1
|
Ren F, Gan Z, Zhang Q, He D, Chen B, Wu X, Zeng X, Wu K, Xing Y, Zhang Y, Chen H. Construction and evaluation of liposomal drug delivery system for an ALK/HDACs dual-targeted inhibitor with sustained release and enhanced antitumor effect. Drug Deliv Transl Res 2025; 15:939-954. [PMID: 39112826 DOI: 10.1007/s13346-024-01647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 02/01/2025]
Abstract
ALK/HDACs dual target inhibitor (PT-54) was a 2,4-pyrimidinediamine derivative synthesized based on the pharmacophore merged strategy that inhibits both anaplastic lymphoma kinase (ALK) and histone deacetylases (HDACs), which has demonstrated significant efficacy in treating multiple cancers. However, its poor solubility in water limited its clinical application. In this study, we prepared PT-54 liposomes (PT-54-LPs) by the membrane hydration method to overcome this defect. The encapsulation efficiency (EE) and particle size were used as evaluation indicators to explore the preparation conditions of PT-54-LPs. The morphology, particle size, EE, drug loading content (DLC), drug release properties, and stability of PT-54-LPs were further investigated. In vitro drug release studies showed that PT-54-LPs exhibited significant slow-release properties compared with free PT-54. PT-54-LPs also showed better tumor inhibitory effects than free PT-54 without significant adverse effects. These results suggested that PT-54-LPs displayed sustained drug release and significantly improved the tumor selectivity of PT-54. Thus, PT-54-LPs showed significant promise in enhancing anticancer efficiency.
Collapse
Affiliation(s)
- Fang Ren
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Zongjie Gan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Qianyu Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Dan He
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Baoyan Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xianwei Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Xiaolin Zeng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Kexin Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yangchen Xing
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China
| | - Yan Zhang
- Yaopharma Co, Ltd, No. 100, Xingguang Ave, Chongqing, 401121, China
| | - Huali Chen
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Medical School Road, Yuzhong District, Chongqing, 400042, PR China.
| |
Collapse
|
2
|
Sun Z, Fu H, Zhang R, Wang H, Shen S, Zhao C, Li X, Sun Y, Li Y, Li Y. Advances in chemically modified HSA as a multifunctional carrier for transforming cancer therapy regimens. Int J Biol Macromol 2025; 305:141373. [PMID: 39988174 DOI: 10.1016/j.ijbiomac.2025.141373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Human serum albumin (HSA) is a versatile, biodegradable, biocompatible, non-toxic, and non-immunogenic protein nanocarrier, making it an ideal platform for developing advanced drug delivery systems. These properties have garnered significant attention in utilizing HSA nanoparticles for the safe and efficient delivery of chemotherapeutic agents. HSA-based nanoparticles can be surface-modified with various ligands to enable tumor-targeted drug delivery, enhancing therapeutic specificity and efficacy. Furthermore, the multifunctionality of HSA nanoparticles offers promising strategies to overcome challenges in cancer therapy, including poor bioavailability, off-target toxicity, and drug resistance. This review highlights the structural features of HSA, explores its diverse modifications to improve drug-binding affinity and targeting ability, and discusses its potential as a multifunctional carrier in oncology. By summarizing the latest advances in HSA modification techniques and applications, this review provides a comprehensive perspective on the future of protein-based drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Zheng Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruixuan Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyang Shen
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xiuyan Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
3
|
Kuroiwa K, Matsumura Y, Nagano K, Kishimoto R, Yoshizawa M, Fujimura A, Shimaki N, Sakuragi M, Oda-Ueda N. Supramolecular Hybrids of Proteins from Habu Snake Venom with Discrete [Pt(CN) 4] 2- Complex. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63884-63893. [PMID: 39267606 DOI: 10.1021/acsami.4c09837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The venom of the Habu snake Protobothrops flavoviridis (P. flavoviridis) is known to contain a diverse array of proteins and peptides, with a notable presence of phospholipase A2 (PLA2) enzymes. These PLA2 enzymes have been extensively studied for their function and molecular evolution. Nevertheless, several aspects, such as the physical properties and the self-assembly mechanism of hierarchical structure from the nanoscale to the microscale with different chemical compounds, remain poorly understood. This study aims to fill this knowledge gap by investigating the behavior of enzyme components purified from P. flavoviridis venom in the presence of anionic [Pt(CN)4]2- complexes, which have the potential for soft metallophilic interactions and interesting optical properties. The purified PLA2 isozymes were diluted in Dulbecco's phosphate buffered saline (D-PBS (-)) and combined with the anionic metal complex, resulting in the formation of microstructures several micrometers in size, which further grew to form fibrous structures. This novel approach of combining PLA2 enzymes with discrete functional metal complexes opens up exciting possibilities for designing flexible and functional supramolecular and biomolecular hybrid systems in aqueous environments. These findings shed light on the potential applications of snake venom enzymes in nanotechnology and bioengineering.
Collapse
Affiliation(s)
- Keita Kuroiwa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yusei Matsumura
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keito Nagano
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Reina Kishimoto
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mai Yoshizawa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Aoi Fujimura
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Nobuhito Shimaki
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Naoko Oda-Ueda
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
4
|
Wu X, Wang X, Zhang H, Chen H, He H, Lu Y, Tai Z, Chen J, Wu W. Enhanced in vivo Stability and Antitumor Efficacy of PEGylated Liposomes of Paclitaxel Palmitate Prodrug. Int J Nanomedicine 2024; 19:11539-11560. [PMID: 39544893 PMCID: PMC11561736 DOI: 10.2147/ijn.s488369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Purpose The clinical use of paclitaxel (PTX) in cancer treatment is limited by its poor water solubility, significant toxicity, and adverse effects. This study aimed to propose a straightforward and efficient approach to enhance PTX loading and stability, thereby offering insights for targeted therapy against tumors. Patients and Methods We synthesized a paclitaxel palmitate (PTX-PA) prodrug by conjugating palmitic acid (PA) to PTX and encapsulating it into liposomal vehicles using a nano delivery system. Subsequently, we investigated the in vitro and in vivo performance as well as the underlying mechanisms of PTX-PA liposomes (PTX-PA-L). Results PTX had a remarkable antitumor effect in vivo and significantly decreased the myelosuppressive toxicity of PTX. Moreover, the introduction of PA increased the lipid solubility of PTX, forming a phospholipid bilayer as a membrane stabilizer, prolonging the circulation time of the drug and indirectly increasing the accumulation of liposomes at the tumor site. Our in vivo imaging experiments demonstrated that PTX-PA-L labeled with DiR has greater stability in vivo than blank liposomes and that PTX-PA-L can target drugs to the tumor site and efficiently release PTX to exert antitumor effects. In a mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was approximately twofold greater than that of Taxol. However, in a nude mouse model, the concentration of PTX at the tumor site in the PTX-PA-L group was only approximately 0.8-fold greater than that of Taxol. Furthermore, the originally observed favorable pharmacodynamics in normal mice were reversed following immunosuppression. This may be caused by differences in esterase distribution and immunity. Conclusion This prodrug technology combined with liposomes is a simple and effective therapeutic strategy with promising developmental prospects in tumor-targeted therapy owing to its ability to convert PTX into a long-circulating nano drug with low toxicity, high pharmacodynamics, and good stability in vivo.
Collapse
Affiliation(s)
- Xin Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Haiyan Zhang
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Hang Chen
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Yi Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
| | - Jianming Chen
- Shanghai Wei Er Lab, Shanghai, 201707, People’s Republic of China
| | - Wei Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, People’s Republic of China
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
5
|
Gunjkar S, Gupta U, Nair R, Paul P, Aalhate M, Mahajan S, Maji I, Chourasia MK, Guru SK, Singh PK. The Neoteric Paradigm of Biomolecule-Functionalized Albumin-Based Targeted Cancer Therapeutics. AAPS PharmSciTech 2024; 25:265. [PMID: 39500822 DOI: 10.1208/s12249-024-02977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Albumin is a nature-derived, versatile protein carrier, that has been explored extensively by researchers for anticancer drug delivery due to its role in enhancing drug stability, solubility, circulation time, targeting capabilities, and overall therapeutic efficacy. Albumin nanoparticles possess inherent biocompatibility, biodegradability, and passive tumor-targeting ability due to the enhanced permeability and retention effect. However, non-specific accumulation of cytotoxic agents in healthy tissues remains a challenge. In this paper, the functionalization of albumin nanoparticles using various biomolecules including antibodies, nucleic acids, proteins and peptides, vitamins, chondroitin sulfate, hyaluronic acid, and lactobionic acid have been discussed which enables specific recognition and binding to cancer cells. Furthermore, we highlight the supremacy of such a targeted approach in tumor-specific drug delivery, minimization of off-target effects, potential improvement in therapeutic efficacy, cellular internalization, reduced side effects, and better clinical outcomes. This review centers on how they have revolutionized the field of biomedical research and tuned into an excellent targeted approach. In conclusion, this review highlights in detail the role of albumin as a nanocarrier for tumor-targeted delivery using biomolecules as ligands.
Collapse
Affiliation(s)
- Swati Gunjkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, 226031, U.P., India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
6
|
Lee Y, Park SM, Song IH, Kim BS, Park HS, Moon BS, Kim HH. Pharmacokinetic evaluation of paclitaxel, albumin-binding paclitaxel, and liposomal-encapsulated albumin-binding paclitaxel upon gastric subserosal administration. Front Pharmacol 2024; 15:1381406. [PMID: 38904000 PMCID: PMC11187257 DOI: 10.3389/fphar.2024.1381406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction: Systemic chemotherapy is typically administered following radical gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel, and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat models employing nuclear medicine and molecular imaging technology. Method: Nine Sprague Dawley rats were divided into three groups: paclitaxel (n = 3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by conventional electrophilic radioiodination using tert-butylstannyl substituted paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were prepared using a desolvation technique. Liposome-encapsulated APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000, HSPC, and cholesterol. The rats in each group were injected with each test drug into the subserosa of the stomach antrum. After predetermined times (30 min, 2, 4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using single-photon emission computed tomography/computed tomography. Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in the stomach, with L-APNs showing the largest area under the curve. Most drugs administered via the gastric subserosal route are distributed in the stomach and intestines, with a low uptake of less than 1% in other major organs. The time to reach the maximum concentration in the intestine for L-APNs, paclitaxel, and APNs was 6.67, 5.33, and 4.00 h, respectively. Conclusion: These preliminary results imply that L-APNs have the potential to serve as a novel paclitaxel preparation method for the regional treatment of gastric cancer.
Collapse
Affiliation(s)
- Yoontaek Lee
- Department of Surgery, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- molim, Inc., Suwon, Republic of Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
7
|
Wasko J, Wolszczak M, Zajaczkowska Z, Dudek M, Kolesinska B. Human serum albumin as a potential drug delivery system for N-methylated hot spot insulin analogs inhibiting hormone aggregation. Bioorg Chem 2024; 143:107104. [PMID: 38194903 DOI: 10.1016/j.bioorg.2024.107104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind N-methylated analogs of hot spots of native insulin. Three N-methylated derivatives of the A13-A19 fragment of native insulin were used: L(N-Me)YQLENY (1), LYQ(N-Me)LENY (2), and L(N-Me)YQ(N-Me)LENY (3). The studied N-methylated insulin fragments possess inhibiting potential against hormone aggregation. A variety of research techniques, including spectroscopic methods and microscopy assays, were used to study the interaction of HSA with the N-methylated insulin fragments. Based on spectroscopic measurements with Congo Red and Thioflavin T, all the analyzed N-methylated peptides were able to interact with the HSA surface. The CD spectrum registered for HSA in the presence of L(N-Me)YQLENY showed the smallest content of α-helix conformation, indicating the most compact HSA structure. Based on the results of MST, the dissociation constants (Kd) for complexes of HSA and peptides 1-3 were 19.2 nM (complex 1), 15.6 nM (complex 2), and 8.07 nM (complex 3). Microscopy assays, dynamic light scattering measurements as well as computer simulation of protein-ligand interaction also confirmed the possibility of docking the N-methylated inhibitors within HSA.
Collapse
Affiliation(s)
- Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Marian Wolszczak
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, Poland.
| | - Zuzanna Zajaczkowska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, The Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, Poland.
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Poland.
| |
Collapse
|
8
|
Christyani G, Carswell M, Qin S, Kim W. An Overview of Advances in Rare Cancer Diagnosis and Treatment. Int J Mol Sci 2024; 25:1201. [PMID: 38256274 PMCID: PMC10815984 DOI: 10.3390/ijms25021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as the leading global cause of mortality, with rare cancer comprising 230 distinct subtypes characterized by infrequent incidence. Despite the inherent challenges in addressing the diagnosis and treatment of rare cancers due to their low occurrence rates, several biomedical breakthroughs have led to significant advancement in both areas. This review provides a comprehensive overview of state-of-the-art diagnostic techniques that encompass new-generation sequencing and multi-omics, coupled with the integration of artificial intelligence and machine learning, that have revolutionized rare cancer diagnosis. In addition, this review highlights the latest innovations in rare cancer therapeutic options, comprising immunotherapy, targeted therapy, transplantation, and drug combination therapy, that have undergone clinical trials and significantly contribute to the tumor remission and overall survival of rare cancer patients. In this review, we summarize recent breakthroughs and insights in the understanding of rare cancer pathophysiology, diagnosis, and therapeutic modalities, as well as the challenges faced in the development of rare cancer diagnosis data interpretation and drug development.
Collapse
Affiliation(s)
| | | | - Sisi Qin
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea; (G.C.); (M.C.)
| |
Collapse
|
9
|
Cui X, Zhang F, Zhao Y, Li P, Wang T, Xu Z, Zhang J, Zhang W. A novel ligand-modified nanocomposite microparticles improved efficiency of quercetin and paclitaxel delivery in the non-small cell lung cancer. Drug Deliv 2022; 29:3123-3133. [PMID: 36151722 PMCID: PMC9848416 DOI: 10.1080/10717544.2022.2120567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemotherapy is the first choice for the treatment of cancer but it is still limited by insufficient kill efficiency and drug resistance. These problems urgently need to be overcome in a way that minimizes damage to the body. In this study, we designed the nanocomposite microparticles (NMPs) modified by cetuximab (Cet) and loaded anti-tumor agents- quercetin (QUE) and paclitaxel (PTX)- for eliciting specific drugs homing and enhancing the killing efficiency of chemotherapy drugs (P/Q@CNMPs). Physicochemical characteristics results presented that P/Q@CNMPs have a suitable aerodynamic diameter and uniform morphology that could meet the requirements of particles deposition in the lung. And it also had the characteristics of sustained-release and pH-responsive which could release the agents in the right place and has a continuous effect. In vitro and in vivo analysis results presented that P/Q@CNMPs have the accuracy targeting ability and killing effect on non-small cell lung cancer (NSCLC) which express positive epidermal growth factor receptor (EGFR) on the membrane. Furthermore, this system also has low toxicity and good biocompatibility. These results demonstrated that P/Q@CNMPs could be a potential intelligent targeting strategy used for chemo-resistant NSCLC therapies.
Collapse
Affiliation(s)
- Xiaoming Cui
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Fang Zhang
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Yanyan Zhao
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Pan Li
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Ting Wang
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Zhilu Xu
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China
| | - Jingjing Zhang
- College of Basic Medical, Qingdao Binhai University, Qingdao, P.R. China,CONTACT Jingjing Zhang College of Basic Medical, Qingdao Binhai University, Qingdao, 266000, P.R. China; Weifen Zhang College of Pharmacy, Weifang Medical University, 7166# Baotong West Street, Weifang261053, Shandong, P.R. China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, P.R. China,Shandong Intelligent Materials and Regenerative Medicine Engineering Technology Research Center, Weifang, P.R. China
| |
Collapse
|
10
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
11
|
Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Khodaverdi H, Zeini MS, Moghaddam MM, Vazifedust S, Akbariqomi M, Tebyanian H. Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review. Curr Drug Deliv 2022; 19:1012-1033. [DOI: 10.2174/1567201819666220117102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
Collapse
Affiliation(s)
- Hamed Khodaverdi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Shokrian Zeini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Taleuzzaman M, Sartaz A, Alam MJ, Javed MN. Emergence of Advanced Manufacturing Techniques for Engineered Polymeric Systems in Cancer Treatment. ADVANCES IN CHEMICAL AND MATERIALS ENGINEERING 2022:152-172. [DOI: 10.4018/978-1-7998-9574-9.ch009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Clinical performances of chemotherapeutic drugs which are used to manage different stages of cancers are usually facing numerous pharmacological challenges such as tumor microenvironment, high dose requirements, poor selectivity towards cancer cells, life-threatening cytotoxicity, and frequent drug resistance incidences, in addition to pharmacotechnical issues such as poor aqueous solubility, uncontrolled drug-release, low stability, non-specific bio-distribution, and erratic bioavailability profiles. The chapter aims to provide a brief account of advancements made in nanotechnology-enabled manufacturing engineering tools for manipulating polymeric materials as efficient carriers so that loaded anti-cancer drugs would exhibit better therapeutic applications and optimized clinical significance in cancers.
Collapse
|
14
|
Sakuragi M. Evaluation of the supramolecular structure of drug delivery carriers using synchrotron X-ray scattering. Polym J 2021. [DOI: 10.1038/s41428-021-00533-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Bishnoi S, Rehman S, Dutta SB, De SK, Chakraborty A, Nayak D, Gupta S. Optical-Property-Enhancing Novel Near-Infrared Active Niosome Nanoformulation for Deep-Tissue Bioimaging. ACS OMEGA 2021; 6:22616-22624. [PMID: 34514233 PMCID: PMC8427633 DOI: 10.1021/acsomega.1c02632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 05/17/2023]
Abstract
Indocyanine green (ICG) is a clinically approved near-infrared (NIR) contrast agent used in medical diagnosis. However, ICG has not been used to its fullest for biomedical imaging applications due to its low fluorescence quantum yield, aqueous instability, concentration-dependent aggregation, and photo and thermal degradations, leading to quenching of its fluorescence emission. In the present study, a nanosized niosomal formulation, ICGNiosomes (ICGNios), is fabricated to encapsulate and protect ICG from degradation. Interestingly, compared to free ICG, the ICGNios exhibited higher fluorescence quantum yield and fluorescence emission with a bathochromic shift. Also, ICGNios nanoparticles are biocompatible, biodegradable, and readily uptaken by the cells. Furthermore, ICGNios show more enhanced fluorescence intensity through ∼1 cm thick chicken breast tissue compared to free ICG, which showed minimal emission through the same thickness of tissue. Our results suggest that ICGNios could offer a promising platform for deep-tissue NIR in vivo imaging to visualize inaccessible tissue microstructures for disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Sheeba Rehman
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Surjendu Bikash Dutta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Soumya Kanti De
- Department
of Chemistry, Indian Institute of Technology
Indore, Indore 453552 Madhya Pradesh, India
| | - Anjan Chakraborty
- Department
of Chemistry, Indian Institute of Technology
Indore, Indore 453552 Madhya Pradesh, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Sharad Gupta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Chen H, Huang S, Wang H, Chen X, Zhang H, Xu Y, Fan W, Pan Y, Wen Q, Lin Z, Wang X, Gu Y, Ding B, Chen J, Wu X. Preparation and characterization of paclitaxel palmitate albumin nanoparticles with high loading efficacy: an in vitro and in vivo anti-tumor study in mouse models. Drug Deliv 2021; 28:1067-1079. [PMID: 34109887 PMCID: PMC8205042 DOI: 10.1080/10717544.2021.1921078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Combination of the prodrug technique with an albumin nano drug-loaded system is a novel promising approach for cancer treatment. However, the long-lasting and far-reaching challenge for the treatment of cancers lies in how to construct the albumin nanometer drug delivery system with lead compounds and their derivatives. METHODS In this study, we reported the preparation of injectable albumin nanoparticles (NPs) with a high and quantitative drug loading system based on the NabTM technology of paclitaxel palmitate (PTX-PA). RESULTS Our experimental study on drug tissue distribution in vivo demonstrated that the paclitaxel palmitate albumin nanoparticles (Nab-PTX-PA) remained in the tumor for a longer time post-injection. Compared with saline and paclitaxel albumin nanoparticles (Abraxane®), intravenous injection of Nab-PTX-PA not only reduced the toxicity of the drug in normal organs, and increased the body weight of the animals but maintained sustained release of paclitaxel (PTX) in the tumor, thereby displaying an excellent antitumor activity. Blood routine analysis showed that Nab-PTX-PA had fewer adverse effects or less toxicity to the normal organs, and it inhibited tumor cell proliferation more effectively as compared with commercial paclitaxel albumin nanoparticles. CONCLUSIONS This carrier strategy for small molecule drugs is based on naturally evolved interactions between long-chain fatty acids (LCFAs) and Human Serum Albumin (HSA), demonstrated here for PTX. Nab-PTX-PA shows higher antitumor efficacy in vivo in breast cancer models. On the whole, this novel injectable Nab-PTX-PA has great potential as an effective drug delivery system in the treatment of breast cancer.
Collapse
Affiliation(s)
- Hang Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sifan Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Heyi Wang
- Department of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xinmei Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiyan Zhang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youfa Xu
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yun Pan
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Qiuyan Wen
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Zhizhe Lin
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Xuena Wang
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Yongwei Gu
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| | - Baoyue Ding
- School of Pharmacy, Jiaxing College, Jiaxing, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Shanghai Wei Er Biopharmaceutical Technology Co., Ltd, Shanghai, China
| |
Collapse
|
17
|
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VTG. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040296. [PMID: 33810483 PMCID: PMC8065628 DOI: 10.3390/ph14040296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Albumin, the most abundant protein in plasma, possesses some inherent beneficial structural and physiological characteristics that make it suitable for use as a drug delivery agent, such as an extraordinary drug-binding capacity and long blood retention, with a high biocompatibility. The use of these characteristics as a nanoparticle drug delivery system (DDS) offers several advantages, including a longer circulation time, lower toxicity, and more significant drug loading. To date, many innovative liposome preparations have been developed in which albumin is involved as a DDS. These novel albumin-containing liposome preparations show superior deliverability for genes, hydrophilic/hydrophobic substances and proteins/peptides to the targeting area compared to original liposomes by virtue of their high biocompatibility, stability, effective loading content, and the capacity for targeting. This review summarizes the current status of albumin applications in liposome-based DDS, focusing on albumin-coated liposomes and albumin-encapsulated liposomes as a DDS carrier for potential medical applications.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
| | - Kazuaki Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Correspondence:
| |
Collapse
|
18
|
Navarro-Marchal SA, Griñán-Lisón C, Entrena JM, Ruiz-Alcalá G, Tristán-Manzano M, Martin F, Pérez-Victoria I, Peula-García JM, Marchal JA. Anti-CD44-Conjugated Olive Oil Liquid Nanocapsules for Targeting Pancreatic Cancer Stem Cells. Biomacromolecules 2021; 22:1374-1388. [PMID: 33724003 DOI: 10.1021/acs.biomac.0c01546] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.
Collapse
Affiliation(s)
- Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Applied Physics, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - José-Manuel Entrena
- Institute of Neuroscience, Biomedical Research Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain.,Animal Behavior Research Unit, Scientific Instrumentation Center, University of Granada, Parque Tecnológico de Ciencias de la Salud, Armilla, 18100 Granada, Spain
| | - Gloria Ruiz-Alcalá
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento 34, Armilla, 18016 Granada, Spain
| | - José Manuel Peula-García
- Biocolloids and Fluids Physics Group, Faculty of Sciences, University of Granada, 18014 Granada, Spain.,Department of Applied Physics II, University of Málaga, 29071 Málaga, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
19
|
Nandi U, Onyesom I, Douroumis D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells. J Pharm Pharmacol 2021; 73:300-309. [PMID: 33793879 DOI: 10.1093/jpp/rgaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/28/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Design and examine the effect of sirolimus-PEGylated (Stealth) liposomes for breast cancer treatment. In this study, we developed conventional and Stealth liposome nanoparticles comprising of distearoylphosphatidylcholine (DSPC) or dipalmitoyl-phosphatidylcholine (DPPC) and DSPE-MPEG-2000 lipids loaded with sirolimus as an anticancer agent. The effect of lipid grade, drug loading and incubation times were evaluated. METHODS Particle size distribution, encapsulation efficiency of conventional and Stealth liposomes were studied followed by cytotoxicity evaluation. The cellular uptake and internal localisation of liposome formulations were investigated using confocal microscopy. KEY FINDINGS The designed Stealth liposome formulations loaded with sirolimus demonstrated an effective in vitro anticancer therapy compared with conventional liposomes while the length of the acyl chain affected the cell viability. Anticancer activity was found to be related on the drug loading amounts and incubation times. Cell internalization was observed after 5 h while significant cellular uptake of liposome was detected after 24 h with liposome particles been located in the cytoplasm round the cell nucleus. Sirolimus Stealth liposomes induced cell apoptosis. CONCLUSIONS The design and evaluation of sirolimus-loaded PEGylated liposome nanoparticles demonstrated their capacity as drug delivery carrier for the treatment of breast cancer tumours.
Collapse
Affiliation(s)
- Uttom Nandi
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Ichioma Onyesom
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| | - Dennis Douroumis
- Medway School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
20
|
Taguchi K. Pharmaceutical Technology Innovation Strategy Based on the Function of Blood Transport Proteins as DDS Carriers for the Treatment of Intractable Disorders and Cancer. Biol Pharm Bull 2020; 43:1815-1822. [PMID: 33268699 DOI: 10.1248/bpb.b20-00668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blood transport proteins are biogenic molecules with unique and interesting inherent characteristics that make up living organisms. As the utilization of their inherent characteristics can be a groundbreaking strategy to resolve and improve several clinical problems, attempts have been made to develop pharmaceutical and biomedical preparations based on blood transport proteins for the treatment and diagnosis of disorders. Among various blood transport proteins, we focus on the immense potential of hemoglobin and albumin to serve as carriers of biomedical gases (oxygen and carbon monoxide) and anticancer agents (low-molecular compounds and antisense oligodeoxynucleotides), respectively, for the development of innovative drug delivery systems (DDS) to treat intractable disorders and solid cancers. In this review, I introduce the pharmaceutical technology, strategies, and application of DDS carriers that have been designed on the basis of the structure and function of hemoglobin and albumin. In addition, the prospect of using hemoglobin and albumin as materials for DDS carriers is discussed.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Division of Pharmacodynamics, Keio University Faculty of Pharmacy
| |
Collapse
|
21
|
Human Serum Albumin Binds Native Insulin and Aggregable Insulin Fragments and Inhibits Their Aggregation. Biomolecules 2020; 10:biom10101366. [PMID: 32992893 PMCID: PMC7601681 DOI: 10.3390/biom10101366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023] Open
Abstract
The purpose of this study was to investigate whether Human Serum Albumin (HSA) can bind native human insulin and its A13–A19 and B12–B17 fragments, which are responsible for the aggregation of the whole hormone. To label the hormone and both hot spots, so that their binding positions within the HSA could be identified, 4-(1-pyrenyl)butyric acid was used as a fluorophore. Triazine coupling reagent was used to attach the 4-(1-pyrenyl)butyric acid to the N-terminus of the peptides. When attached to the peptides, the fluorophore showed extended fluorescence lifetimes in the excited state in the presence of HSA, compared to the samples in buffer solution. We also analyzed the interactions of unlabeled native insulin and its hot spots with HSA, using circular dichroism (CD), the microscale thermophoresis technique (MST), and three independent methods recommended for aggregating peptides. The CD spectra indicated increased amounts of the α-helical secondary structure in all analyzed samples after incubation. Moreover, for each of the two unlabeled hot spots, it was possible to determine the dissociation constant in the presence of HSA, as 14.4 µM (A13–A19) and 246 nM (B12–B17). Congo Red, Thioflavin T, and microscopy assays revealed significant differences between typical amyloids formed by the native hormone or its hot-spots and the secondary structures formed by the complexes of HSA with insulin and A13–A19 and B12–B17 fragments. All results show that the tested peptide-probe conjugates and their unlabeled analogues interact with HSA, which inhibits their aggregation.
Collapse
|
22
|
Cell uptake and anti-tumor effect of liposomes containing encapsulated paclitaxel-bound albumin against breast cancer cells in 2D and 3D cultured models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Yamasaki K, Taguchi K, Nishi K, Otagiri M, Seo H. Enhanced dissolution and oral bioavailability of praziquantel by emulsification with human serum albumin followed by spray drying. Eur J Pharm Sci 2019; 139:105064. [PMID: 31491499 DOI: 10.1016/j.ejps.2019.105064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
Abstract
The goal of this study was to enhance the oral bioavailability of praziquantel through its conjugation with human serum albumin (HSA). Praziquantel-HSA particles were produced by spray drying an emulsion of an aqueous solution of HSA and a solution of praziquantel in oil. The particles were agglomerates of multiple smooth corrugated particles containing amorphous praziquantel nearly equivalent to the theoretical doses. The solubility of praziquantel in an aqueous medium was enhanced in both the produced particles and the physical mixture. In addition, the dissolution rate in an aqueous medium was enhanced in the case of particles, but not in a physical mixture. Thus, the inclusion of HSA by emulsification followed by spray drying appeared to contribute to the enhanced dissolution rate. In a pharmacokinetic study, the maximum plasma concentration (Cmax) and the area under the concentration-time curve (AUC) for the produced particles (HSA/praziquantel = 1/1 w/w) were approximately two times higher than the corresponding values for raw praziquantel. This increased oral bioavailability of the particles was considered to be due to the enhanced dissolution rate. This process for producing praziquantel-HSA particles could be useful in terms of improving the oral bioavailability of the other hydrophobic drugs.
Collapse
Affiliation(s)
- Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan.
| | - Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan; Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Hakaru Seo
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan; DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| |
Collapse
|