1
|
Yang G, Bi F, Yu D, Wang Y, Ren H, Wei H, Wang Z, Huang B. Engineering Entomopathogenic Fungi Using Thermal-Responsive Polymer to Boost Their Resilience against Abiotic Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20308-20320. [PMID: 39225683 DOI: 10.1021/acs.jafc.4c04400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Entomopathogenic fungi offer an ecologically sustainable and highly effective alternative to chemical pesticides for managing plant pests. However, the efficacy of mycoinsecticides in pest control suffers from environmental abiotic stresses, such as solar UV radiation and temperature fluctuations, which seriously hinder their practical application in the field. Herein, we discovered that the synthetic amphiphilic thermal-responsive polymers are able to significantly enhance the resistance of Metarhizium robertsii conidia against thermal and UV irradiation stresses. The thermosensitive polymers with extremely low cytotoxicity and good biocompatibility can be engineered onto the M. robertsii conidia surface by anchoring hydrophobic alkyl chains. Further investigations revealed that polymer supplementation remarkably augmented the capacity for penetration and the virulence of M. robertsii under heat and UV stresses. Notably, broad-spectrum entomopathogenic fungi can be protected by the polymers. The molecular mechanism was elucidated through exploring RNA sequencing and in vivo/vitro enzyme activity assays. This work provides a novel avenue for fortifying the resilience of entomopathogenic fungi, potentially advancing their practical application as biopesticides.
Collapse
Affiliation(s)
- Guang Yang
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Hefei, Anhui 230036, China
| | - Feihu Bi
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Ren
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hanchen Wei
- Department of Material Science and Engineering, School of Material and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhangxun Wang
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
2
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Martinez Y, Ribera J, Schwarze FWMR, De France K. Biotechnological development of Trichoderma-based formulations for biological control. Appl Microbiol Biotechnol 2023; 107:5595-5612. [PMID: 37477696 PMCID: PMC10439859 DOI: 10.1007/s00253-023-12687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Trichoderma spp. are a genus of well-known fungi that promote healthy growth and modulate different functions in plants, as well as protect against various plant pathogens. The application of Trichoderma and its propagules as a biological control method can therefore help to reduce the use of chemical pesticides and fertilizers in agriculture. This review critically discusses and analyzes groundbreaking innovations over the past few decades of biotechnological approaches to prepare active formulations containing Trichoderma. The use of various carrier substances is covered, emphasizing their effects on enhancing the shelf life, viability, and efficacy of the final product formulation. Furthermore, the use of processing techniques such as freeze drying, fluidized bed drying, and spray drying are highlighted, enabling the development of stable, light-weight formulations. Finally, promising microencapsulation techniques for maximizing the performance of Trichoderma spp. during application processes are discussed, leading to the next-generation of multi-functional biological control formulations. KEY POINTS: • The development of carrier substances to encapsulate Trichoderma propagules is highlighted. • Advances in biotechnological processes to prepare Trichoderma-containing formulations are critically discussed. • Current challenges and future outlook of Trichoderma-based formulations in the context of biological control are presented.
Collapse
Affiliation(s)
- Yolanda Martinez
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Javier Ribera
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
| | - Kevin De France
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
- Department of Chemical Engineering, Queen's University, Kingston, Canada.
| |
Collapse
|
4
|
Ali M, Cybulska J, Frąc M, Zdunek A. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. Int J Biol Macromol 2023; 244:125366. [PMID: 37327939 DOI: 10.1016/j.ijbiomac.2023.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Intensive farming practices have increased the consumption of chemical-based pesticides and fertilizers thereby creating health issues for humans and animals and also causing a deterioration in the natural ecosystem. The promotion of biomaterials synthesis could potentially lead to the replacement of synthetic products and improve soil fertility, protect plants from pathogen attacks, and enhance the productivity of the agricultural sector resulting in less environmental pollution. Microbial bioengineering involving the use and improvement of encapsulation using polysaccharides has the required potential to address environmental issues and promote green chemistry. This article describes various encapsulation techniques and polysaccharides which have an immense applicable capability to encapsulate microbial cells. The review elucidates the factors that may result in a reduced viable cell count during encapsulation, particularly using the spray drying method, where a high temperature is required to dry the suspension, this may damage the microbial cells. The environmental advantage of the application of polysaccharides as carriers of beneficial microorganisms, which do not pose a risk for soil due to their full biodegradability, was also shown. The encapsulated microbial cells may assist in addressing certain environmental problems such as ameliorating the unfavourable effects of plant pests and pathogens, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland.
| | - Madgalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
5
|
Ramakrishnan J, Salame L, Ananth Mani K, Feldbaum R, Karavani E, Mechrez G, Glazer I, Ment D. Increasing the Survival and Efficacy of Entomopathogenic Nematodes on Exposed Surfaces by Pickering Emulsion Formulations Offers New Venue for Foliar Pest Management. J Invertebr Pathol 2023; 199:107938. [PMID: 37268287 DOI: 10.1016/j.jip.2023.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
Formulation technology has been the primordial focus to improve the low viability and erratic infectivity of entomopathogenic nematodes (EPNs) for foliar application. Adaptability to the fluctuating environment is a key trait in ensuring the survival and efficacy of EPNs. Hence, tailoring formulations towards EPNs foliar applications would effectively deliver consistent and reliable results for above-ground applications. EPNs survival and activity were characterized in novel Pickering emulsion post-application in planta cotton foliage. Two different types of novel formulations, Titanium Pickering emulsion (TPE) and Silica Pickering emulsion Gel (SPEG), were tailored for EPNs foliar applications. We report an extension of survival and infectivity to 96 hrs under controlled conditions by SPEG formulations for survival of IJ's on cotton foliage. In addition, survival of IJs (LT50) was extended from 14hrs in water to >80 hrs and >40 hrs by SPEG and TPE respectively. SPEG accounted for the slowest decrease of live IJs per surface area in comparison to TPE and control samples over time, exhibiting a 6-fold increase at 48 hrs. Under extreme conditions, survival and efficacy were extended for 8hrs in SPEG compared to merely 2hrs in control. Potential implications and possible mechanisms of protection are discussed.
Collapse
Affiliation(s)
- Jayashree Ramakrishnan
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Liora Salame
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Karthik Ananth Mani
- Department of Food Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Reut Feldbaum
- Department of Food Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable Research, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Guy Mechrez
- Department of Food Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Itamar Glazer
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
6
|
Zhang Y, Bao Y, Zhang W, Xiang R. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres. J Colloid Interface Sci 2023; 633:1012-1021. [PMID: 36516677 DOI: 10.1016/j.jcis.2022.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/10/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Classical (solid particles stabilized) Pickering emulsions have been widely studied due to the irreversible adsorption of solid particles at the oil-water interface. Mesoporous hollow silica microspheres (MHSMs) are promising stabilizers for Pickering emulsion owing to its larger specific surface area and lower apparent density. However, this type of Pickering emulsion has not attracted enough attention. The stabilization mechanism of Pickering emulsion by MHSMs has not been studied in detail yet. EXPERIMENTS Herein, stable Pickering emulsions were prepared using only MHSMs as stabilizers. In order to investigate its stabilization mechanism, the effect factors of size, shell thickness, wettability and concentration of MHSMs, and oil/water ratio on the stability of Pickering emulsions were analyzed deeply. FINDINGS As a result, the stability of Pickering emulsion can be improved by MHSMs with smaller particle size and shell thickness. Also, MHSMs with the intermediate hydrophobicity and suitable oil/water ratio actually do favour for the stability of Pickering emulsion. As expected, the stability of Pickering emulsion can be enhanced by increasing the concentration of MHSMs in a certain range. The Pickering emulsions tend to achieve excellent stable state when the concentration of MHSMs is 1.25 mg/mL. All those results suggested that the stability of Pickering emulsions correlates directly to particle size, shell thickness, wettability and concentration of MHSMs, and oil/water ratio. This research paves a way for the fabrication of functional materials via Pickering emulsions.
Collapse
Affiliation(s)
- Yuanxia Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, PR China.
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Ru Xiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
7
|
Wu S, Mechrez G, Ment D, Toews MD, Ananth Mani K, Amar Feldbaum R, Shapiro-Ilan DI. Tolerance of Steinernema carpocapsae infective juveniles in novel nanoparticle formulations to ultraviolet radiation. J Invertebr Pathol 2023; 196:107851. [PMID: 36400242 DOI: 10.1016/j.jip.2022.107851] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Entomopathogenic nematodes (EPNs) are susceptible to abiotic environmental factors including ultraviolet (UV) radiation, which affects the survival and efficacy. This study evaluated nanoparticle (NP) formulations for protecting Steinernema carpocapsae infective juveniles (IJs) from UV radiation. First, silica-NH2 NPs at oil-to-water ratios of 2:8, 3:7 and 4:6 were compared with Barricade Fire Gel (1 % and 2 %) and a water control (aqueous IJs) by exposing IJs to UV light (254 nm) for 0, 10 and 20 min. Barricade gel (especially 2 % Barricade) significantly improved IJs viability after UV treatment, while all three NPs had adverse effects on IJ viability after UV radiation. Subsequently, two silica (SiO2 basic and advanced) and one titania (TiO2) based formulations were tested with Barricade (1 % and 2 %) and a water control. The titania-NH2 NPs provided the highest UV protection, and IJ viability and virulence were not reduced even after 20-min UV. Except TiO2, only 2 % Barricade at 10-min UV and SiO2 basic at 20-min UV had lower IJ mortality than the water control. Only TiO2 formulated IJs caused higher insect mortality and infection levels than aqueous IJs after UV treatment. The UV tolerance of TiO2 was further examined by assessing the number of nematodes invading the hosts. Consistent with virulence tests, the number of invading nematodes in titania-NH2 NPs did not decrease after UV radiation for 10 or 20 min compared with the no-UV control. The anti-UV capability of titania-NH2 NPs has promise as a tool to enhance biocontrol efficacy of EPNs under field conditions.
Collapse
Affiliation(s)
- Shaohui Wu
- Department of Entomology, University of Georgia, Tifton GA 31793, USA.
| | - Guy Mechrez
- Department of Food Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, 7505101 Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Volcani Center, Agricultural Research Organization, 7505101 Rishon LeZion, Israel
| | - Michael D Toews
- Department of Entomology, University of Georgia, Tifton GA 31793, USA
| | - Karthik Ananth Mani
- Department of Food Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, 7505101 Rishon LeZion, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Reut Amar Feldbaum
- Department of Food Science, Institute of Postharvest and Food Sciences, Volcani Center, Agricultural Research Organization, 7505101 Rishon LeZion, Israel
| | | |
Collapse
|
8
|
Biopolymer-based emulsions for the stabilization of Trichoderma atrobrunneum conidia for biological control. Appl Microbiol Biotechnol 2023; 107:1465-1476. [PMID: 36683057 PMCID: PMC9898383 DOI: 10.1007/s00253-023-12381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Trichoderma spp. are ubiquitous soil-borne fungi that are widely used in biological control to promote and regulate healthy plant growth, as well as protect against plant pathogens. However, as with many biological materials, the relative instability of Trichoderma propagules limits its practical use in industrial applications. Therefore, there has been significant research interest in developing novel formulations with various carrier substances that are compatible with these fungal propagules and can enhance the shelf-life and overall efficacy of the Trichoderma. To this end, herein, we investigate the use of a variety of biopolymers and nanoparticles for the stabilization of Trichoderma atrobrunneum T720 conidia for biological control. The best-performing agents-agar and cellulose nanocrystals (CNC)-were then used in the preparation of oil-in-water emulsions to encapsulate conidia of T720. Emulsion properties including oil type, oil:water ratio, and biopolymer/particle concentration were investigated with respect to emulsion stability, droplet size, and viability of T720 conidia over time. Overall, agar-based formulations yielded highly stable emulsions with small droplet sizes, showing no evidence of drastic creaming, or phase separation after 1 month of storage. Moreover, agar-based formulations were able to maintain ~ 100% conidial viability of T720 after 3 months of storage, and over 70% viability after 6 months. We anticipate that the results demonstrated herein will lead to a new generation of significantly improved formulations for practical biological control applications. KEY POINTS: • Various biopolymers were evaluated for improving the stability of Trichoderma conidia • Oil in water emulsions was prepared using cellulose nanocrystals and agar as interface stabilizers • Agar-based emulsions showed ~ 100% viability for encapsulated conidia after 3 months of storage.
Collapse
|
9
|
Emulsion Gel: a Dual Drug Delivery Platform for Osteoarthritis Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Encapsulation of Bioactive Compounds for Food and Agricultural Applications. Polymers (Basel) 2022; 14:polym14194194. [PMID: 36236142 PMCID: PMC9571964 DOI: 10.3390/polym14194194] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 02/06/2023] Open
Abstract
This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.
Collapse
|
11
|
Mani KA, Berenice M, Yaakov N, Feldbaum RA, Kotliarevsk L, Naftali SM, Belausov E, Zelinger E, Fallik E, Dombrovsky A, Mechrez G. Encapsulation of anti‐viral active material for plant protection based on inverse Pickering emulsions. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karthik Ananth Mani
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Meche Berenice
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Noga Yaakov
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Liliya Kotliarevsk
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Shoham Matsrafi Naftali
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot Israel
| | - Elazar Fallik
- Department of Postharvest Science Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| | - Guy Mechrez
- Department of Food Sciences Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute Rishon Lezion Israel
| |
Collapse
|
12
|
The impact of SiO2 nanoparticles on the dilational viscoelastic properties of water-nonionic surfactant-fuel interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Current developments in the resistance, quality, and production of entomopathogenic fungi. World J Microbiol Biotechnol 2022; 38:115. [PMID: 35581403 DOI: 10.1007/s11274-022-03301-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
There is a worldwide concern to achieve food security with a sustainable approach, including the generation and implementation of techniques for the production of high-quality chemical-free crops. This food revolution has promoted the development and consolidation of programmes for integrated pest management. Some of those programmes include the use of diverse organisms (biological control agents) to suppress populations of pests potentially harmful to the crops. Among these biological control agents are entomopathogenic fungi that are highly effective in suppressing a diversity of insects and have, therefore, been produced and marketed throughout the world. However, the bottleneck for applying entomopathogenic fungi is the production of propagules (blastospores and conidia) with resistance to environment conditions and abiotic factors, maintaining high quality in terms of virulence. Therefore, this manuscript presents recent studies related to increasing resistance and quality using different bioreactors to produce conidia. The above presents a global panorama related to current developments that contribute to improving the resistance, quality, and production of entomopathogenic fungal propagules.
Collapse
|
14
|
Yaakov N, Kottakota C, Mani KA, Naftali SM, Zelinger E, Davidovitz M, Ment D, Mechrez G. Encapsulation of Bacillus thuringiensis in an inverse Pickering emulsion for pest control applications. Colloids Surf B Biointerfaces 2022; 213:112427. [PMID: 35219966 DOI: 10.1016/j.colsurfb.2022.112427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 01/23/2023]
Abstract
Here, we present an inverse Pickering emulsion-based formulation for Bacillus thuringiensis serovar aizawai (BtA) encapsulations utilized towards pest control applications. The emulsification was carried out by high shear homogenization process via ULTRA-TURRAX®. The water-in-mineral oil emulsions were stabilized by commercial hydrophobic silica. Different silica contents and water/oil ratios were studied. Stable emulsions were obtained at 2 and 3 wt% silica at 30% and 20% water volumes, respectively. The structure of the Pickering emulsions were characterized by laser scanning confocal microscopy and cryogenic scanning electron microscopy. The BtA cells, spores and crystals were encapsulated in the water droplets of the inverse Pickering emulsions. An emulsion composed of 3 wt% silica and 30% water was found to be the most suitable for encapsulation. The pest control efficiency of the encapsulated BtA against Spodoptera littoralis first instar larvae was tested. The studied BtA/emulsion system exhibited a mortality rate of 92%. However, the non-formulated BtA has shown 71% mortality, and the emulsion alone resulted in only 9% mortality. These findings confirm that an emulsion with encapsulated BtA can function as an efficient formulation for biopesticides.
Collapse
Affiliation(s)
- Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Chandrasekhar Kottakota
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Department of Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Anantapurum, Andhra Pradesh, 515002, Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur, Andhra Pradesh 522034, India
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Shoham Matsrafi Naftali
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Michael Davidovitz
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
15
|
Kotliarevski L, Mani KA, Feldbaum RA, Yaakov N, Belausov E, Zelinger E, Ment D, Mechrez G. Single-Conidium Encapsulation in Oil-in-Water Pickering Emulsions at High Encapsulation Yield. Front Chem 2021; 9:726874. [PMID: 34912776 PMCID: PMC8666500 DOI: 10.3389/fchem.2021.726874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
This study presents an individual encapsulation of fungal conidia in an oil-in-water Pickering emulsion at a single-conidium encapsulation yield of 44%. The single-conidium encapsulation yield was characterized by analysis of confocal microscopy micrographs. Mineral oil-in-water emulsions stabilized by amine-functionalized titania dioxide (TiO2-NH2 or titania-NH2) particles were prepared. The structure and the stability of the emulsions were investigated at different compositions by confocal microscopy and a LUMiSizer® respectively. The most stable emulsions with a droplet size suitable for single-conidium encapsulation were further studied for their individual encapsulation capabilities. The yields of individual encapsulation in the emulsions; i.e., the number of conidia that were individually encapsulated out of the total number of conidia, were characterized by confocal microscopy assay. This rapid, easy to use approach to single-conidium encapsulation, which generates a significantly high yield with eco-friendly titania-based emulsions, only requires commonly used emulsification and agitation methods.
Collapse
Affiliation(s)
- Liliya Kotliarevski
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel.,Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Science, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
16
|
Maayan M, Mani KA, Yaakov N, Natan M, Jacobi G, Atkins A, Zelinger E, Fallik E, Banin E, Mechrez G. Fluorine-Free Superhydrophobic Coating with Antibiofilm Properties Based on Pickering Emulsion Templating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37693-37703. [PMID: 34337945 DOI: 10.1021/acsami.1c10125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study presents antibiofilm coating formulations based on Pickering emulsion templating. The coating contains no bioactive material because its antibiofilm properties stem from passive mechanisms that derive solely from the superhydrophobic nature of the coating. Moreover, unlike most of the superhydrophobic formulations, our system is fluorine-free, thus making the method eminently suitable for food and medical applications. The coating formulation is based on water in toluene or xylene emulsions that are stabilized using commercial hydrophobic silica, with polydimethylsiloxane (PDMS) dissolved in toluene or xylene. The structure of the emulsions and their stability was characterized by confocal microscopy and cryogenic-scanning electron microscopy (cryo-SEM). The most stable emulsions are applied on polypropylene (PP) surfaces and dried in an oven to form PDMS/silica coatings in a process called emulsion templating. The structure of the resulting coatings was investigated by atomic force microscopy (AFM) and SEM. The surface of the coatings shows a honeycomb-like structure that exhibits a combination of micron-scale and nanoscale roughness, which endows it with its superhydrophobic properties. After tuning, the superhydrophobic properties of the coatings demonstrated highly efficient passive antibiofilm activity. In vitro antibiofilm trials with E. coli indicate that the coatings reduced the biofilm accumulation by 83% in the xylene-water-based surfaces and by 59% in the case of toluene-water-based surfaces.
Collapse
Affiliation(s)
- Mor Maayan
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Michal Natan
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Gila Jacobi
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Einat Zelinger
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Elazar Fallik
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| | - Ehud Banin
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, Rishon Lezion 7505101, Israel
| |
Collapse
|
17
|
Birnbaum N, Reingold V, Matveev S, Kottakota C, Davidovitz M, Mani KA, Feldbaum R, Yaakov N, Mechrez G, Ment D. Not Only a Formulation: The Effects of Pickering Emulsion on the Entomopathogenic Action of Metarhizium brunneum. J Fungi (Basel) 2021; 7:jof7070499. [PMID: 34201446 PMCID: PMC8307842 DOI: 10.3390/jof7070499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Growing global population and environmental concerns necessitate the transition from chemical to eco-friendly pest management. Entomopathogenic fungi (EPF) are rising candidates for this task due to their ease of growing, broad host range and unique disease process, allowing EPF to infect hosts directly through its cuticle. However, EPF’s requirement for high humidity negates their integration into conventional agriculture. To mitigate this problem, we formulated Metarhizium brunneum conidia in an oil-in-water Pickering emulsion. Conidia in aqueous and emulsion formulations were sprayed on Ricinus communis leaves, and Spodoptera littoralis larvae were introduced under low or high humidity. The following were examined: conidial dispersion on leaf, larval mortality, conidial acquisition by larvae, effects on larval growth and feeding, and dynamic of disease progression. Emulsion was found to disperse conidia more efficiently and caused two-fold more adhesion of conidia to host cuticle. Mortality from conidia in emulsion was significantly higher than other treatments reaching 86.5% under high humidity. Emulsion was also found to significantly reduce larval growth and feeding, while conferring faster fungal growth in-host. Results suggest that a Pickering emulsion is able to improve physical interactions between the conidia and their surroundings, while weakening the host through a plethora of mechanisms, increasing the chance of an acute infection.
Collapse
Affiliation(s)
- Nitsan Birnbaum
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
| | - Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
| | - Chandrasekhar Kottakota
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
| | - Michael Davidovitz
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Karthik Ananth Mani
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Reut Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- Correspondence:
| |
Collapse
|
18
|
Cao H, Escamilla M, Arole KD, Holta D, Lutkenhaus JL, Radovic M, Green MJ, Pentzer EB. Flocculation of MXenes and Their Use as 2D Particle Surfactants for Capsule Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2649-2657. [PMID: 33591205 DOI: 10.1021/acs.langmuir.0c03244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MXenes, transition metal carbides or nitrides, have gained great attention in recent years due to their high electrical conductivity and catalytic activity, hydrophilicity, and diverse surface chemistry. However, high hydrophilicity and negative ζ potential of the MXene nanosheets limit their processability and interfacial assembly. Previous examples for modifying the dispersibility and wettability of MXenes have focused on the use of organic ligands, such as alkyl amines, or covalent modification with triethoxysilanes. Here, we report a simple method to access MXene-stabilized oil-in-water emulsions by using common inorganic salts (e.g., NaCl) to flocculate the nanosheets and demonstrate the use of these Pickering emulsions to prepare capsules with shells of MXene and polymer. Ti3C2Tz nanosheets are used as the representative MXene. The salt-flocculated MXene nanosheets produce emulsions that are stable for days, as determined by optical microscopy imaging. The incorporation of a diisocyanate in the discontinuous oil phase and diamine in the continuous water phase led to interfacial polymerization and the formation of capsules. The capsules were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming the presence of both polymer and nanosheets. The addition of ethanol to the capsules led to the removal of the toluene core and retention of the shell structure. The ability to assemble MXene nanosheets at fluid-fluid interfaces without the use of ligands or cosurfactants expands the accessible material constructs relevant for biomedical engineering, water purification, energy storage, electromagnetic electronics, catalysis, and so on.
Collapse
Affiliation(s)
- Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Maria Escamilla
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kailash Dhondiram Arole
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Dustin Holta
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jodie L Lutkenhaus
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Miladin Radovic
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Emily B Pentzer
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Sci Rep 2021; 11:1462. [PMID: 33446817 PMCID: PMC7809280 DOI: 10.1038/s41598-021-81049-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/03/2021] [Indexed: 01/29/2023] Open
Abstract
Cannabis sativa is widely used for medical purposes and has anti-inflammatory activity. This study intended to examine the anti-inflammatory activity of cannabis on immune response markers associated with coronavirus disease 2019 (COVID-19) inflammation. An extract fraction from C. sativa Arbel strain (FCBD) substantially reduced (dose dependently) interleukin (IL)-6 and -8 levels in an alveolar epithelial (A549) cell line. FCBD contained cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV), and multiple terpenes. Treatments with FCBD and a FCBD formulation using phytocannabinoid standards (FCBD:std) reduced IL-6, IL-8, C-C Motif Chemokine Ligands (CCLs) 2 and 7, and angiotensin I converting enzyme 2 (ACE2) expression in the A549 cell line. Treatment with FCBD induced macrophage (differentiated KG1 cell line) polarization and phagocytosis in vitro, and increased CD36 and type II receptor for the Fc region of IgG (FcγRII) expression. FCBD treatment also substantially increased IL-6 and IL-8 expression in macrophages. FCBD:std, while maintaining anti-inflammatory activity in alveolar epithelial cells, led to reduced phagocytosis and pro-inflammatory IL secretion in macrophages in comparison to FCBD. The phytocannabinoid formulation may show superior activity versus the cannabis-derived fraction for reduction of lung inflammation, yet there is a need of caution proposing cannabis as treatment for COVID-19.
Collapse
|
20
|
Yeh SC, Wu CH, Huang YC, Lee JY, Jeng RJ. In Search of a Green Process: Polymeric Films with Ordered Arrays via a Water Droplet Technique. Polymers (Basel) 2019; 11:E1473. [PMID: 31505874 PMCID: PMC6780950 DOI: 10.3390/polym11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
As an efficient technique for the preparation of polymeric hexagonal orderly arrays, the breath figure (BF) process has opened a modern avenue for a bottom-up fabrication method for more than two decades. Through the use of the water vapor condensation on the solution surface, the water droplets will hexagonally pack into ordered arrays, acting as a template for controlling the regular micro patterns of polymeric films. Comparing to the top-down techniques, such as lithography or chemical etching, the use of water vapor as the template provides a simple fabrication process with sustainability. However, using highly hazardous solvents such as chloroform, carbon disulfide (CS2), benzene, dichloromethane, etc., to dissolve polymers might hinder the development toward green processes based on this technique. In this review, we will touch upon the contemporary techniques of the BF process, including its up-to-date applications first. More importantly, the search of greener processes along with less hazardous solvents for the possibility of a more sustainable BF process is the focal point of this review.
Collapse
Affiliation(s)
- Shih-Chieh Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Chien-Hsin Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Ying-Chih Huang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| | - Jen-Yu Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 106, Taiwan.
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
21
|
UV sensitivity of Beauveria bassiana and Metarhizium anisopliae isolates under investigation as potential biological control agents in South African citrus orchards. Fungal Biol 2019; 124:304-310. [PMID: 32389292 DOI: 10.1016/j.funbio.2019.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Seven indigenous entomopathogenic fungal isolates were identified as promising biocontrol agents of key citrus pests including false codling moth, Thaumatotibia leucotreta Meyrick (Lepidoptera: Tortricidae), citrus thrips, Scirtothrips aurantii Faure (Thysanoptera: Thripidae) and citrus mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae) under laboratory conditions. Even though field trials using the two most virulent isolates (Beauveria bassiana G Ar 17 B3 and Metarhizium anisopliae FCM Ar 23 B3) against soil-dwelling life stages of T. leucotreta were positive, foliar application against citrus mealybugs and thrips, has been disappointing. Thus, the UV sensitivity of the seven initial promising isolates (four B. bassiana and three M. anisopliae) in comparison with two commercial isolates (M. anisopliae ICIPE 69 and B. bassiana PPRI 5339) and their formulated products were investigated in this study. All isolates investigated were highly sensitive to UV radiation, and a 2 h exposure to simulated full-spectrum solar radiation at 0.3 W/m2 killed conidia of all tested isolates. Nonetheless, variability in susceptibility was found amongst isolates after exposure for 1 h. The most virulent M. anisopliae isolate, FCM Ar 23 B3, was the most susceptible to UV radiation with <3 % relative germination, 48-51 h post-exposure. Whilst isolates of the two mycoinsecticides showed similar susceptibility to UV radiation, their formulated products (vegetable oil and emulsifiable concentrate) were tolerant, when tested for 1 h. These findings indicate that a suitable UV protectant formulation of these fungi or a different application strategy will be required for success against P. citri and S. aurantii.
Collapse
|
22
|
Itzhaik Alkotzer Y, Grzegorzewski F, Belausov E, Zelinger E, Mechrez G. In situ interfacial surface modification of hydrophilic silica nanoparticles by two organosilanes leading to stable Pickering emulsions. RSC Adv 2019; 9:39611-39621. [PMID: 35541385 PMCID: PMC9076063 DOI: 10.1039/c9ra07597f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 11/21/2022] Open
Abstract
Oil-in-water Pickering emulsions are stabilized by in situ functionalization of hydrophilic silica nanoparticles with two organosilane precursors of opposite polarity, dodecyltriethoxysilane (DTES) and 3-(aminopropyl)triethoxysilane (APTES), in a two-step emulsification procedure. The modification of the silica nanoparticles is verified by Fourier transform infrared (FTIR) spectroscopy analysis. The stabilization of the oil droplets by silica is confirmed by tracing the localization of the colloidal silica nanoparticles at the oil–water interface, as observed by confocal fluorescence microscopy. In comparison to modification of the silica nanoparticles prior to the emulsification, in situ functionalization of silica with both organosilanes achieves enhanced emulsion stability and homogeneity, by forming a polysiloxane network between the silica nanoparticles, through polymerization of the organosilanes in the presence of water. The polysiloxane network fixes the silica in place as solid shells around the emulsion droplets, in structures called colloidosomes. These colloidosome shell structures are visualized using confocal microscopy and cryogenic scanning electron microscopy, the latter method successfully enables the direct observation of the silica nanoparticles embedded in the polysiloxane matrix around the oil droplets. Stabilizing the Pickering emulsion droplets and forming silica-based colloidosome shells is dependent on the extent of the hydrolysis and polycondensation reaction of the two organosilanes. Oil-in-water Pickering emulsions are stabilized by in situ functionalization of hydrophilic silica nanoparticles with two organosilane precursors of opposite polarity in a two-step emulsification procedure.![]()
Collapse
Affiliation(s)
- Yafit Itzhaik Alkotzer
- Department of Food Sciences
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization (ARO)
- Volcani Center
- Rishon Letzion 7505101
| | - Franziska Grzegorzewski
- Department of Food Sciences
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization (ARO)
- Volcani Center
- Rishon Letzion 7505101
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology
- Institute of Plant Sciences
- Agricultural Research Organization (ARO)
- Volcani Center
- Rishon Letzion 7505101
| | - Einat Zelinger
- The Interdepartmental Equipment Unit
- The Robert H. Smith Faculty of Agriculture
- Food and Environment
- The Hebrew University of Jerusalem
- Rehovot 7610001
| | - Guy Mechrez
- Department of Food Sciences
- Institute of Postharvest and Food Sciences
- Agricultural Research Organization (ARO)
- Volcani Center
- Rishon Letzion 7505101
| |
Collapse
|