1
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
2
|
Thuan NH, Shrestha A, Trung NT, Tatipamula VB, Van Cuong D, Canh NX, Van Giang N, Kim TS, Sohng JK, Dhakal D. Advances in biochemistry and the biotechnological production of taxifolin and its derivatives. Biotechnol Appl Biochem 2022; 69:848-861. [PMID: 33797804 DOI: 10.1002/bab.2156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/20/2021] [Indexed: 01/31/2023]
Abstract
Taxifolin (dihydroquercetin) and its derivatives are medicinally important flavanonols with a wide distribution in plants. These compounds have been isolated from various plants, such as milk thistle, onions, french maritime, and tamarind. In general, they are commercially generated in semisynthetic forms. Taxifolin and related compounds are biosynthesized via the phenylpropanoid pathway, and most of the biosynthetic steps have been functionally characterized. The knowledge gained through the detailed investigation of their biosynthesis has provided the foundation for the reconstruction of biosynthetic pathways. Plant- and microbial-based platforms are utilized for the expression of such pathways for generating taxifolin-related compounds, either by whole-cell biotransformation or through reconfiguration of the genetic circuits. In this review, we summarize recent advances in the biotechnological production of taxifolin and its derivatives.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Anil Shrestha
- Combinatorial Biosynthesis National Research Laboratory, Ewha Womans University, Seoul, Republic of Korea
| | - Nguyen Thanh Trung
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | | | - Duong Van Cuong
- Faculty of Biotechnology and Food Technology, Thainguyen University of Agriculture and Forestry, Thainguyen, Vietnam
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Nguyen Van Giang
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Tae-Su Kim
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Jae Kyung Sohng
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan-si, Chungnam, Republic of Korea
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Milivojević A, Ćorović M, Simović M, Banjanac K, Bezbradica D. Flavonoid esters synthesis using novel biocatalytic systems - CAL B immobilized onto LifeTech™ ECR supports. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Gajdos L, Forsyth VT, Blakeley MP, Haertlein M, Imberty A, Samain E, Devos JM. Production of perdeuterated fucose from glyco-engineered bacteria. Glycobiology 2020; 31:151-158. [PMID: 32601663 PMCID: PMC7874385 DOI: 10.1093/glycob/cwaa059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/29/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022] Open
Abstract
l-Fucose and l-fucose-containing polysaccharides, glycoproteins or glycolipids play an important role in a variety of biological processes. l-Fucose-containing glycoconjugates have been implicated in many diseases including cancer and rheumatoid arthritis. Interest in fucose and its derivatives is growing in cancer research, glyco-immunology, and the study of host–pathogen interactions. l-Fucose can be extracted from bacterial and algal polysaccharides or produced (bio)synthetically. While deuterated glucose and galactose are available, and are of high interest for metabolic studies and biophysical studies, deuterated fucose is not easily available. Here, we describe the production of perdeuterated l-fucose, using glyco-engineered Escherichia coli in a bioreactor with the use of a deuterium oxide-based growth medium and a deuterated carbon source. The final yield was 0.2 g L−1 of deuterated sugar, which was fully characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. We anticipate that the perdeuterated fucose produced in this way will have numerous applications in structural biology where techniques such as NMR, solution neutron scattering and neutron crystallography are widely used. In the case of neutron macromolecular crystallography, the availability of perdeuterated fucose can be exploited in identifying the details of its interaction with protein receptors and notably the hydrogen bonding network around the carbohydrate binding site.
Collapse
Affiliation(s)
- Lukas Gajdos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France.,Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Matthew P Blakeley
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Michael Haertlein
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Eric Samain
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble 38000, France
| | - Juliette M Devos
- Life Sciences Group, Institut Laue-Langevin, 71 Avenue des Martyrs, Grenoble 38000, France.,Partnership for Structural Biology (PSB), 71 Avenue des Martyrs, Grenoble 38000, France
| |
Collapse
|
5
|
Advances on the in vivo and in vitro glycosylations of flavonoids. Appl Microbiol Biotechnol 2020; 104:6587-6600. [PMID: 32514754 DOI: 10.1007/s00253-020-10667-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Flavonoids possess diverse bioactivity and potential medicinal values. Glycosylation of flavonoids, coupling flavonoid aglycones and glycosyl groups in conjugated form, can change the biological activity of flavonoids, increase water solubility, reduce toxic and side effects, and improve specific targeting. Therefore, it is desirable to synthesize various flavonoid glycosides for further investigation on their medicinal values. Compared with chemical glycosylations, biotransformations catalyzed by uridine diphospho-glycosyltransferases provide an environmentally friendly way to construct glycosidic bonds without repetitive chemical synthetic steps of protection, activation, coupling, and deprotection. In this review, we will summarize the existing knowledge on the biotechnological glycosylation reactions either in vitro or in vivo for the synthesis of flavonoid O- and C-glycosides and other rare analogs.Key points• Flavonoid glycosides usually show improved properties compared with their flavonoid aglycones.• Chemical glycosylation requires repetitive synthetic steps and purifications.• Biotechnological glycosylation reactions either in vitro or in vivo were discussed.• Provides representative synthetic examples in detail.
Collapse
|
6
|
Feng Y, Yao M, Wang Y, Ding M, Zha J, Xiao W, Yuan Y. Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes. Biotechnol Adv 2020; 41:107538. [PMID: 32222423 DOI: 10.1016/j.biotechadv.2020.107538] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022]
Abstract
Plant glycosides are of great interest for industries. Glycosylation of plant secondary metabolites can greatly improve their solubility, biological activity, or stability. This allows some plant glycosides to be used as food additives, cosmetic products, health products, antisepsis and anti-cancer drugs. With the continuous expansion of market demand, a variety of biological fermentation technologies has emerged. This review focuses on recombinant microbial biosynthesis of plant glycosides, which uses UDP-sugars as precursors, and summarizes various strategies to increase the yield of glycosides with a key concentration on UDP-sugar supply based on four aspects, i.e., gene overexpression, UDP-sugar recycling, mixed fermentation, and carbon co-utilization. Meanwhile, the application potential and advantages of various techniques are introduced, which provide guidance to the development of high-yield strains for recombinant microbial production of plant glycosides. Finally, the technical challenges of glycoside biosynthesis are pointed out with discussions on future directions of improving the yield of recombinantly synthesized glycosides.
Collapse
Affiliation(s)
- Yueyang Feng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
7
|
Making brilliant colors by microorganisms. Curr Opin Biotechnol 2020; 61:135-141. [DOI: 10.1016/j.copbio.2019.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022]
|
8
|
Akdemir H, Silva A, Zha J, Zagorevski DV, Koffas MAG. Production of pyranoanthocyanins using Escherichia coli co-cultures. Metab Eng 2019; 55:290-298. [PMID: 31125607 DOI: 10.1016/j.ymben.2019.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Hydroxyphenyl-pyranoanthocyanins are one of the pyranoanthocyanins found in red wines and some fruit juices. Since they have a fourth ring (pyran or ring D) which provides higher color intensity and exceptional stability toward pH variations in comparison to their anthocyanin precursors, these molecules are one of the most important candidates as natural colorants especially for low- and medium-acidic food and beverages. However, their isolation and characterization are difficult due to their very low concentration. In this study, we co-cultured recombinant E. coli strains to synthesize pyranoanthocyanins with improved titers and yields. To accomplish this task, firstly we engineered 4-vinylphenol and 4-vinylcatechol producer modules then we co-cultured each one of these strains with cyanidin-3-O-glucoside producer recombinant cells to obtain pyranocyanidin-3-O-glucoside-phenol (cyanidin-3-O-glucoside with vinylphenol adduct) and pyranocyanidin-3-O-glucoside-catechol (cyanidin-3-O-glucoside with vinylcatechol adduct). By optimizing the co-culture conditions, we were able to significantly increase final titers and yields, allowing our co-culture approach to easily outperform production of pyranoanthocyanins from red wine. Finally, we demonstrate that the produced pyranoanthocyanins are far more stable than the starting plant-produced cyanidin 3-O-glucoside.
Collapse
Affiliation(s)
- Hulya Akdemir
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Faculty of Science, Molecular Biology and Genetics, Gebze Technical University, Gebze, Kocaeli, Turkey; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Adilson Silva
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Chemical Engineering Department, Federal University of São Carlos, São Carlos, SP, Brazil; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Dmitri V Zagorevski
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
9
|
Cress BF, Bhaskar U, Vaidyanathan D, Williams A, Cai C, Liu X, Fu L, M‐Chari V, Zhang F, Mousa SA, Dordick JS, Koffas MAG, Linhardt RJ. Heavy Heparin: A Stable Isotope‐Enriched, Chemoenzymatically‐Synthesized, Poly‐Component Drug. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brady F. Cress
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Ujjwal Bhaskar
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Deepika Vaidyanathan
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Asher Williams
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
| | - Chao Cai
- CBIS, RPI 110 8th St. Troy NY 12180 USA
| | | | - Li Fu
- CBIS, RPI 110 8th St. Troy NY 12180 USA
| | - Vandhana M‐Chari
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
- PRI Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
| | | | - Shaker A. Mousa
- Pharmaceutical Research Institute Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
- PRI Albany College of Pharmacy and Health Sciences 106 New Scotland Ave. Albany NY 12208 USA
| | - Jonathan S. Dordick
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
| | - Mattheos A. G. Koffas
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
| | - Robert J. Linhardt
- CBIS, RPI 110 8th St. Troy NY 12180 USA
- Department of Chemical and Biological Engineering RPI 110 8th St. Troy NY 12180 USA
- Department of Biological Sciences RPI 110 8th St. Troy NY 12180 USA
- Department of Chemistry and Chemical Biology RPI 110 8th St. Troy NY 12180 USA
| |
Collapse
|
10
|
Cress BF, Bhaskar U, Vaidyanathan D, Williams A, Cai C, Liu X, Fu L, M-Chari V, Zhang F, Mousa SA, Dordick JS, Koffas MAG, Linhardt RJ. Heavy Heparin: A Stable Isotope-Enriched, Chemoenzymatically-Synthesized, Poly-Component Drug. Angew Chem Int Ed Engl 2019; 58:5962-5966. [PMID: 30870573 PMCID: PMC6461503 DOI: 10.1002/anie.201900768] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/07/2022]
Abstract
Heparin is a highly sulfated, complex polysaccharide and widely used anticoagulant pharmaceutical. In this work, we chemoenzymatically synthesized perdeuteroheparin from biosynthetically enriched heparosan precursor obtained from microbial culture in deuterated medium. Chemical de-N-acetylation, chemical N-sulfation, enzymatic epimerization, and enzymatic sulfation with recombinant heparin biosynthetic enzymes afforded perdeuteroheparin comparable to pharmaceutical heparin. A series of applications for heavy heparin and its heavy biosynthetic intermediates are demonstrated, including generation of stable isotope labeled disaccharide standards, development of a non-radioactive NMR assay for glucuronosyl-C5-epimerase, and background-free quantification of in vivo half-life following administration to rabbits. We anticipate that this approach can be extended to produce other isotope-enriched glycosaminoglycans.
Collapse
Affiliation(s)
- Brady F. Cress
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Ujjwal Bhaskar
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Deepika Vaidyanathan
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Asher Williams
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Chao Cai
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Xinyue Liu
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Li Fu
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Vandhana M-Chari
- PRI, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA); Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA)
| | | | - Shaker A. Mousa
- PRI, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA); Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave., Albany, NY, 12208 (USA)
| | - Jonathan S. Dordick
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Mattheos A. G. Koffas
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| | - Robert J. Linhardt
- CBIS, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemistry and Chemical Biology, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Biological Sciences, RPI, 110 8 St., Troy, NY 12180 (USA); Department of Chemical and Biological Engineering, RPI, 110 8 St., Troy, NY 12180 (USA)
| |
Collapse
|