparticle shape, material, and supramolecular architecture, and (2) acting on the spectral collection set-up. A final perspective highlights the upcoming scientific and technological bets that need to be won in order for SERS to stably transition from benchtop to bedside.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Shaila Thakur
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Olimpia Tammaro
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino 10129 Turin Italy
- Department of Materials Science and Engineering, Rutgers University Piscataway NJ 08854 USA
| |
Collapse
|
13
|
Vang D, Strobbia P. Analysis of Nanostar Reshaping Kinetics for Optimal Substrate Fabrication. APPLIED SPECTROSCOPY 2023; 77:270-280. [PMID: 36172843 DOI: 10.1177/00037028221132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gold nanostars (NS) are emerging as a versatile tool in surface-enhanced Raman scattering (SERS) applications because of their wide localized surface plasmon resonance (LSPR) tunability, simple synthesis procedure, and high SERS enhancement. These particles are commonly used in solutions with a stabilizing coating shell (e.g., thiolated molecules or silver shell). However, coatings cannot be used for the fabrication of SERS substrates as the NS have to interact with the substrate planar surface. Without coating, NS have been observed to change over time, leading to a hypochromic shift of the LSPR. To understand this shift, we synthesized surfactant-free gold NS with different spike morphologies and investigated their reshaping morphology and kinetics. Using TEM, the NS sharp spike features were observed to reshape over time. The kinetics of this process were analyzed and determined by monitoring the LSPR, which was observed to follow an exponential decay over time. We used an empirical fit for the LSPR-shift data as a function of time, which permits to predict the LSPR at a specific time based only on the initial LSPR (independently of the initial spike morphology). We show the effect of the LSPR on the SERS signal for the NS and how the SERS signal correlated to our prediction. Finally, we evaluated our approach by fabricating SERS substrates with immobilized NS and collecting the reflectance spectra. We were able to predict the substrate LSPR and aim for an optimal LSPR with an average 3% deviation. These new insights on NS reshaping can permit the fabrication of NS-based substrates with desirable optical/plasmonic properties.
Collapse
Affiliation(s)
- Der Vang
- Department of Chemistry, 2514University of Cincinnati, Cincinnati, Ohio, USA
| | - Pietro Strobbia
- Department of Chemistry, 2514University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Liu W, Wang Y, Wang Y, Li X, Qi K, Wang J, Xu H. Black Silver Nanocubes@Amino Acid-Encoded Highly Branched Gold Shells with Efficient Photothermal Conversion for Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:236-248. [PMID: 36538335 DOI: 10.1021/acsami.2c14436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancers are among the leading causes of death currently. Conventional radiotherapy and chemotherapy are of limited use in the treatment of some tumors due to their high toxicity and drug resistance. Plasma photothermal therapy has attracted extensive attention for the treatment of tumors due to photothermal properties of plasmonic nanoparticles, such as gold (Au) nanoparticles, to achieve local hyperthermia with low toxicity and high efficiency. Herein, we report a kind of special black noble-metal core-shell nanostructure, with silver (Ag) nanocubes as the core and amino acid-encoded highly branched Au nanorods as the shells (l-CAg@Au and d-CAg@Au). The proposed growth of l-CAg@Au and d-CAg@Au nanocomposites was an amino acid-encoded Stranski-Krastanov mode. Both l-CAg@Au and d-CAg@Au exhibited outstanding photothermal conversion compared to the core-shell structure without amino acids (Ag@Au). d-CAg@Au possessed the best photothermal conversion efficiency (87.28%) among the composite nanoparticles. The antitumor therapeutic efficacy of as-prepared samples was evaluated in vitro and in vivo, and apoptosis analysis was done via flow cytometry. This work reports novel insights for the preparation of special bimetallic branched structures and broadens the application of metal nanomaterials in photothermal tumor therapy.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Yan Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Yuqi Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaohan Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
15
|
Fernandes T, Martins NCT, Daniel-da-Silva AL, Trindade T. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121730. [PMID: 35988470 DOI: 10.1016/j.saa.2022.121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of magneto-plasmonic dendrimer-based nanosorbents containing Au nanostars and we demonstrate that they can be used as versatile optical sensors for the detection of pesticides in spiked water samples. The magnetic hybrid nanoparticles were obtained by conjugating silica-functionalized G5-NH2 PAMAM dendrimers to silica-coated magnetite cores. The resulting magnetic-PAMAM conjugates were then used to reduce and sequester Au seeds for the subsequent in situ growth of Au nanostars. The dendrimer-based magneto-plasmonic substrates containing the Au anisotropic nanophases were then investigated regarding their ability to monitor water quality through surface-enhanced Raman scattering (SERS) spectroscopy. As a proof-of-concept, the ensuing multifunctional materials were investigated as SERS probing systems to detect dithiocarbamate pesticides (ziram and thiram) dissolved in water samples. It was observed that the magneto-plasmonic hybrid materials enhance the Raman signal of these pesticides under variable operational conditions, suggesting the versatility of these systems for water quality monitoring. Moreover, a detailed analysis of the SERS data was accomplished to predict the adsorption profile of the dithiocarbamate pesticides to the Au surface.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Natércia C T Martins
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Le N, Boskovic TJM, Allard MM, Nick KE, Kwon SR, Perry CC. Gold Nanostar Characterization by Nanoparticle Tracking Analysis. ACS OMEGA 2022; 7:44677-44688. [PMID: 36530291 PMCID: PMC9753108 DOI: 10.1021/acsomega.2c03275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate the application of nanoparticle tracking analysis (NTA) for the quantitative characterization of gold nanostars (GNSs). GNSs were synthesized by the seed-mediated growth method using triblock copolymer (TBP) gold nanoparticles (GNPs). These GNPs (≈ 10 nm) were synthesized from Au3+ (≈ 1 mM) in aqueous F127 (w/v 5%) containing the co-reductant ascorbic acid (≈ 2 mM). The GNS tip-to-core aspect ratio (AR) decreased when higher concentrations of GNPs were added to the growth solution. The AR dependency of GNSs on Au3+/Au(seed) concentration ratio implies that growth is partly under kinetic control. NTA measured GNS sizes, concentrations, and relative scattering intensities. Molar absorption coefficients ∼ 109-1010 M-1 cm-1 (ε400 nm) for each batch of GNSs were determined using the combination of extinction spectra and NTA concentrations for heterogeneous samples. NTA in combination with UV-vis was used to derive the linear relationships: (1) hydrodynamic size versus localized surface plasmon peak maxima; (2) ε400 nm versus localized surface plasmon peak maxima; (3) ε400 nm versus hydrodynamic size. NTA for quantitative characterization of anisotropic nanoparticles could lead to future applications, including heterogeneous colloidal catalysis.
Collapse
Affiliation(s)
- Natasha
T. Le
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - Timothy J. M. Boskovic
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - Marco M. Allard
- Department
of Chemistry and Biochemistry, College of Arts and Sciences, La Sierra University, 4500 Riverwalk Parkway, Riverside, California92505, United States
| | - Kevin E. Nick
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| | - So Ran Kwon
- School
of Dentistry, Loma Linda University, 11092 Anderson Street, Loma Linda, California92350, United States
| | - Christopher C. Perry
- Department
of Basic Sciences, School of Medicine, Loma
Linda University, 11085 Campus Street, Loma Linda, California92350, United States
| |
Collapse
|
17
|
Odion RA, Liu Y, Vo-Dinh T. Nanoplasmonics Enabling Cancer Diagnostics and Therapy. Cancers (Basel) 2022; 14:cancers14235737. [PMID: 36497219 PMCID: PMC9739286 DOI: 10.3390/cancers14235737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
In this paper, we highlight several advances our laboratory has developed in the pursuit of cancer diagnostics and therapeutics by integrating plasmonics, photonics, and nanotechnology. We discuss the development and applications of plasmonics-active gold nanostar (GNS), a uniquely shaped nanoparticle with numerous branches that serve to greatly amplify the thermal generation at resonant wavelengths. GNS has also been successfully used in tumor imaging contexts from two-photon fluorescence to surface-enhanced Raman scattering (SERS) sensing and imaging. Finally, GNS has been coupled with immunotherapy applications to serve as an effective adjuvant to immune checkpoint inhibitors. This combination of GNS and immunotherapy, the so called synergistic immuno photo nanotherapy (SYMPHONY), has been shown to be effective at controlling long-lasting cancer immunity and metastatic tumors.
Collapse
Affiliation(s)
- Ren A. Odion
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yang Liu
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Correspondence:
| |
Collapse
|
18
|
Rahman M, Niu J, Cui X, Zhou C, Tang N, Jin H, Cui D. Electrochemical Biosensor Based on l-Arginine and rGO-AuNSs Deposited on the Electrode Combined with DNA Probes for Ultrasensitive Detection of the Gastric Cancer-Related PIK3CA Gene of ctDNA. ACS APPLIED BIO MATERIALS 2022; 5:5094-5103. [PMID: 36315410 DOI: 10.1021/acsabm.2c00393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene biomarkers of circulating tumor DNA (ctDNA) in liquid biopsies have been explored for use in the precise diagnosis of tumors. There is a great clinical need to realize the ultrasensitive detection of gene biomarkers in ctDNA. Here we reported that an ultrasensitive label-free biosensor was developed for the detection of the gastric cancer-related PIK3CA gene of ctDNA in peripheral blood. The polymeric l-arginine and graphene oxide-wrapped gold nanostars (rGO-AuNSs) were prepared and deposited on the glass electrode. The capturing DNA probes for the PIK3CA gene were prepared and successfully immobilized on the rGO-AuNS-modified electrode surface via π-π interaction among the rGO-AuNS composites and DNA probes. The resultant electrochemical sensor was effectively applied to detect the PIK3CA gene of ctDNA via the hybridization between the capturing DNA probe and ctDNA, the result of which showed that the biosensor exhibited desirable sensitivity, stability, and a wider dynamic response in a ctDNA concentration range from 1.0 × 10-20 to 1.0 × 10-10 M (R2 = 0.997). Moreover, the low limit of detection of 1.0 × 10-20 M (S/N = 3) indicates the biosensor owns satisfactory detection sensitivity. Fourteen PIK3CA genes and two PIK3CA gene mutations were detected in 60 clinical ctDNA samples of gastric cancer patients by using the developed biosensor. In conclusion, this ultrasensitive label-free electrochemical biosensor possesses a significant application prospect in the detection of the PIK3CA gene in ctDNA and in early screening for gastric cancer in the near future.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,Department of General Educational Development, Faculty of Science and Information Technology (FSIT), Daffodil International University, Daffodil Smart City, Ashulia, Savar, Dhaka1341, Bangladesh
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Xinyuan Cui
- Medical Imaging Department of Tong Ji Hospital Affiliated to Tongji University, Shanghai200065, PR China
| | - Cheng Zhou
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China.,National Engineering Center for Nanotechnology, Shanghai200241, PR China
| |
Collapse
|
19
|
Kedia A, Singhal R, Senthil Kumar P. Shape trimming and LSPR tuning of colloidal gold nanostars. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Atta S, Vo-Dinh T. Bimetallic Gold Nanostars Having High Aspect Ratio Spikes for Sensitive Surface-Enhanced Raman Scattering Sensing. ACS APPLIED NANO MATERIALS 2022; 5:12562-12570. [PMID: 36185168 PMCID: PMC9513749 DOI: 10.1021/acsanm.2c02234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 05/09/2023]
Abstract
There has been increasing interest in evolution of plasmonic nanoplatforms based on noble metal nanoparticles to achieve ultrasensitive detection of trace analyte molecules through solution-based surface-enhanced Raman spectroscopy (SERS). This work presents a surfactant-free synthesis method of bimetallic gold nanostars coated with silver (BGNS-Ag) having sharp, high aspect-ratio spikes for achieving ultrahigh detection sensitivity and high reproducibility. Specifically, the unique BGNS-Ag platform combines both the strong SERS enhancement effects of gold nanostar sharp spikes and the high scattering feature of the silver-gold bimetallic structure. To achieve SERS reproducibility, this solution-based SERS measurement requires minimal sample preparation without addition of any external reagents, which can cause irregular aggregation of nanoparticles and reduce the reproducibility of SERS measurements. Moreover, we have streamlined our SERS sensing procedure by using standard well-plates and a portable Raman device for SERS measurements, which could be utilized for rapid on-site detection. This solution-based SERS performance was studied using methylene blue (MB) as a model analyte system. The detection limit of MB was as low as 42 pM, indicating high sensitivity of detection using BGNS-Ag. To illustrate the usefulness for environmental sensing, we showed that the SERS sensor can detect a pesticide, thiram, at a concentration as low as 0.8 nM. This study demonstrated that the BGNS-Ag system could serve as an effective and versatile plasmonic-active platform for reproducible, fast, and in-field detection of small organic analytes at trace levels.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
21
|
Atta S, Watcharawittayakul T, Vo-Dinh T. Ultra-high SERS detection of consumable coloring agents using plasmonic gold nanostars with high aspect-ratio spikes. Analyst 2022; 147:3340-3349. [PMID: 35762677 PMCID: PMC9725038 DOI: 10.1039/d2an00794k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Solution-based SERS detection by using a portable Raman instrument has emerged as an important tool due to its simplicity, and flexibility for rapid and on-site screening of analyte molecules. However, this method has several shortcomings, including poor sensitivity especially for weak-affinity analyte molecules, where there is no close contact between the plasmonic metal surface and analyte molecule. Examples of weak-affinity molecules include pigment molecules that are commonly used as a consumable coloring agent, such as allura red (AR), and sunset yellow (SY). As high consumption of colorant agents has been shown to cause adverse effects on human health, there is a strong need to develop a simple and practical sensing system with high sensitivity for these agents. Here we present a novel, highly sensitive solution-based SERS detection method for AR, and SY by using CTAC capped gold nanostars (GNS) having different aspect ratios (GNS-2, GNS-4, and GNS-5) without utilizing any aggregating agents which can enhance SERS signal however it reduces batch to batch reproducibility. The influence of the aspect ratio of GNS on SERS properties was investigated. We have achieved a limit of detection (LOD) of AR and SY as low as 0.5 and 1 ppb, respectively by using GNS-5 with the advantages of minimal sample preparation by just mixing the analyte solution into a well plate containing GNS solution. In addition, excellent colloidal stability and reproducibility have further enhanced the applicability in real-world samples. Overall, our results evidence that the solution-based SERS detection platform using high aspect-ratio GNS can be applied for practical application to detect pigment molecules in real samples with satisfactory results.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tongchatra Watcharawittayakul
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC 27708, USA.
- Department of Biomedical Engineering, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1606. [PMID: 35208145 PMCID: PMC8878601 DOI: 10.3390/ma15041606] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023]
Abstract
Cancer remains one of the leading causes of death in the world. For a number of neoplasms, the efficiency of conventional chemo- and radiation therapies is insufficient because of drug resistance and marked toxicity. Plasmonic photothermal therapy (PPT) using local hyperthermia induced by gold nanoparticles (AuNPs) has recently been extensively explored in tumor treatment. However, despite attractive promises, the current PPT status is limited by laboratory experiments, academic papers, and only a few preclinical studies. Unfortunately, most nanoformulations still share a similar fate: great laboratory promises and fair preclinical trials. This review discusses the current challenges and prospects of plasmonic nanomedicine based on PPT and photodynamic therapy (PDT). We start with consideration of the fundamental principles underlying plasmonic properties of AuNPs to tune their plasmon resonance for the desired NIR-I, NIR-2, and SWIR optical windows. The basic principles for simulation of optical cross-sections and plasmonic heating under CW and pulsed irradiation are discussed. Then, we consider the state-of-the-art methods for wet chemical synthesis of the most popular PPPT AuNPs such as silica/gold nanoshells, Au nanostars, nanorods, and nanocages. The photothermal efficiencies of these nanoparticles are compared, and their applications to current nanomedicine are shortly discussed. In a separate section, we discuss the fabrication of gold and other nanoparticles by the pulsed laser ablation in liquid method. The second part of the review is devoted to our recent experimental results on laser-activated interaction of AuNPs with tumor and healthy tissues and current achievements of other research groups in this application area. The unresolved issues of PPT are the significant accumulation of AuNPs in the organs of the mononuclear phagocyte system, causing potential toxic effects of nanoparticles, and the possibility of tumor recurrence due to the presence of survived tumor cells. The prospective ways of solving these problems are discussed, including developing combined antitumor therapy based on combined PPT and PDT. In the conclusion section, we summarize the most urgent needs of current PPT-based nanomedicine.
Collapse
Affiliation(s)
- Alla B. Bucharskaya
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Nikolai G. Khlebtsov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Boris N. Khlebtsov
- Nanobiotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms RAS, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 13 Prospekt Entuziastov, 410049 Saratov, Russia;
| | - Galina N. Maslyakova
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Nikita A. Navolokin
- Core Facility Center, Saratov State Medical University, 112 Bol′shaya Kazachya Str., 410012 Saratov, Russia; (G.N.M.); (N.A.N.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
| | - Vadim D. Genin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Elina A. Genina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
| | - Valery V. Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (V.D.G.); (E.A.G.); (V.V.T.)
- Laser Molecular Imaging and Machine Learning Laboratory, Tomsk State University, 36 Lenin′s Av., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
| |
Collapse
|
23
|
Nuti S, Fernández-Lodeiro C, Fernández-Lodeiro J, Fernández-Lodeiro A, Pérez-Juste J, Pastoriza-Santos I, LaGrow AP, Schraidt O, Luis Capelo-Martínez J, Lodeiro C. Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes. J Colloid Interface Sci 2022; 611:695-705. [PMID: 34979340 DOI: 10.1016/j.jcis.2021.12.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
This paper describes the synthesis of highly branched gold nanoparticles (AuNPs) through a facile seeded growth approach using poly(allylamine hydrochloride) (PAH) as shape inducing agent. The obtained branched AuNPs present highly tunable optical properties in the Vis-NIR region from ca. 560 nm to 1260 nm. We controlled the morphology, and therefore the optical response, of the NPs by either changing the gold salt to seeds ratio or by fine-tuning the solution pH. We proposed that the formation of size-dependent PAH-AuCl4- aggregates as demonstrated by dynamic light scattering measurements, together with pH-dependent gold salt speciation might be responsible for the branched morphology. Advanced electron microscopy techniques demonstrated the polycrystalline nature of the AuNPs and facilitated a better understanding of branched morphology. Additionally, the refractive index sensitivity estimated by the inflection point of the Localized Surface Plasmon Resonance (LSPR) band can be controlled by tuning the nanoparticle branching. Furthermore, the versatility of the PAH chemistry allowed the easy functionalization of the synthesized NPs.
Collapse
Affiliation(s)
- Silvia Nuti
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Carlos Fernández-Lodeiro
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Javier Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario Lagoas Marcosende, 36310 Vigo, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Oliver Schraidt
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - José Luis Capelo-Martínez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516 Caparica, Portugal; PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| |
Collapse
|
24
|
Andreiuk B, Nicolson F, Clark LM, Panikkanvalappil SR, Kenry, Rashidian M, Harmsen S, Kircher MF. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022; 6:10-30. [PMID: 34976578 PMCID: PMC8671966 DOI: 10.7150/ntno.61244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) nanotags hold a unique place among bioimaging contrast agents due to their fingerprint-like spectra, which provide one of the highest degrees of detection specificity. However, in order to achieve a sufficiently high signal intensity, targeting capabilities, and biocompatibility, all components of nanotags must be rationally designed and tailored to a specific application. Design parameters include fine-tuning the properties of the plasmonic core as well as optimizing the choice of Raman reporter molecule, surface coating, and targeting moieties for the intended application. This review introduces readers to the principles of SERS nanotag design and discusses both established and emerging protocols of their synthesis, with a specific focus on the construction of SERS nanotags in the context of bioimaging and theranostics.
Collapse
Affiliation(s)
- Bohdan Andreiuk
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Fay Nicolson
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Louise M. Clark
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Kenry
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Stefan Harmsen
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 022115, USA
| |
Collapse
|
25
|
Folks C, Phuyal US, Rajesh M, Arja N, Gladden M, Hamm L, De Silva Indrasekara AS. Fabrication and Comparative Quantitative Analysis of Plasmonic-Polymer Nanocomposites as Optical Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12853-12866. [PMID: 34705467 DOI: 10.1021/acs.langmuir.1c01826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasmonic-polymer nanocomposites can serve as a multifunctional platform for a wide range of applications such as biochemical sensing and photothermal treatments, where they synergistically benefit from the extraordinary optical properties of plasmonic nanoparticles (NPs) and biocompatible characteristics of biopolymers. The field translation of plasmonic-polymer nanocomposites requires design rules for scalable and reproducible fabrication with tunable and predictable optical properties and achieving the best performance. The optical properties of NPs and the optimal analytical performance of nanocomposites could be affected by many fabrication parameters, but a fundamental understanding of such parameters is still minimal. Herein, we systematically investigated the NP distribution and their optical properties in gold nanostar (GNS)-polymer nanocomposites as a function of GNS concentration, polymer identity, and the method of GNS incorporation into a polymer matrix. We performed a comprehensive analysis of the single-particle scattering spectra of GNS incorporated into agarose gel and chitosan hydrogels via embedding and surface deposition, using dark-field spectroscopy. While relative GNS concentration affects the GNS scattering property distribution in both polymer matrices, chemical interactions between a polymer matrix and GNS is the key determinant of the GNS stability and homogenous distribution in nanocomposites. When GNS are embedded in a polymer matrix and there are stronger chemical interactions between GNS and a polymer, significantly less aggregation and a more homogenous distribution of GNS, which leads to a larger percentage of GNS optical property preservation, were observed at all the concentrations. In a proof-of-concept surface-enhanced Raman spectroscopy (SERS) study, we observed that the SERS detection efficiency is dictated by the analyte accessibility of GNS, which is governed by the polymer matrix porosity, polymer-GNS interactions, and other polymer physical characteristics. This work presents the interplay between key fabrication parameters and foundational design parameters for more predictable and reliable fabrication of plasmonic-polymer nanocomposites as an optical platform.
Collapse
Affiliation(s)
- Casey Folks
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Uttam Sharma Phuyal
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Mahima Rajesh
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Nagathushara Arja
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | - Michael Gladden
- Department of Chemistry, Winthrop University, 312-A Sims Building, Rock Hill, South Carolina 29733, United States
| | - Logan Hamm
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, North Carolina 28203, United States
| | | |
Collapse
|
26
|
Lee JW, Choi SR, Heo JH. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42311-42328. [PMID: 34464527 DOI: 10.1021/acsami.1c10436] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gold nanoparticles (AuNPs) are used in various biological applications because of their small surface area-to-volume ratios, ease of synthesis and modification, low toxicity, and unique optical properties. These properties can vary significantly with changes in AuNP size, shape, composition, and arrangement. Thus, the stabilization of AuNPs is crucial to preserve the properties required for biological applications. In recent years, various polymer-based physical and chemical methods have been extensively used for AuNP stabilization. However, a new stabilization approach using biomolecules has recently attracted considerable attention. Biomolecules such as DNA, RNA, peptides, and proteins are representative of the biomoieties that can functionalize AuNPs. According to several studies, biomolecules can stabilize AuNPs in biological media; in addition, AuNP-conjugated biomolecules can retain certain biological functions. Furthermore, the presence of biomolecules on AuNPs significantly enhances their biocompatibility. This review provides a representative overview of AuNP functionalization using various biomolecules. The strategies and mechanisms of AuNP functionalization using biomolecules are comprehensively discussed in the context of various biological fields.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seok-Ryul Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
27
|
Odion RA, Liu Y, Vo-Dinh T. Plasmonic Gold Nanostar-Mediated Photothermal Immunotherapy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:4800109. [PMID: 34054285 PMCID: PMC8159156 DOI: 10.1109/jstqe.2021.3061462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cancer is among the leading cause of death around the world, causing close to 10 million deaths each year. Significant efforts have been devoted to developing novel technologies that can detect and treat cancer early and effectively to reduce cancer recurrences, treatment costs, and mortality. Gold nanoparticles (GNP) have been given particular attention for its use with photo-induced hyperthermia coupled with novel immunotherapy methods to provide a new platform for highly selective and less invasive cancer treatment. Among the various GNP platforms, gold nanostars (GNS) have a unique star-shaped geometric structure that allows superior light absorption and photothermal heating. This photothermal effect have also been found to amplify the anti-tumor immune response and can be exploited with adjuvant treatments using immune checkpoint inhibitors. This combination treatment known as Synergistic Immuno Photo Nanotherapy (SYMPHONY) has been shown to reverse tumor-mediated immunosuppression and has led to effective and long-lasting immunity against not only primary tumors but also cancer metastasis. This overview highlights the development and applications of GNS-mediated therapy developed in our laboratory for cancer treatment. This paper also presents recent results of experimental studies to illustrate the superior performance of GNS for photothermal treatment applications.
Collapse
Affiliation(s)
- Ren A Odion
- Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Yang Liu
- Chemistry Department and the Biomedical Engineering Department, Duke University, Durham, NC 27708 USA
| | - Tuan Vo-Dinh
- Biomedical Engineering and Chemistry Department, Duke University, Durham, NC 27708 USA.; Fitzpatrick Institute for Photonics at Duke University
| |
Collapse
|
28
|
Nguyen VP, Qian W, Wang X, Paulus YM. Functionalized contrast agents for multimodality photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy molecular retinal imaging. Methods Enzymol 2021; 657:443-480. [PMID: 34353498 DOI: 10.1016/bs.mie.2021.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Near-infrared (NIR) targeting contrast agents have been investigated as great photoabsorbers to improve photoacoustic microscopy (PAM), OCT, and fluorescence imaging contrast for visualization of various diseases. In ophthalmology, a limited number of NIR contrast agents have been approved for clinical use. Recently, gold nanoparticles with different size and shapes have been developed for molecular imaging. This chapter provides the principles of multimodality PAM, OCT, and fluorescence imaging as well as a brief overview of contrast agents for optical imaging. A detailed protocol for the fabrication of discrete colloidal gold nanoparticles (GNPs), synthesis of functionalized RGD-conjugated chain-like GNP (CGNP) clusters labeled with indocyanine green (ICG) fluorescence dye (ICG@CGNP clusters-RGD), and validation of the synthesized nanoparticles to evaluate newly developed blood vessels in the retina, named choroidal neovascularization (CNV), is described. Using RGD peptide, ICG@CGNPs clusters-RGD can bind integrin which is expressed on activated endothelial cells and newly developed CNV. The targeting efficiency of nanoparticles is monitored by multimodality PAM, OCT, and fluorescence imaging longitudinally.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States; NTT-Hitech Institutes, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Wei Qian
- IMRA America Inc, Ann Arbor, MI, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
29
|
Siegel AL, Baker GA. Bespoke nanostars: synthetic strategies, tactics, and uses of tailored branched gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3980-4004. [PMID: 36132836 PMCID: PMC9417963 DOI: 10.1039/d0na01057j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Interest in branched colloidal gold nanosystems has gained increased traction due to the structures' outstanding optical and plasmonic properties, resulting in utilization in techniques such as surface-enhanced spectroscopy and bioimaging, as well as plasmon photocatalysis and photothermal therapy. The unique morphologies of nanostars, multipods, urchins, and other highly branched nanomaterials exhibit selective optical and crystallographic features accessible by alterations in the respective wet-chemical syntheses, opening a vast array of useful applications. Examination of discriminatory reaction conditions, such as seeded growth (e.g., single-crystalline vs. multiply twinned seeds), underpotential deposition of Ag(i), galvanic replacement, and the dual use of competing reducing and capping agents, is shown to reveal conditions necessary for the genesis of assorted branched nanoscale gold frameworks. By observing diverse approaches, including template-directed, microwave-mediated, and aggregation-based methods, among others, a schema of synthetic pathways can be constructed to provide a guiding roadmap for obtaining the full range of desired branched gold nanocrystals. This review presents a comprehensive summary of such advances and these nuances of the underlying procedures, as well as offering mechanistic insights into the directed nanoscale growth. We conclude the review by discussing various applications for these fascinating nanomaterials, particularly surface-enhanced Raman spectroscopy, photothermal and photodynamic therapy, catalysis, drug delivery, and biosensing.
Collapse
Affiliation(s)
- Asher L Siegel
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia Columbia MO 65211 USA
| |
Collapse
|
30
|
Xianyu Y, Su S, Hu J, Yu T. Plasmonic sensing of β-glucuronidase activity via silver mirror reaction on gold nanostars. Biosens Bioelectron 2021; 190:113430. [PMID: 34147947 DOI: 10.1016/j.bios.2021.113430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
We outline a novel approach for the plasmonic detection of β-glucuronidase activity by modulating the silver mirror reaction at the nanoscale on gold nanostars. β-glucuronidase catalyzes the hydrolysis of a non-reducing substrate to generate reducing products that trigger the silver mirror reaction on gold nanostars to alter their surface plasmon resonance. By modulating the silver deposition on gold nanostars, the unique plasmonic property of silver-coated gold nanostars enables a significant change in the surface plasmon resonance that allows for a plasmonic readout for detecting the enzymatic activity. This plasmonic nanosensor enables a detection of the β-glucuronidase activity as low as 0.1 U/L, showing great promise as a plasmonic approach for enzyme detection.
Collapse
Affiliation(s)
- Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| | - Shixuan Su
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
31
|
Lê QT, Ly NH, Kim MK, Lim SH, Son SJ, Zoh KD, Joo SW. Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123499. [PMID: 32739725 DOI: 10.1016/j.jhazmat.2020.123499] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 μm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 μm, 2.3 μm, and 4.8 μm). The detection limit of the submicrometer-sized 0.4 μm in our Raman measurements were estimated to be 0.005% (∼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.
Collapse
Affiliation(s)
- Quang Trung Lê
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea
| | - Nguyễn Hoàng Ly
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Woo Joo
- Department of Information Communication Convergence Technology, Soongsil University, Seoul, 06978, Republic of Korea; Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
32
|
Rapid and Green Preparation of Multi-Branched Gold Nanoparticles Using Surfactant-Free, Combined Ultrasound-Assisted Method. Processes (Basel) 2021. [DOI: 10.3390/pr9010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The conventional seed-mediated preparation of multi-branched gold nanoparticles uses either cetyltrimethylammonium bromide or sodium dodecyl sulfate. However, both surfactants are toxic to cells so they have to be removed before the multi-branched gold nanoparticles can be used in biomedical applications. This study describes a green and facile method for the preparation of multi-branched gold nanoparticles using hydroquinone as a reducing agent and chitosan as a stabilizer, through ultrasound irradiation to improve the multi-branched shape and stability. The influence of pH, mass concentration of chitosan, hydroquinone concentration, as well as sonication conditions such as amplitude and time of US on the growth of multi-branched gold nanoparticles, were also investigated. The spectra showed a broad band from 500 to over 1100 nm, an indication of the effects of both aggregation and contribution of multi-branches to the surface plasmon resonance signal. Transmission electron microscopy measurements of GNS under optimum conditions showed an average core diameter of 64.85 ± 6.79 nm and 76.11 ± 14.23 nm of the branches of multi-branched particles. Fourier Transfer Infrared Spectroscopy was employed to characterize the interaction between colloidal gold nanoparticles and chitosan, and the results showed the presence of the latter on the surface of the GNS. The cytotoxicity of chitosan capped GNS was tested on normal rat fibroblast NIH/3T3 and normal human fibroblast BJ-5ta using MTT assay concentrations from 50–125 µg/mL, with no adverse effect on cell viability.
Collapse
|
33
|
Vo-Dinh T, Inman BA, Maccarini P, Palmer GM, Liu Y, Etienne W. Plasmonic Gold Nanostars for Immuno Photothermal Nanotherapy to Treat Cancers and Induce Long-Term Immunity. Bioanalysis 2021. [DOI: 10.1007/978-3-030-78338-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Wan Z, Gu J, Wang Y, Qian J, Zhu J, Chen F, Wang H, Chen H, Luo C. Facile Interfacial Synthesis of Densely Spiky Gold Nano-Chestnuts With Full Spectral Absorption for Photothermal Therapy. Front Bioeng Biotechnol 2020; 8:599040. [PMID: 33195172 PMCID: PMC7649415 DOI: 10.3389/fbioe.2020.599040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
The gold nanostructure is regarded as the most promising photothermal agent due to its strong localized surface plasma resonance (LSPR) effect. In particular, the gold nanostructures with sharp spikes on the surface have higher optical signal enhancement, owing to the sharp tips drastically enhancing the intense nanoantenna effect. However, current approaches for the synthesis of spiky gold nanostructures are either costly, complicated, or uncontrollable. Herein, we report a novel strategy to synthesize gold nano-chestnuts (SGNCs) with sharp spikes as an excellent photothermal agent. The SGNCs were prepared by a facile one-pot interfacial synthetic method, and their controllable preparation mechanism was acquired. The SGNCs exhibited ideal full-spectrum absorption and showed excellent photothermal effect. They have a photothermal conversion efficiency (η) as high as 52.9%, which is much higher than traditional photothermal agents. The in vitro and in vivo results show that the SGNCs could efficiently ablate the tumor cells. Thus, the SGNCs have great potential in photothermal therapy applied in malignant tumors.
Collapse
Affiliation(s)
- Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinmao Gu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yining Wang
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Khlebtsov NG, Zarkov SV, Khanadeev VA, Avetisyan YA. A novel concept of two-component dielectric function for gold nanostars: theoretical modelling and experimental verification. NANOSCALE 2020; 12:19963-19981. [PMID: 32996517 DOI: 10.1039/d0nr02531c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of AuNST morphology requires adequate computational models. The bulk dielectric function is not applicable to sharp nanostar spikes. We suggest a two-component dielectric function in which the nanostar core is treated as a bulk material, whereas the size-corrected dielectric function of the spikes is treated by a modified Coronado-Schatz model. In addition to the strong broadening of plasmonic peaks, the simulated absorption and scattering spectra show unusual properties, which are not observed with bulk dielectric functions. The effect of NIR water absorption on nanostar spectra is small, and the absorption peak demonstrates the expected small decrease in the absorbing media. Surprisingly, however, water absorption increases the scattering peak by 30%. For the common surfactant-free Vo-Dinh AuNSTs, we report, for the first time, very intense SWIR plasmonic peaks around 1900 nm, in addition to the common strong peak in the UV-vis-NIR band (here, at 1100 nm). For bilayers of AuNSTs in air, we recorded two similarly intense peaks near 800 and 1500 nm. To simulate the experimental extinction spectra of colloids and bilayers on glass in air, we develop a statistical model that includes the major fraction of typical Vo-Dinh AuNSTs and two minor fractions of sea urchins and particles with protrusions. In contrast to the general belief, we show that the common UV-vis-NIR plasmonic peak of surfactant-free AuNSTs is related to short spikes on a spherical core, whereas long spikes produce an intense SWIR plasmonic mode. Such a structural assignment of vis-NIR and SWIR peaks does not seem to have been reported previously for surfactant-free nanostars. With our model, we demonstrate good agreement between simulated and measured spectra of colloids and bilayers on glass in air.
Collapse
Affiliation(s)
- Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia.
| | | | | | | |
Collapse
|
37
|
SERS-based immunoassay for monitoring cortisol-related disorders. Biosens Bioelectron 2020; 165:112418. [DOI: 10.1016/j.bios.2020.112418] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022]
|
38
|
Demille TB, Hughes RA, Dominique N, Olson JE, Rouvimov S, Camden JP, Neretina S. Large-area periodic arrays of gold nanostars derived from HEPES-, DMF-, and ascorbic-acid-driven syntheses. NANOSCALE 2020; 12:16489-16500. [PMID: 32790810 DOI: 10.1039/d0nr04141f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With arms radiating from a central core, gold nanostars represent a unique and fascinating class of nanomaterials from which extraordinary plasmonic properties are derived. Despite their relevance to sensing applications, methods for fabricating homogeneous populations of nanostars on large-area planar surfaces in truly periodic arrays is lacking. Herein, the fabrication of nanostar arrays is demonstrated through the formation of hexagonal patterns of near-hemispherical gold seeds and their subsequent exposure to a liquid-state chemical environment that is conducive to colloidal nanostar formation. Three different colloidal nanostar protocols were targeted where HEPES, DMF, and ascorbic acid represent a key reagent in their respective redox chemistries. Only the DMF-driven synthesis proved readily adaptable to the substrate-based platform but nanostar-like structures emerged from the other protocols when synthetic controls such as reaction kinetics, the addition of Ag+ ions, and pH adjustments were applied. Because the nanostars were derived from near-hemispherical seeds, they acquired a unique geometry that resembles a conventional nanostar that has been truncated near its midsection. Simulations of plasmonic properties of this geometry reveal that such structures can exhibit maximum near-field intensities that are as much as seven-times greater than the standard nanostar geometry, a finding that is corroborated by surface-enhanced Raman scattering (SERS) measurements showing large enhancement factors. The study adds nanostars to the library of nanostructure geometries that are amenable to large-area periodic arrays and provides a potential pathway for the nanofabrication of SERS substrates with even greater enhancements.
Collapse
Affiliation(s)
- Trevor B Demille
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Charchi N, Li Y, Huber M, Kwizera EA, Huang X, Argyropoulos C, Hoang T. Small mode volume plasmonic film-coupled nanostar resonators. NANOSCALE ADVANCES 2020; 2:2397-2403. [PMID: 34046555 PMCID: PMC8153380 DOI: 10.1039/d0na00262c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/12/2023]
Abstract
Confining and controlling light in extreme subwavelength scales are tantalizing tasks. In this work, we report a study of individual plasmonic film-coupled nanostar resonators where polarized plasmonic optical modes are trapped in ultrasmall volumes. Individual gold nanostars, separated from a flat gold film by a thin dielectric spacer layer, exhibit a strong light confinement between the sub-10 nm volume of the nanostar's tips and the film. Through dark field scattering measurements of many individual nanostars, a statistical observation of the scattered spectra is obtained and compared with extensive simulation data to reveal the origins of the resonant peaks. We observe that an individual nanostar on a flat gold film can result in a resonant spectrum with single, double or multiple peaks. Further, these resonant peaks are strongly polarized under white light illumination. Our simulation data revealed that the resonant spectrum of an individual film-coupled nanostar resonator is related to the symmetry of the nanostar, as well as the orientation of the nanostar relative to its placement on the gold substrate. Our results demonstrate a simple new method to create an ultrasmall mode volume and polarization sensitive plasmonic platform which could be useful for applications in sensing or enhanced light-matter interactions.
Collapse
Affiliation(s)
- Negar Charchi
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| | - Ying Li
- Department of Electrical and Computer Engineering, University of Nebraska-LincolnLincolnNE 68588USA
| | - Margaret Huber
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| | | | - Xiaohua Huang
- Department of Chemistry, The University of MemphisMemphisTN 38152USA
| | - Christos Argyropoulos
- Department of Electrical and Computer Engineering, University of Nebraska-LincolnLincolnNE 68588USA
| | - Thang Hoang
- Department of Physics and Materials Science, The University of MemphisMemphisTN 38152USA
| |
Collapse
|
40
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1565] [Impact Index Per Article: 313.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
41
|
Pacaud M, Hervé-Aubert K, Soucé M, Makki AA, Bonnier F, Fahmi A, Feofanov A, Chourpa I. One-step synthesis of gold nanoflowers of tunable size and absorption wavelength in the red & deep red range for SERS spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117502. [PMID: 31499392 DOI: 10.1016/j.saa.2019.117502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
We describe a novel protocol for a one-step, seed-less, organic solvent- and surfactant-free synthesis of optically dense aqueous colloids of gold nanoflowers (AuNF), with tunable absorption wavelength between 620 and 800 nm. We demonstrate that simple variation of the ratio of two reagents allows the plasmonic band position to be tuned to any desired wavelength ± 5 nm, namely to those of the laser sources commonly used for SERS spectroscopy. The AuNF size distribution was sufficiently narrow, comparable to that known with seed-mediated synthesis. The AuNF have been validated as efficient aggregation-free substrates for surface-enhanced Raman scattering (SERS) spectroscopy using two common fluorescent dyes, Nile Blue and Crystal Violet, both thiol-free. Their fluorescence was quenched and SERS signal intensity was a linear function of the dye concentration, from nanomolar to micromolar range. Easy to prepare and to use, these AuNF appear as a particularly user-friendly and efficient way to obtain plasmonic substrates for SERS in the red and deep red spectral range.
Collapse
Affiliation(s)
- Mathias Pacaud
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France; Faculty Technology&Bionics, Rhein-Waal University of Applied Sciences, Kleve, Germany
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | | - Franck Bonnier
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Amir Fahmi
- Faculty Technology&Bionics, Rhein-Waal University of Applied Sciences, Kleve, Germany
| | - Alexey Feofanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France.
| |
Collapse
|
42
|
Tsoulos TV, Atta S, Lagos MJ, Beetz M, Batson PE, Tsilomelekis G, Fabris L. Colloidal plasmonic nanostar antennas with wide range resonance tunability. NANOSCALE 2019; 11:18662-18671. [PMID: 31584591 DOI: 10.1039/c9nr06533d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags, phototherapeutic agents, and hot electron-based photocatalytic platforms. Despite having emerged as the cornerstone among plasmonic nanoparticles with respect to resonant strength and tunability, some well-known limitations have hampered their technological implementation. Herein we tackle these recognized intrinsic weaknesses, which stem from the complex, and thus computationally untreatable morphology and the limited sample monodispersity, by proposing a novel 6-spike nanostar, which we have computationally studied and synthetically realized, as the epitome of 3D plasmonic nanoantenna with wide range plasmonic tunability. Our concerted computational and experimental effort shows that these nanostars combine the unique advantages of nanostructures fabricated from the top-down and those synthesized from the bottom-up, showcasing a unique plasmonic response that remains largely unaltered on going from the single particle to the ensemble. Furthermore, they display multiple, well-separated, narrow resonances, the most intense of which extends in space much farther than that observed before for any plasmonic mode localized around a colloidal nanostructure. Importantly, the unique close correlation between morphology and plasmonic response leads the resonant modes of these particles to be tunable between 600 and 2000 nm, a unique feature that could find relevance in cutting edge technological applications.
Collapse
Affiliation(s)
- Ted V Tsoulos
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| | - Supriya Atta
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | - Maureen J Lagos
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - Michael Beetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig Maximilians Universität München, 81377 Munich, Germany
| | - Philip E Batson
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA. and Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - George Tsilomelekis
- Department of Chemical and Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Laura Fabris
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Zhang Z, Gao J, Yu Z, Li G. Synthesis of tunable DNA-directed trepang-like Au nanocrystals for imaging application. NANOSCALE 2019; 11:18099-18108. [PMID: 31566198 DOI: 10.1039/c9nr06375g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multi-branched metal nanomaterials can exhibit precisely controllable plasmonic properties with the precise control of their sizes and morphologies. In this study, trepang-like gold nanocrystals (AuNCs) with tunable plasmonic properties were synthesized via DNA-directed self-assembly technology. The gold precursor was precisely controlled to be reduced and grow along the DNA skeleton of DNA-conjugated gold nanorods to form multi-branched trepang-like nanocrystals. It was investigated in detail and proven that several key factors greatly influenced the precise control of the morphology and plasmonic property of the proposed AuNCs during their synthesis, including the gold precursor, reducing agent, surfactant, loading amount of DNA and DNA structure. The relative finite-difference time-domain calculation results suggested that the change in the plasmonic resonance peak is consistent with the precise change in the size and morphology of the as-synthesized AuNCs. The trepang-like AuNCs exhibited broad absorption bands in the wavelength range of 700-1100 nm with a high photothermal conversion efficiency of 36.2%. Finally, the trepang-like AuNCs with good biocompatibility were applied in photothermal therapy and imaging analysis.
Collapse
Affiliation(s)
- Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | |
Collapse
|
44
|
Recent Advancement in the Surface-Enhanced Raman Spectroscopy-Based Biosensors for Infectious Disease Diagnosis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071448] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diagnosis is the key component in disease elimination to improve global health. However, there is a tremendous need for diagnostic innovation for neglected tropical diseases that largely consist of mosquito-borne infections and bacterial infections. Early diagnosis of these infectious diseases is critical but challenging because the biomarkers are present at low concentrations, demanding bioanalytical techniques that can deliver high sensitivity with ensured specificity. Owing to the plasmonic nanomaterials-enabled high detection sensitivities, even up to single molecules, surface-enhanced Raman spectroscopy (SERS) has gained attention as an optical analytical tool for early disease biomarker detection. In this mini-review, we highlight the SERS-based assay development tailored to detect key types of biomarkers for mosquito-borne and bacterial infections. We discuss in detail the variations of SERS-based techniques that have developed to afford qualitative and quantitative disease biomarker detection in a more accurate, affordable, and field-transferable manner. Current and emerging challenges in the advancement of SERS-based technologies from the proof-of-concept phase to the point-of-care phase are also briefly discussed.
Collapse
|
45
|
Xi W, Haes AJ. Elucidation of HEPES Affinity to and Structure on Gold Nanostars. J Am Chem Soc 2019; 141:4034-4042. [DOI: 10.1021/jacs.8b13211] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
46
|
Pylaev T, Vanzha E, Avdeeva E, Khlebtsov B, Khlebtsov N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers. JOURNAL OF BIOPHOTONICS 2019; 12:e201800166. [PMID: 30203552 DOI: 10.1002/jbio.201800166] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 09/09/2018] [Indexed: 05/23/2023]
Abstract
The recently developed laser-induced cell transfection mediated by Au nanoparticles is a promising alternative to the well-established lipid-based transfection or to electroporation. Optoporation is based on the laser plasmonic heating of nanoparticles located near the cell membrane. However, the uncontrollable cell damage from intense laser pulses and from random attachment of nanoparticles may be crucial for transfection. We present a novel plasmonic optoporation technique that uses Au nanostar layers immobilized in culture microplate wells. HeLa cells were grown directly on Au nanostar layers, after which they were subjected to continuous-wave 808 nm laser irradiation. An Au monolayer density ~15 μg/cm2 and an absorbed energy of about 15 to 30 J were found to be optimal for optoporation. Propidium iodide molecules were used as model penetrating agent. The transfection efficiency evaluated using fluorescence microscopy for HeLa cells transfected with pGFP under optimized optoporation conditions (95% ± 5%) was similar to the efficiency of TurboFect. The technique's efficiency (295 ± 10 relative light units, RLU), demonstrated by transfecting HeLa cells with the pCMV-GLuc 2 control plasmid, was greater than that obtained by transfection of HeLa cells with the TurboFect agent (220 ± 10 RLU). The cell viability in plasmonic optoporation (92% ± 7%), too, was greater than that in transfection with TurboFect (75% ± 7%).
Collapse
Affiliation(s)
- Timofey Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Ekaterina Vanzha
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Elena Avdeeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov National Research State University, Saratov, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
- Saratov National Research State University, Saratov, Russia
| |
Collapse
|
47
|
De Silva Indrasekara AS, Norton SJ, Geitner NK, Crawford BM, Wiesner MR, Vo-Dinh T. Tailoring the Core-Satellite Nanoassembly Architectures by Tuning Internanoparticle Electrostatic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14617-14623. [PMID: 30407828 DOI: 10.1021/acs.langmuir.8b02792] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of plasmonic nanoplatforms has received increasing interest in a wide variety of fields ranging from theranostics to environmental sensing to plant biology. In particular, the development of plasmonic nanoparticles into ordered nanoclusters has been of special interest due to the new chemical functionalities and optical responses that they can introduce. However, achieving predetermined nanocluster architectures from bottom-up approaches in the colloidal solution state still remains a great challenge. Herein, we report a one-pot assembly approach that provides flexibility in precise control of core-satellite nanocluster architectures in the colloidal solution state. We found that the pH of the assembly medium plays a vital role in the hierarchy of the nanoclusters. The architecture along with the size of the satellite gold nanoparticles determines the optical responses of nanoclusters. Using electron microscopy and optical spectroscopy, we introduce a set of design rules for the synthesis of distinct architectures of silica-core gold satellites nanoclusters in the colloidal solution state. Our findings provide insight into advancing the colloidal solution state nanoclusters formation with predictable architectures and optical properties.
Collapse
|
48
|
Kohout C, Santi C, Polito L. Anisotropic Gold Nanoparticles in Biomedical Applications. Int J Mol Sci 2018; 19:E3385. [PMID: 30380664 PMCID: PMC6274885 DOI: 10.3390/ijms19113385] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (AuNPs) play a crucial role in the development of nanomedicine, principally due to their unique photophysical properties and high biocompatibility. The possibility to tune and customize the localized surface plasmon resonance (LSPR) toward near-infrared region by modulating the AuNP shape is one of the reasons for the huge widespread use of AuNPs. The controlled synthesis of no-symmetrical nanoparticles, named anisotropic, is an exciting goal achieved by the scientific community which explains the exponential increase of the number of publications related to the synthesis and use of such type of AuNPs. Even with such steps forward and the AuNP translation in clinic being done, some key issues are still remain and they are related to a reliable and scalable production, a full characterization, and to the development of nanotoxicology studies on the long run. In this review we highlight the very recent advances on the synthesis of the main classes of anisotropic AuNPs (nanorods, nanourchins and nanocages) and their use in the biomedical fields, in terms of diagnosis and therapeutics.
Collapse
Affiliation(s)
- Claudia Kohout
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Cristina Santi
- Department of Chemistry, University of Milan, via C. Golgi 19, 20131 Milan, Italy.
| | - Laura Polito
- ISTM-CNR, Nanotechnology Lab., via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|