1
|
Yin Z, Wang H, Tang X, Mou M, Yu H, Wang H. Exploration of biomass-derived carbon dots based on chestnut shell for the sensitive detection of phosphate and tetracycline hydrochloride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125746. [PMID: 39826165 DOI: 10.1016/j.saa.2025.125746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/15/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Phosphate pollution leads to the deterioration of water quality, posing a serious threat to human health. Tetracycline hydrochloride (TC), a class of broad-spectrum bacteriostatic agents, has garnered attention due to its extensive use and potential toxicity. Therefore, developing a highly selective and sensitive fluorescent probe for the detection of phosphates and TC is of significant importance. Herein, to enhance the conversion and utilization of high-value biomass waste, biomass-derived carbon dots (LZ-NCDs) emitting green fluorescence with a quantum yield of 44 % were synthesized in a one-step hydrothermal process using chestnut shell biomass waste as a carbon source and nitrogen doping technology. Based on the dynamic quenching mechanism, a highly sensitive method for effectively identifying PO43- using LZ-NCDs fluorescence probe was constructed, with a linear range of 0.1-10 µmol/L and a detection limit of 43.0 nmol/L. A quenched fluorescent probe, LZ-NCDs for the determination of TC, was fabricated through the synergistic effects of inner filter effect and static quenching, exhibiting a linear range from 0.05 to 10 µmol/L with a detection limit of 16.8 nmol/L. The successful determination of PO43- and TC in actual samples was achieved. The two different quenching mechanisms indicate that LZ-NCDs are expected to become potential sensing materials for the real-time monitoring of PO43- and TC in organisms and food, which is very important for our health.
Collapse
Affiliation(s)
- Zirui Yin
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Haowei Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Xiaodan Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China.
| | - Mengshi Mou
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Hongmei Yu
- School of Chemical Engineering, University of Science and Technology Liaoning, Liaoning, Anshan 114051, China
| | - Huiyong Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Liang X, Liu C, Hu Y, Hua Y, Liu J, Deng J, Zhu Z, Shao Y. Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation. Biosens Bioelectron 2025; 273:117126. [PMID: 39808990 DOI: 10.1016/j.bios.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO2) composites (TCPP-ZrO2) was first synthesized using TCPP as the luminophore and ZrO2 as the enhancer and stabilizer. The organic-inorganic hybrid structure of TCPP-ZrO2 limits the intramolecular motion of TCPP and accelerates the production of reactive radicals of co-reactants, thus exhibiting excellent ECL intensity and stability. Then, the potential-resolved ECL properties of TCPP-ZrO2 regulated only by two co-reactants were explored. On this basis, a differential ECL immunosensor was constructed for the sensitive and accurate determination of heart-fatty acid binding protein (hFABP) using 2-(dibutylamino)ethanol modified gold nanoparticles (DBAE@Au) as labels (ECL-1, +1.3 V) and ECL-2 (-1.3 V) triggered by potassium persulfate (K2S2O8) as the internal reference. In the presence of hFABP, DBAE@Au was captured by the sensing interface to generate ECL-1 and consume K2S2O8, leading to a significant decrease of ECL-2. According to the intensity difference between ECL-2 and ECL-1, the detection of hFABP was achieved with a low detection limit and a wide linear range. The proposed differential ECL immunosensor has been applied in testing human serum samples with satisfactory results, demonstrating its promising applications for clinical diagnosis.
Collapse
Affiliation(s)
- Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chang Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuecong Hu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yutong Hua
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Yang C, Tian S, Zhao Y, Yang L, Mo L, Lin W. A unique fluorescence metal-organic framework for ultrasensitive fluorescent and colorimetric bimodal detection of phosphate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125571. [PMID: 39674113 DOI: 10.1016/j.saa.2024.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Monitoring the concentration of phosphate is crucial for environmental protection and human health due to its severe ecological and health risks associated with elevated concentrations. Herein, a fluorescent-colorimetric bimodal nanoprobe based on the unique fluorescent metal-organic frameworks (Zr-PDI) has been developed for high-efficiency quantification of phosphate. The metal-oxygen coordination in Zr-PDI effectively diminished its fluorescence. However, the introduction of phosphate could weaken the metal-oxygen coordination interaction, leading to fluorescence recovery and absorption spectra changes of Zr-PDI. Taking advantage of these characteristics, Zr-PDI was exploited as a fluorescent-colorimetric bimodal detection tool for phosphate, offering excellent selectivity, a wide detection range, and high accuracy. Notably, the detection limit of fluorescence detection mode was as low as 0.023 μM, enabling ultrasensitive detection of phosphate. Furthermore, the Zr-PDI-based nanoprobe has achieved sensitive and reliable quantification of phosphate in Yong River and diabetic mouse serum samples. This proposed strategy provides a powerful, convenient, and practical tool for detecting phosphate in environmental and biological samples.
Collapse
Affiliation(s)
- Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Shuo Tian
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Yanling Zhao
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Longcheng Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
4
|
Li Y, Zhou R, Zhang L, Bi N, Gou J, Wu J, Jia L, Xu J. Integration of Eu-based metal-organic frameworks and carbon dots for multicolor visual intelligent detection of phosphate. Talanta 2025; 284:127270. [PMID: 39603016 DOI: 10.1016/j.talanta.2024.127270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Phosphate (Pi) has an important influence on the water environment and physiological processes. Therefore, developing fluorescent probe for quantitative detection of Pi is crucial for water environment monitoring and human health assessment. This work designed a dual-emission ratio nano-fluorescent probe GCDs/Eu-BDC based on europium-based metal-organic frameworks (Eu-MOFs) and blue carbon dots (GCDs) for multicolor fluorescence detection of Pi. The GCDs/Eu-BDC realized multicolor fluorescence detection of Pi based on the red-to-blue fluorescence change. The probe has high selectivity and a detection limit of 70 nM in the range of 0-45 μM. GCDs/Eu-BDC can be used to detect Pi in environmental water samples and serum samples, proving the feasibility of quantitative analysis of Pi in real samples. In addition, a portable paper-based sensor was prepared in this work. Combined with the chromaticity analysis App in smartphones, the intelligent real-time detection of Pi can be realized, which has certain practical application potential.
Collapse
Affiliation(s)
- Yongxin Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Rongrong Zhou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Ning Bi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Jian Gou
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Jiang Wu
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, China.
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China.
| |
Collapse
|
5
|
Lv W, Song Y, Mo Z. Synthesis of metal-organic framework-luminescent guest (MOF@LG) composites and their applications in environmental health sensing: A mini review. Talanta 2025; 283:127105. [PMID: 39486302 DOI: 10.1016/j.talanta.2024.127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Metal-organic framework (MOF) materials are three-dimensional structures formed by the combination of metal ions and organic ligands. So far, various typical metal organic framework materials have emerged, such as ZIF-8, MOF-5, UIO-66, etc. These traditional MOF materials have the advantages of simple synthesis, high porosity, and high stability, and have great research potential in the field of fluorescence sensing. However, MOF materials with excellent luminescent properties often involve fine regulation of organic ligands to ensure that fluorescence emission can be achieved between metal ions and organic ligands through energy transfer and photo induced electron transfer. The long synthesis cycle and cumbersome preparation process pose challenges for the research of fluorescent MOF materials. Combining MOF materials with luminescent guests is an effective way to prepare simple fluorescent chemical sensors. These luminescent guests include quantum dots, organic dyes, fluorescent nanoparticles, etc. They have the characteristic of high luminescence quantum yield, but high concentrations often lead to aggregation and collision, which in turn cause emission quenching. MOF materials with excellent porosity and specific surface area can serve as an ideal platform for encapsulating luminescent guests and preventing their aggregation. The preparation of MOF@luminescent guest composite material (MOF@LG) is easy to synthesize, which not only effectively improves the poor fluorescence performance of MOFs themselves, but also preserves the excellent fluorescence performance of luminescent guests. Composite materials often have excellent solid-state luminescence performance, making them a good choice for constructing a simple fluorescence sensing platform.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
6
|
Zhong Y, Gao H, Yang J, Wang X, Yu Y, Cao Y, Guo M, Lin B. Construction of Zinc-based metal-organic frameworks for visual ratiometric fluorescence detection of tetracycline. Anal Chim Acta 2025; 1335:343461. [PMID: 39643315 DOI: 10.1016/j.aca.2024.343461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/09/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Tetracycline (TC) is frequently utilized as additives in animal feed. The misuse can lead to the residue in food and threaten human health. RESULTS A ratiometric fluorescence method for tetracycline detection is developed based on Zinc-based metal-organic framework (Zn-MOF) materials. A series of Zn-MOFs are synthesized with phthalic acid derivatives as ligand, and their luminescence properties and interaction with tetracycline are investigated. Thereinto, Zn-BDC-OH MOF synthesized with 2-hydroxyterephthalic acid (BDC-OH) as ligand exhibits sensitive fluorescence response to tetracycline. The blue fluorescence of Zn-BDC-OH at 434 nm is quenched by tetracycline due to inner filter effect (IFE), and the green fluorescence of TC at 531 nm is enhanced because of coordination with Zn2+. The fluorescence intensity ratio I531/I434 shows a linear relationship with TC concentration in the range of 0.10-40.0 μM with a limit of detection at 79 nM. The fluorescence colors of Zn-BDC-OH MOF change from blue to cyan to green accompanying with increasing TC concentration, which enables the visual and semi-quantitative detection of tetracycline by naked eyes. Moreover, combined with a smartphone, the RGB value of the fluorescence color can be further identified. The ratio (G/B) of green channel to blue channel shows a linear relationship with the TC concentration in the range of 0.25-25.0 μM with a limit of detection at 0.2 μM. Afterwards, Zn-BDC-OH MOF is successfully applied to detect tetracycline in honey, and the results are consistent with those obtained from chromatography. SIGNIFICANCE The established method exhibits great potential for field visualization and rapid detection of tetracycline.
Collapse
Affiliation(s)
- Yating Zhong
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Haocheng Gao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Jingqi Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Xinru Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
7
|
Wang J, Qin Y, Ma Y, Meng M, Xu Y. Low-Toxicity and High-Stability Fluorescence Sensor for the Selective, Rapid, and Visual Detection Tetracycline in Food Samples. Molecules 2024; 29:5888. [PMID: 39769977 PMCID: PMC11676544 DOI: 10.3390/molecules29245888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
With the development and improvement of analysis and detection systems, low-toxicity and harmless detection systems have received much attention, especially in the field of food detection. In this paper, a low-toxicity dual-emission molecularly imprinted fluorescence sensor (CdTe QDs@SiO2/N-CDs@MIPs) was successfully designed for highly selective recognition and visual detection of tetracycline (TC) in food samples. Specifically, the non-toxic blue-emission N-doped carbon dots (N-CDs) with high luminous performance acted as the response signals to contact TC via the covalent bond between amino and carboxyl groups. The red-emission CdTe quantum dots (CdTe QDs) were coated in silica nanospheres as stable reference signals, which effectively avoided the direct contact of CdTe QDs. Under optimum conditions, CdTe QDs@SiO2/N-CDs@MIPs had a rapid response within 1.0 min to TC, and the detection limit of CdTe QDs@SiO2/N-CDs@MIPs was calculated at 0.846 μM in the linear range of 0-140 μM. In complex environments, the CdTe QDs@SiO2/N-CDs@MIPs also exhibited excellent capabilities for the selective, rapid, and visual detection of TC. Furthermore, the accuracy of CdTe QDs@SiO2/N-CDs@MIPs to detect TC was verified by the HPLC method, and satisfactory results were obtained. Moreover, CdTe QDs@SiO2/N-CDs@MIPs showed a satisfactory recovery when measuring TC in milk and egg samples. This work provided an ideal approach for low-toxicity fluorescence sensor design and application.
Collapse
Affiliation(s)
- Jixiang Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yaowei Qin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yue Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yeqing Xu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Yu L, He Y, Zhou G, Hu L, Wang M. Few-layered boron nitride nanosheet as a non-metallic phosphatase nanozyme and its application in human urine phosphorus detection. Anal Bioanal Chem 2024; 416:5993-5999. [PMID: 37962608 DOI: 10.1007/s00216-023-05030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Human urine phosphorus (existing in the form of phosphate) is a biomarker for the diagnosis of several diseases such as kidney disease, hyperthyroidism, and rickets. Therefore, the selective detection of phosphate in urine samples is crucial in the field of clinical diagnosis. Herein, we reported the phosphatase-like catalytic activity of few-layered h-BNNS for the first time. As the phosphatase-like activity of few-layered h-BNNS could be effectively inhibited by phosphate, a selective fluorescent method for the detection of phosphate was proposed. The linear range for phosphate detection is 0.5-10 µM with a detection limit of 0.33 µM. The fluorescent method was then explored for the detection of human urine phosphorus in real samples. The results obtained by the proposed method were consistent with those of the traditional method, indicating that the present method has potential application for urine phosphorus detection in clinical disease diagnosis.
Collapse
Affiliation(s)
- Linlin Yu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Yuting He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Guofen Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
9
|
Li Y, Chai H, Yuan Z, Zhang Z, Zhao Y, Yu K, Sun Y, Zhang G. Zeolitic imidazolate framework-encapsulated zinc porphyrin photoresponsive nanozyme for colorimetric/fluorescent dual-mode sensing of glyphosate. Talanta 2024; 276:126253. [PMID: 38759359 DOI: 10.1016/j.talanta.2024.126253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
A novel zeolitic imidazolate framework-encapsulated zinc porphyrin (ZnTCPP@ZIF-90) photoresponsive nanozyme is proposed for the colorimetric/fluorescent dual-mode visual sensing of glyphosate (Gly). ZnTCPP@ZIF-90 exhibits photoresponsive oxidase-like activity and fluorescence quenching behavior. Meanwhile, the outer ZIF-90 layer can be selectively destroyed by Gly, causing the release of free ZnTCPP, resulting in the enhanced enzyme-like activity as well as fluorescence emission. The constructed ZnTCPP@ZIF-90 was successfully used for the colorimetric/fluorescent dual-mode detection of Gly. Additionally, the colorimetric and fluorescent images information captured by the smartphone were converted to color intensity (HSV/RGB values), with limits of detection of 0.27 μg/mL and 0.19 μg/mL, respectively. The proposed dual-mode sensor exhibits excellent selectivity and reliability for detecting Gly, and can be successfully applied to the analysis of real samples such as tap water, lake water, and fruit washing water. The current research efforts are expected to provide new perspectives for designing highly active photoresponsive nanozymes and their stimuli-responsive sensing systems, paving the way for their applications in portable dual-mode chemical sensing and environmental monitoring.
Collapse
Affiliation(s)
- Yujie Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Zhishuang Yuan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Ziyan Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yiming Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Kun Yu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Yao Y, Liu W, Guan J, Cheng Y, Wu Z, Liu Q, Chen X. Synergy of Target-Induced Magnetic Network and Single-Drop Chromogenic System for Ultrasensitive "All-in-Tube" Detection of miRNA in Whole Blood. Anal Chem 2024; 96:12012-12021. [PMID: 38975991 DOI: 10.1021/acs.analchem.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of liquid biopsy methods for the accurate and reliable detection of miRNAs in whole blood is critical for the early diagnosis and monitoring of diseases. However, accurate quantification of miRNA expression levels remains challenging due to the complex matrix and low abundance of miRNAs in blood samples. Herein, we report a contactless signal output strategy with low background interference that ensures "zero-contact" between the reaction system and the colorimetry system. The designed target-induced magnetic ZnS/ZIF-90/ZnS network can serve as a unique signal amplifier and transducer. It releases hydrogen sulfide (H2S) gas in an acidic solution which can be concentrated in a droplet of only a few microliters in volume, etching the silver layer of Au@Ag nanostars (NSTs) in the droplet. This will lead to changes in the localized surface plasmon resonance signals of the NSTs. Finally, quantitative detection of let-7a is realized by measuring the offset value of the UV-vis absorption peak. Therefore, by virtue of the synergistic action of quadruple signal amplification methods, including catalytic hairpin assembly, ZnS/ZIF-90/ZnS, magnetic separation, and microextraction, the "All-in-Tube" ultrasensitive detection of low-abundance let-7a in whole blood is achieved with a detection limit as low as the aM level. In addition, the "zero-contact" signal output mode effectively solves the problem of complex matrix interference, demonstrating the great potential of this method for miRNA quantification in complex samples, such as whole blood.
Collapse
Affiliation(s)
- Yao Yao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhiliang Wu
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- Xiangjiang Laboratory, Changsha, Hunan 410083, China
| |
Collapse
|
11
|
Jiang L, Li C, Hou X. Smartphone-based dual inverse signal MOFs fluorescence sensing for intelligent on-site visual detection of malachite green. Talanta 2024; 274:126039. [PMID: 38604043 DOI: 10.1016/j.talanta.2024.126039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
The development of intelligent, sensitive, and visual methods for the rapid detection of veterinary drug residues is essential to ensure food quality and safety. Here, a smartphone-based dual inverse signal MOFs fluorescence sensing system was proposed for intelligent in-site visual detection of malachite green (MG). A UiO-66-NH2@RhB-dual-emission fluorescent probe was successfully synthesized in one step using a simple one-pot method. The inner filter effect (IFE) quenches the red fluorescence, while hydrogen bonding interaction enhances the blue fluorescence, enabling highly sensitive, accurate, and visual detection of MG dual inverse signals through fluorescence analysis. The probe showed great linearity over a wide range of 0.1-100 μmol/L, with a limit of detection (LOD) of 20 nmol/L. By integrating smartphone photography and RGB (red, green, and blue) analysis, accurate quantitative analysis of MG in water and actual fish samples can be achieved within 5 min. This developed platform holds great promise for the on-site detection of MG in practical applications, with the advantages of simplicity, cost-effectiveness, and rapidity. Consequently, it may open up a new pathway for on-site evaluation of food safety and environmental health.
Collapse
Affiliation(s)
- Lianshuang Jiang
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Chenghui Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory of Green Chemistry & Technology, Ministry of Education, and College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
12
|
Tang K, Chen Y, Zhou Q, Wang X, Wang R, Zhang Z. Portable tri-color ratiometric fluorescence paper sensor for intelligent visual detection of dual-antibiotics and aluminium ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124221. [PMID: 38569390 DOI: 10.1016/j.saa.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The toxicological effect between co-existed antibiotics and metal ions was dangerous to the ecological environment and public health. However, the rapid quantification tools with convenience, accuracy and low cost for the detection of multiple targets were still challenging. Herein, a portable tri-color ratiometric fluorescence paper sensor was constructed by coupling of blue carbon dots and fluorescence imprinted polymer for down/up conversion simultaneous detection of tetracycline and sulfamethazine. Interestingly, the cascade detection of aluminum ion was also realized based on the individual detection system of tetracycline without the assistance of complex coupling reagents. The detection limits of smartphone method for the visual detection of tetracycline, sulfamethazine and aluminum ion were calculated as 0.014 μM, 0.004 μM and 0.019 μM, respectively. The portable fluorescence paper sensor was applied for the visual detection of tetracycline, sulfamethazine and aluminum ion in actual samples successfully with satisfactory recoveries. With the advantages of rapidness, low cost, and portability, the developed portable fluorescence paper sensor provided a new strategy for the visual real-time detection of multiple targets.
Collapse
Affiliation(s)
- Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Qin Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Xiangni Wang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Ruoyan Wang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan 416000, PR China; College of Biological and Chemical Engineering, Changsha University, Changsha, 410022, PR China; Key Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, PR China.
| |
Collapse
|
13
|
Xu X, Fu J, Jiao X, Wang Y, Yao C. DNA-induced assembly of biocatalytic nanocompartments for sensitive and selective aptasensing of aflatoxin B1. Anal Chim Acta 2024; 1295:342328. [PMID: 38355226 DOI: 10.1016/j.aca.2024.342328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Enzyme cascade with high specificity and catalytic efficiency has significant applications for developing efficient bioanalysis methods. In this work, a sensitive and selective aptasensor was constructed based on the DNA-induced assembly of biocatalytic nanocompartments. Different from the conventional co-immobilization in one pot, the cascade enzymes of glucose oxidase (GOX) and horseradish peroxidase (HRP) were separately encapsulated in ZIF-90 nanoparticles. After conjugating complementary DNA or aptermer on enzyme@ZIF-90, DNA hybridization drove enzyme@ZIF-90 connected into clusters or linked on other DNA modified biocatalytic nanocompartment (such as invertase loaded Fe3O4@SiO2). Owing to the shortened distance between enzymes, the catalytic efficiency of connected clusters was significantly enhanced. However, the specifically interaction between the substrate molecule and aptermer sequence would lead to the disassembly of DNA duplexes, resulting in the gradual "switching-off" of cascade reactions. With aflatoxin B1 (AFB1) as the model substrate, the compartmentalized three-enzyme nanoreactors showed good analytical performance in the linear range from 0.01 ng mL-1 to 50 ng mL-1 with a low detection limit (3.3 pg mL-1). In addition, the proposed aptasensor was applied to detect AFB1 in corn oil and wheat powder samples with total recoveries ranging from 94 % to 109 %. As a result, this DNA-induced strategy for enzyme cascade nanoreactors opens new avenues for stimuli-responsive applications in biosensing.
Collapse
Affiliation(s)
- Xuan Xu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Junfeng Fu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Xiaotong Jiao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yuqin Wang
- College of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
14
|
Bereyhi M, Zare-Dorabei R. High-Sensitivity Creatinine Detection via a Dual-Emission Ratiometric Fluorescence Probe Incorporating Amino-MIL-53@Mo/ZIF-8 and Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5890-5899. [PMID: 38452371 DOI: 10.1021/acs.langmuir.3c03793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Quantifying creatinine (Cn) in biological fluids is crucial for clinically assessing renal insufficiency, thyroid irregularities, and muscle damage. Therefore, it is crucial for human health to have a simple, quick, and accurate Cn analysis technique. In this study, we have successfully synthesized a 3D ratiometric dual-metal-organic framework, namely, the amino-MIL-53@Mo/ZIF-8 and rhodamie B heterostructure, using an internal strategy for sustained growth. The dual-MOF functions as an adsorbent and preconcentrates Cn. The pH, reaction time, and volume ratio of amino-MIL-53@Mo/ZIF-8/rhodamie B were optimized using the one-variable-at-a-time technique in this study. The quantitative study of the Cn concentration for this RF biosensor was obtained under ideal conditions (R2 = 0.9962, n = 3), encompassing the linear range of 0.35-11.1 μM. The detection and quantitation limits were 0.18 and 0.54 nM, respectively. Both intra- and interday reproducibility showed high repeatability of the RF biosensor, UV-vis, and ZETA potential studies, and the Stern-Volmer relationship was used to clarify the fluorescence quenching process. These superior sensing capabilities and the benefits of simple manufacturing, acceptable stability, and practicality make the RF biosensor intriguing for ultrasensitive Cn detection in practical applications.
Collapse
Affiliation(s)
- Mohammad Bereyhi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
15
|
Peng L, Guo H, Wu N, Wang M, Hao Y, Ren B, Hui Y, Ren H, Yang W. A dual-functional fluorescence probe CDs@ZIF-90 for highly specific detection of Al 3+ and Hg 2+ in environmental water samples. Anal Chim Acta 2024; 1288:342171. [PMID: 38220302 DOI: 10.1016/j.aca.2023.342171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
In recent years, the escalating water pollution has resulted in serious harm to human health and ecological environment due to the excessive discharge of toxic metal ions such as Al3+ and Hg2+. Therefore, it is crucial to develop a simple, efficient, and rapid detection method for monitoring the levels of the metal ions in water environment to ensure public health and ecological safety. In this study, carbon dots (CDs) containing heteroatom Si were successfully synthesized by the solvothermal method. Subsequently, a novel dual-functional fluorescent sensor (CDs@ZIF-90) was constructed by integrating CDs with zeolitic imidazolate framework-90 (ZIF-90). The fluorescent composite CDs@ZIF-90 showed outstanding optical properties and excellent structural and luminescence stability in aqueous medium. Particularly, its fluorescence at 453 nm can be remarkably enhanced by Al3+ and quenched upon exposure to Hg2+. As a result, the CDs@ZIF-90 was applied in sensitive and selective determination of Al3+ and Hg2+ ions with wide linear ranges (1-200 μM and 0.05-240 μM) and low detection limits (0.81 μM and 19.6 nM). Moreover, a convenient and rapid fluorescence test strip was also successfully prepared for visual detection of Al3+ and Hg2+ ions. This work is the first try to use the CDs@ZIF-90 fluorescence sensing material for highly sensitive and selective determination of Al3+ and Hg2+ based on "turn-on" and "turn-off" dual modes, respectively and it provides a new idea for monitoring quality of drinking water and environmental water. It is of great significance for human health and environmental protection.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yanrui Hao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Henglong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
16
|
Sadeghi-Chahnasir F, Amiripour F, Ghasemi S. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe 3. Anal Chim Acta 2024; 1287:342066. [PMID: 38182373 DOI: 10.1016/j.aca.2023.342066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 01/07/2024]
Abstract
Recycling and reuse of biomass waste in synthesis of nanomaterials have recently received much attention as an effective solution for environmental protection and sustainable development. Herein, nitrogen-doped carbon dots (N-CDs) with blue emission were synthesized from the orange peels as a precursor through a simple hydrothermal method and then, modified with ethylenediamine tetraacetic acid (N-CD@EDTA). The N-CD@EDTA was embedded as a fluorophore in Cu-based metal-organic framework (MOF-199) structure (N-CD@EDTA/MOF-199) to construct fluorescence sensor toward l-ascorbic acid (L-AA) determination. The N-CD@EDTA/MOF-199 nanohybrid significantly and selectively turned on toward L-AA determination during the fluorimetric experiments. Under optimal conditions, the probe showed a suitable linear response in the concentration range of 10 nM-100 μM with a low limit of detection (LOD) of 8.6 nM and high sensitivity of 0.201 μM-1. The possible mechanism of recognition and adsorption, including the reduction of Cu 2+ nodes in the MOF-199 structure in the presence of L-AA and the release of trapped N-CD@EDTA into the solution, was explored. Moreover, the N-CD@EDTA/MOF-199/L-AA (100 μM) system was further applied as a fluorescent "on-off" sensor for Fe3+ determination with a LOD of 1.15 μM. The proposed probe was successfully used in orange juice and water samples to determine L-AA and Fe3+ with satisfactory recovery, which displays the promising capability of sensor in real samples. The recoveries obtained by suggested method are consistent with that obtained from high performance liquid chromatography (HPLC) and atomic absorption spectroscopy which confirm the favorable characteristic of the sensor for accurate determination of L-AA and Fe3+ in practical applications.
Collapse
Affiliation(s)
| | | | - Shahram Ghasemi
- Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
17
|
Yao L, He S, Chen Y, Lian H, Liu B, Lai C, Wei X. Carbon dot/Co-MOF nanocoral mediated fluorescence-scattering ratiometric sensor for highly sensitive detection of alkaline phosphatase. Talanta 2023; 265:124863. [PMID: 37421794 DOI: 10.1016/j.talanta.2023.124863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
Abnormal expression of alkaline phosphatase (ALP) in serum has received considerable attention in health monitoring and disease diagnosis. However, conventional optical analysis based on a single signal must compromise background interference and limited sensitivity in trace analysis. As an alternative candidate, the ratiometric approach depends on the self-calibration of two independent signals in a single test to minimize interferences from the background for accurate identification. Here, a carbon dot/cobalt-metal organic framework nanocoral (CD/Co-MOF NC) mediated fluorescence-scattering ratiometric sensor has been developed for simple, stable, and highly sensitive detection of ALP. ALP-responsive phosphate production was used to coordinate cobalt ion and collapse the CD/Co-MOF NC, resulting in the recovery of fluorescence signal from dissociative CDs and the decrease of second-order scattering (SOS) signal from the cracked CD/Co-MOF NC. The ligand-substituted reaction and the optical ratiometric signal transduction provide a rapid and reliable chemical sensing mechanism. The ratiometric sensor effectively converted ALP into a ratio signal of fluorescence-scattering dual emission throughout a wide linear concentration range of six orders of magnitude with a detection limit of 0.6 mU/L. In addition, self-calibration of fluorescence-scattering ratiometric method can reduce background interference and improve sensitivity in serum, approaching recoveries of ALP from 98.4% to 101.8%. Due to the above advantages, the CD/Co-MOF NC mediated fluorescence-scattering ratiometric sensor readily provides rapid and stable quantitative detection of ALP as a promising in vitro analytical method for clinical diagnostics.
Collapse
Affiliation(s)
- Luxuan Yao
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Shan He
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yiyu Chen
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Huiting Lian
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen, 361021, China
| | - Bin Liu
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen, 361021, China; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, 361021, China
| | - Chengcai Lai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xiaofeng Wei
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China; Key Laboratory of Molecular Designing and Green Conversions, Huaqiao University, Xiamen, 361021, China; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
18
|
Quan X, Yan B. In Situ Generated Dye@MOF/COF Heterostructure for Fluorescence Detection of Chloroquine Phosphate and Folic Acid via Different Luminescent Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54634-54642. [PMID: 37972380 DOI: 10.1021/acsami.3c11298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Metal-organic framework (MOF) and covalent-organic framework (COF) hybrid materials can combine the unique properties of MOF and COF components, and their applications in fluorescence sensing have attracted more and more attention. Herein, ZIF-90 is grown on 3D-COF by a simple in situ growing method in which the 7-amino-4-methylcoumarin (AMC) is encapsulated in ZIF-90 to construct a fluorescent sensor. Chloroquine phosphate (CQP) can coordinate with Zn2+ to decompose the ZIF-90 and release AMC. At 365 nm excitation, the ratiometric fluorescence signal AMC/3D-COF (I430/I598) increases linearly with CQP in a linear range of 4 × 10-5 to 4 × 10-4 M in urine. Under 340 nm excitation, quantitative analysis of CQP in the serum (3 × 10-6 to 4 × 10-5 M) is based on the fluorescence intensity of Zn-CQP/3D-COF (I384/I598). In addition, AMC@ZIF-90/3D-COF (1) exhibits high anti-interference and selectivity in sensing of FA with a "turn off" mode, with a correlation range of 1 × 10-5 to 1 × 10-3 M. The fluorescence color changes triggered by CQP under different excitation conditions, and the different fluorescence responses caused by CQP make it a highly secure anticounterfeiting platform. The synthesized dye@MOF/COF hybrids not only provide a new way to integrate multiple emission to design fluorescent probes for differentiation detection but also offer ideas for the design of anticounterfeiting platforms.
Collapse
Affiliation(s)
- Xueping Quan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
19
|
Zhang P, Chen L, Cai X, Luo B, Chen T, Chen H, Chen G, Li F. Fluorescence wavelength shifts combined with light scattering for ratiometric sensing of chloride in the serum based on CsPbBr 3@SiO 2 perovskite nanocrystal composite halide exchanges. Dalton Trans 2023; 52:15353-15359. [PMID: 37540044 DOI: 10.1039/d3dt01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A traditional fluorescence-scattering intensity based ratiometric sensing system utilizes both inherent scattering and fluorescence intensity and has drawn extensive attention owing to its simplicity and self-calibration properties. In this work, we propose a novel ratiometric fluorescence sensing system that combines a fluorescence wavelength shift and scattering in a single window, using second-order scattering (SOS) as the representative scattering signal based on the halide exchange of CsPbBr3@SiO2 perovskite nanocrystal composites. We observe a fast halide exchange within 10 seconds, resulting in an identifiable fluorescence wavelength blue shift, while the scattering wavelength remains relatively constant for self-correction. This system could be applied for ratiometric sensing of Cl- in the serum without any sample treatment. The established wavelength-based ratiometric system demonstrates high reliability and reproducibility, paving a new way for fluorescence sensing.
Collapse
Affiliation(s)
- Peng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Liming Chen
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Xiaoyan Cai
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, P.R. China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
| | - Tianju Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Haini Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Guoliang Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P.R. China.
| |
Collapse
|
20
|
Shen J, Fan Z. Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism. Mikrochim Acta 2023; 190:427. [PMID: 37792071 DOI: 10.1007/s00604-023-06005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
The simple preparation of a nanohybrid of terbium-doped carbon dots/glutathione-capped copper nanoclusters (Tb@CDs/GSH-CuNCs) was for the first time developed for ratiometric detection of phosphate anion (Pi). Blue-emission of Tb@CDs can trigger non-luminescence of GSH-CuNCs for aggregation-induced emission (AIE) performance due to the strong reserved coordination capacity of Tb3+. Thus, Tb@CDs/GSH-CuNCs rapidly generated dual-emission signals at 630 nm and 545 nm by directly mixing the two individual materials via the AIE effect, alongside fluorescence resonance energy transfer (FRET) process. However, by the introduction of Pi, both AIE and FRET processes were blocked because of the stronger binding affinity of Tb3+ and Pi than that of Tb3+ and -COOH on Tb@CDs, thus realizing successful ratiometric detection of Pi. The linear concentration range was 0-16 μM, with the limit of detection (LOD) of 0.32 μM. The proposed method provided new ideas for designing nanohybrid of CDs and nanoclusters (MNCs) as ratiometric fluorescent probes for analytical applications.
Collapse
Affiliation(s)
- Jingxiang Shen
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China
- Department of Chemistry, Changzhi University, 73 Baoningmen East Street, Changzhi, 046011, Shanxi Province, People's Republic of China
| | - Zhefeng Fan
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, 030000, Shanxi Province, People's Republic of China.
| |
Collapse
|
21
|
Hong LN, Cao HT, Feng YX, Guo LZ, Liu MQ, Zhang K, Mai X, Li N. Aggregation-caused dual-signal response of gold nanoclusters for ratiometric optical detection of cysteine. ANAL SCI 2023; 39:1719-1726. [PMID: 37405629 DOI: 10.1007/s44211-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023]
Abstract
Designing ratiometric sensors for cysteine (Cys) monitoring with high accuracy is of great significance for disease diagnosis and biomedical studies. The current ratiometric methods mainly rely on multiplex probes, which not only complicates the operation but also increases the cost, making it difficult for quantitative Cys detection in resource-limited areas. Herein, one-pot prepared gold nanoclusters (Au NCs) that glow red fluorescent were synthesized by employing glutathione as the stabilizer and reducing agent. When Fe3+ is present with Au NCs, the fluorescence is quenched and the scattering is strong because of the aggregation of Au NCs. With introduction of Cys, Cys can efficiently compete with glutathione-modified Au NCs for Fe3+, which leads to increase of fluorescence and decrease of scattering. The ratiometric determination of Cys can be thereby realized by collecting the fluorescence and SRS spectrum simultaneously. The linear range for Cys was 5-30 µM with a detection limit of 1.5 µM. In addition, the sensing system exhibits good selectivity for Cys and shows potential application in biological samples.
Collapse
Affiliation(s)
- Li-Na Hong
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Hui-Ting Cao
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yi-Xuan Feng
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Li-Zhen Guo
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Meng-Qian Liu
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Kun Zhang
- Jiangxi Academy of Emergency Management Science, NanChang, 330030, People's Republic of China
| | - Xi Mai
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Na Li
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
22
|
He Y, Dai L, Hu L, Lei Y, Wang M. Ratiometric fluorescent detection of total phosphates in frozen shrimp samples using catalytic active Zr(IV) modified gold nanoclusters. Food Chem 2023; 426:136564. [PMID: 37327763 DOI: 10.1016/j.foodchem.2023.136564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Phosphate salts are important food additives in a variety of foods. In this study, the Zr(IV) modified gold nanoclusters (Au NCs) were prepared for ratiometric fluorescent sensing of phosphate additives in seafood samples. Compared with bare Au NCs, the synthesized Zr(IV)/Au NCs showed stronger orange fluorescence at 610 nm. On the other hand, the Zr(IV)/Au NCs retained the phosphatase-like activity of Zr(IV) ions and could catalyze the hydrolysis of fluorescent substrate 4-methylumbelliferyl phosphate to produce blue emission at 450 nm. The addition of phosphate salts could effectively inhibit the catalytic activity of Zr(IV)/Au NCs, resulting the fluorescence decrease at 450 nm. However, the fluorescence at 610 nm almost unchanged upon the addition of phosphates. Based on this finding, the ratiometric detection of phosphates using the fluorescence intensity ratio (I450/I610) was demonstrated. The method has been further applied for sensing total phosphates in frozen shrimp samples with satisfactory results.
Collapse
Affiliation(s)
- Yuting He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Ling Dai
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yao Lei
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
23
|
Yan H, Sun Z, Qing M, Ling Y, Liu WW, Li NB, Luo HQ. Kill two birds with one stone: Ratiometric sensing of phosphate via a single-component probe with fluorescence-scattering dual-signal response behavior. Anal Chim Acta 2023; 1246:340866. [PMID: 36764770 DOI: 10.1016/j.aca.2023.340866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Ratiometric fluorescence sensors gain stronger anti-interference ability via self-calibration. Nevertheless, ratiometric analysis of phosphate (Pi) still faces problems such as complicated construction process of dual emission probes and possible interferences from outputting mono-category fluorescent signal. Herein, we propose a "kill two birds with one stone" strategy to address these challenges, by simply introducing a single-component probe, porphyrin paddlewheel framework-3 (PPF-3) nanosheets without modification, encapsulation or complex, to integrate fluorescence (FL)-second-order scattering (SOS) dual-signal for ratiometric detection of Pi. PPF-3 nanosheets are constructed by coordination of Co2+ with 5,10,15,20-tetrakis(4-carboxyl-phenyl)-porphyrin (TCPP) ligands, displaying weak FL and strong SOS, two different and independent signals. In the response system to Pi, Co2+ and TCPP serve as the recognition element and signal unit, respectively. After interacting with Pi, the high affinity for Co2+ makes Pi snatch Co2+ from the PPF-3 nanosheets, causing their structure disassembly (SOS decrease) and TCPP release (FL increase). Finally, the FL-SOS ratiometric platform is successfully employed to access Pi in real water samples. Synchronous collection of FL and SOS from the single-component probe provides a simpler and more efficient way on ratiometric sensor design as well as a new useful technique for monitoring target-induced aggregation and disaggregation behavior.
Collapse
Affiliation(s)
- Hang Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Min Qing
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Ling
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Wei Wei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
24
|
Wang H, Ai M, Liu J. Detecting phosphate using lysine-sensitized terbium coordination polymer nanoparticles as ratiometric luminescence probes. Anal Bioanal Chem 2023; 415:2185-2191. [PMID: 36864308 DOI: 10.1007/s00216-023-04624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Probes for detecting phosphate ions (Pi) are required for environmental monitoring and to protect human health. Here, novel ratiometric luminescent lanthanide coordination polymer nanoparticles (CPNs) were successfully prepared and used to selectively and sensitively detect Pi. The nanoparticles were prepared from adenosine monophosphate (AMP) and Tb3+, and lysine (Lys) was used as a sensitizer (through the antenna effect) to switch on Tb3+ luminescence at 488 and 544 nm while Lys luminescence at 375 nm was quenched because of energy transfer from Lys to Tb3+. The complex involved is here labeled AMP-Tb/Lys. Pi destroyed the AMP-Tb/Lys CPNs and therefore decreased the AMP-Tb/Lys luminescence intensity at 544 nm and increased the luminescence intensity at 375 nm at an excitation wavelength of 290 nm, meaning ratiometric luminescence detection was possible. The ratio between the luminescence intensities at 544 and 375 nm (I544/I375) was strongly associated with the Pi concentration between 0.1 and 6.0 μM, and the detection limit was 0.08 μM. The dual-emission reverse-change ratio luminescence sensing method can exclude environmental effects, so the proposed assay was found to be very selective. The method was successfully used to detect Pi in real water samples, and acceptable recoveries were found, suggesting that the method could be used in practice to detect Pi in water samples.
Collapse
Affiliation(s)
- Huaxin Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Mimi Ai
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China
| | - Jinshui Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
25
|
Abdelhamid HN. Dye encapsulation and one-pot synthesis of microporous-mesoporous zeolitic imidazolate frameworks for CO 2 sorption and adenosine triphosphate biosensing. Dalton Trans 2023; 52:2506-2517. [PMID: 36734459 DOI: 10.1039/d2dt04084k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One-pot co-precipitation of target molecules e.g. organic dyes and the synthesis of a crystal containing microporous-mesoporous regimes of zeolitic imidazolate frameworks-8 (ZIF-8) are reported. The synthesis method can be used for cationic (rhodamine B (RhB), methylene blue (MB)), and anionic (methyl blue (MeB)) dyes. The crystal growth of the ZIF-8 crystals takes place via an intermediate phase of zinc hydroxyl nitrate (Zn5(OH)8(NO3)2) nanosheets that enabled the adsorption of the target molecules i.e., RhB, MB, and MeB into their layers. The dye molecules play a role during crystal formation. The successful encapsulation of the dye molecules was proved via diffuse reflectance spectroscopy (DRS) and electrochemical measurements e.g., cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The materials were investigated for carbon dioxide (CO2) adsorption and adenosine triphosphate (ATP) biosensing. ZIF-8, RhB@ZIF-8, MB@ZIF-8, and MeB@ZIF-8 offered CO2 adsorption capacities of 0.80, 0.84, 0.85, and 0.53 mmol g-1, respectively. The encapsulated cationic molecules improved the adsorption performance compared to anionic molecules inside the crystal. The materials were also tested as a fluorescent probe for ATP biosensing. The simple synthesis procedure offered new materials with tunable surface properties and the potential for multi-functional applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden. .,Nano-Biomedical Diagnostics Laboratory, Assiut University, Assiut, 71516, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt, El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo, 11837, Egypt
| |
Collapse
|
26
|
An abiotic carbon dots@ ZIF-90 fluorescent probe for rapid and reliable detection of adenosine triphosphate. Anal Biochem 2023; 663:115021. [PMID: 36539047 DOI: 10.1016/j.ab.2022.115021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
ATP is a high-energy compound that plays a vital role in biological metabolism. Abnormal changes in ATP concentration are related to various diseases and reflect microbial metabolism in biofilms. In this work, we prepared carbon quantum dots (CDs) with aggregation-induced fluorescence inhibition effect using the bacterial culture medium as raw material with a hydrothermal method. Then, an abiotic fluorescent nanoprobe named CDs@zeolitic imidazolate frameworks-90 (ZIF-90) was facilely synthesized by encapsulating CDs into ZIF-90. Owing to the encapsulation of CDs in the hollow structure of ZIF-90, the blue fluorescence emission of CDs@ZIF-90 decreased significantly. In the presence of ATP, the ZIF-90 framework was destroyed due to the strong coordination between ATP and Zn2+. The released CDs exhibited stronger fluorescence intensity, which was closely related to the ATP concentration. The convenient synthesis process and rapid ATP-responsive ability make CDs@ZIF-90 highly promising for clinical and environmental analysis.
Collapse
|
27
|
Liu X, Wang T, Wang Y. Selective and ratiometric fluorescence sensing of bisphenol A in canned food based on portable fluorescent test strips. Anal Chim Acta 2023; 1240:340728. [PMID: 36641151 DOI: 10.1016/j.aca.2022.340728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
In this study, a conversion method and molecular imprinting technology were used to design molecularly imprinted polymers (MIP)-based ratiometric fluorescence test papers. The ZnO quantum dots (ZnO QDs) acted as the background quantum dots and ZIF-8 raw material. Carbon dots (CDs) were used as the identification signals. The imprinting layer achieved a selective function. Therefore, a ZnO@ZIF-8/CDs@MIPs sensor was designed for the detection of Bisphenol A (BPA). The sensor exhibited a fast response time for BPA detection. In addition, the sensor demonstrated that effective detection of BPA can still be achieved in complex environments. The detection limit of this sensor was 0.778 nM with a linear range of 0-60 nM. The corresponding test solutions exhibited clear changes from blue to yellow. The selectivity experiments results demonstrated that ZnO@ZIF-8/CDs@MIPs only exhibit excellent selective recognition effect for BPA. ZnO@ZIF-8/CDs@MIPs-2 was used for the detection of BPA in canned food and compared with the results of HPLC detection of BPA. The two spiked recovery ranges were 96.58-102.04% and 97.43-103.82%, respectively. In addition, the prepared ZnO@ZIF-8/CDs@MIPs-2 test paper visually recognized BPA under ultraviolet light. This study provides guidelines for the design and application of fluorescent test papers for quick detection in practical applications.
Collapse
Affiliation(s)
- Xiqing Liu
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen, 333403, PR China
| | - Tao Wang
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen, 333403, PR China.
| | - Yongqing Wang
- Jingdezhen Ceramic University, School of Materials Science and Engineering, Jingdezhen, 333403, PR China.
| |
Collapse
|
28
|
Liu J, Liu Y, Wang W, Zhang S, Tang L, Ma P, Song D, Fei Q. A ratiometric fluorescent sensor for the detection of phosphate. LUMINESCENCE 2023; 38:152-158. [PMID: 36597958 DOI: 10.1002/bio.4434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Over the past few years, ratiometric fluorescent nanoprobes have garnered substantial interest because of their self-calibration characteristics. This research developed a ratiometric fluorescent sensor to detect phosphate. Through encapsulating luminescent materials, gold nanoclusters (AuNCs) and carbon dots (CDs) into a zeolitic imidazolate framework-8 (ZIF-8), the fluorescence signal of AuNCs was enhanced, while that of CDs was suppressed. After phosphate was added, it could decompose ZIF-8, and AuNCs and CDs were released, which weakened the fluorescence signal of the AuNCs while restoring that of the CDs. Thereby, this makes CDs/AuNCs@ZIF-8 a potential fluorescent sensor for phosphate determination. The ratiometric sensor had facile synthesis, good selectivity, and a low detection limit. Therefore, this sensor was an effective tool for the detection of phosphate.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Yibing Liu
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Wei Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Siqi Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Li Tang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| | - Qiang Fei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, China
| |
Collapse
|
29
|
Wang Z, Jin X, Yan L, Yang Y, Liu X. Recent research progress in CDs@MOFs composites: fabrication, property modulation, and application. Mikrochim Acta 2022; 190:28. [PMID: 36520192 DOI: 10.1007/s00604-022-05597-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) have exhibited a promising application prospect in many fields because of their good fluorescence properties, biocompatibility, low toxicity, and easy functionalization. In order to improve their photoelectricity and stability, metal-organic frameworks (MOFs) can be used as host materials to provide ideal carriers for CDs to realize the multifunctional composites of CDs and MOFs (CDs@MOFs). At present, CDs@MOFs composites have shown tremendous application potential because they have various advantages of both CDs and MOFs. In this review, the synthesis methods of CDs@MOFs composites are firstly introduced. Then, the influence of the synergy between CDs and MOFs on the regulation of their structures and optical properties is highlighted. Furthermore, the recent application researches of CDs@MOFs composites in fluorescent probes, solid-state lighting, and photoelectrocatalysis are generalized. Finally, the critical issues, challenges, and solutions on their structure and property regulation and application are put forward, and their commercialization direction is also prospected.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xudong Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lingpeng Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.,College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
30
|
Ratiometric fluorescence and visual sensing of ATP based on gold nanocluster-encapsulated metal-organic framework with a smartphone. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Zhang Z, Li C, Bian Y, Han Y, Wang G. A new NCDs@ZIF-90-based sensor: fluorescent "turn-on" detection of Al 3+ ions with high selectivity and sensitivity. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2193-2203. [PMID: 35999439 DOI: 10.1007/s43630-022-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
A new NCDs@ZIF-90 composite as fluorescence sensor was designed and prepared by encapsulation of N-doped carbon dots (NCDs) in metal-organic framework (MOF) ZIF-90 in one-pot synthesis. NCDs@ZIF-90 retained the crystal structure and high thermal stability of ZIF-90; meanwhile, it also displayed the good chemical stability. NCDs@ZIF-90 dispersion in ethanol exhibited selective "turn-on" fluorescence response towards Al3+. The other coexisting competing metal ions had no obvious influence on the sensing performance of NCDs@ZIF-90 for Al3+. The fluorescence intensity at 447 nm of NCDs@ZIF-90 dispersion in ethanol had good linear relation with the concentrations of Al3+ with a low detection limit of 3.196 μM. The fluorescence enhancement after the addition of Al3+ was attributed to the release of NCDs from the inside of ZIF-90 to ethanol solution. In addition, NCDs@ZIF-90 displayed good recovery in detection of Al3+ in water samples indicating its practical application capability. The high selectivity and sensitivity indicate that NCDs@ZIF-90 is a good candidate as a "turn-on" fluorescence chemosensor to identify and detect Al3+.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chen Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yuying Bian
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yuxin Han
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Guang Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
32
|
Simultaneous ultrasensitive ADP and ATP quantification based on CRISPR/Cas12a integrated ZIF-90@Ag3AuS2@Fe3O4 nanocomposites. Biosens Bioelectron 2022; 218:114784. [DOI: 10.1016/j.bios.2022.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
33
|
Shi J, Wang H, Ma X, Liang A, Jiang Z. A facile COF loaded-molybdate resonance Rayleigh scattering and fluorescence dimode probe for determination of trace PO 43. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121500. [PMID: 35738110 DOI: 10.1016/j.saa.2022.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/24/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A new covalent organic framework loaded-molybdate (COFMo) nanomaterial was prepared simply by solvothermal procedure and characterized by electron microscopy and molecular spectral techniques. The COFMo had a strong resonance Rayleigh scattering (RRS) signal at 465 nm and a fluorescence peak at 345 nm. When the PO43- was added in the system, it reacted with the molybdate, which loaded on the surface of COF particles, to form stable phosphomolybdic acid occurring RRS/fluorescence-energy transfer, the RRS and fluorescence signals were decreased. The decreased RRS/fluorescence intensities were linear to the PO43- concentration in the range of 0.053-3.2 nmol/L and 0.10-3.2 nmol/L, with a detection limit of 0.050 nmol/L and 0.090 nmol/L respectively. Accordingly, a new and facile RRS/fluorescence dimode method for detection of trace PO43- was established, only one fluorometer was used.
Collapse
Affiliation(s)
- Jinling Shi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Haolin Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Xuetong Ma
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China.
| |
Collapse
|
34
|
Yao R, Li Z, Huo P, Gong C, Liu G, Zheng C, Pu S. L-histidine functionalized ZiF-8 with aggregation-induced emission for detection of tetracycline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121546. [PMID: 35759934 DOI: 10.1016/j.saa.2022.121546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
In this study, we constructed zinc based metal-organic framework functionalized by L-histidine (His@ZiF-8). The His@ZiF-8 had high porosity, large surface area, abundant carboxyl and amino group, which has been found to greatly enhance the aggregation-induced emission (AIE) of tetracycline (TC). After the His@ZiF-8 enrichment with TC, the TC exhibited strong fluorescence emission peak at 565 nm based on AIE. Under the optimal conditions, the fluorescence intensity of TC exhibited a good linear relationship with TC concentration within 0.1-80 μM with a low limit of detection of 28.6 nM. Antibiotic analogs such as neomycin, chloramphenico, ampicillin, kanamycin, and erythromycin have no obvious interference. In addition, the developed method was successfully used to the detection of TC in milk, river water, and honey.
Collapse
Affiliation(s)
- Ruihong Yao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| | - Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Chunhong Zheng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
35
|
Chen H, Ding Y, Li J, Huang L, González-Sapienza G, Hammock BD, Wang M, Hua X. New Approach to Generate Ratiometric Signals on Immunochromatographic Strips for Small Molecules. Anal Chem 2022; 94:7358-7367. [PMID: 35536756 DOI: 10.1021/acs.analchem.2c00838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The self-calibration capability of ratiometric signals has been widely considered to enhance the accuracy, sensitivity, and anti-interference ability of immunoassays. Exploring a new approach to generate ratiometric signals can provide more options for various requirements. Herein, we integrated the negative-readout competitive and positive-readout noncompetitive immunoassays into a single assay by employing different color tracers, labeled peptidomimetic and anti-immunocomplex peptides, to create a new unconstrained ratiometric signal approach. Using an immunochromatographic strip (ICS) and a fungicide benzothiostrobin as the analytical platform and analyte, respectively, we showed that this approach can be extensively applied to fluorescence and colorimetry readouts, which have also been proven for strong anti-interference ability to an external light environment. Moreover, the enormous intuitional color changes of ratiometric fluorescent and colorimetric ICSs (RFICS and RCICS) enabled the formation of the color reference cards (like the pH paper) for visual judgment. After adaptation with a portable smartphone, the quantitative detection limits for RFICS and RCICS were 0.17 and 0.44 ng mL-1, respectively. In addition, the ICSs showed good accuracy for the detection of benzothiostrobin in spiked samples.
Collapse
Affiliation(s)
- He Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Ding
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianrun Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, Facultad de Química, Instituto de Higiene, Universidad de la República, Montevideo 11600, Uruguay
| | - Bruce D Hammock
- Department of Entomology and UCD Cancer Center, University of California, Davis, California 95616, United States
| | - Minghua Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiude Hua
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Zhang Y, Sun M, Peng M, Du E, Xu X, Wang CC. The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Wu N, Guo H, Wang M, Peng L, Chen Y, Liu B, Pan Z, Liu Y, Yang W. A ratiometric sensor for selective detection of Hg 2+ ions by combining second-order scattering and fluorescence signals of MIL-68(In)-NH 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120858. [PMID: 35016060 DOI: 10.1016/j.saa.2022.120858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Ratio fluorescence has attracted much attention because of its self-calibration properties. However, it is difficult to obtain suitable fluorescent materials with well-resolved signals simultaneously under one excitation. In this work, we report a different strategy, using MIL-68(In)-NH2 as both the fluorescence element and the scattered light unit, and coupling the fluorescence and the scattered light to construct the fluorescence and scattered light ratio system. Based on the optical properties and the second-order scattering (SOS) of the material nanoparticles, the synthesized MIL-68(In)-NH2 can be used to realize the ratio detection of Hg2+. Because the scattering intensity of small particle MIL-68(In)-NH2 is weak, SOS is not obvious. When Hg2+ is introduced the coordination reaction between the amino nitrogen atoms of MIL-68(In)-NH2 and Hg2+ make the particles larger, resulting in the decrease of fluorescence and the enhancement of SOS. As a result, a novel Hg2+ ratiometric detection method is developed by using the dual signal responses of the fluorescence and scattering. Under the optimal conditions (pH = 6, reaction time 5 min, room temperature, and the maximum excitation wavelength 365 nm), the linear range of the method is 0-100 μM, and the detection limit is 5.8 nM (Ksv = 9.89 × 109 M-1). In addition, the probe is successfully used to evaluate Hg2+ in actual water samples. Compared with the traditional method of recording only the fluorescence signal, the proposed fluorescence-scattering method provides a new strategy for the design of ratiometric sensors.
Collapse
Affiliation(s)
- Ning Wu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Hao Guo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Mingyue Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Liping Peng
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yuan Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Bingqing Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zhilan Pan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yinsheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Wu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
38
|
A ratiometric fluorescence-scattering sensor for rapid, sensitive and selective detection of doxycycline in animal foodstuffs. Food Chem 2022; 373:131669. [PMID: 34863605 DOI: 10.1016/j.foodchem.2021.131669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/26/2021] [Accepted: 11/21/2021] [Indexed: 12/27/2022]
Abstract
The residue problem of tetracycline antibiotics, especially doxycycline (DC), in animal foodstuffs has attracted much attention. This paper reported ZIF-8 and bovine serum albumin (BSA) as a ratiometric fluorescence-scattering sensor for DC. The mechanism relied on the disassembly of ZIF-8 caused by DC, bringing weakened second-order scattering, and the double fluorescence amplification of DC under ZIF-8 with BSA, inducing enhanced fluorescence. The response of the sensor was completed within 1 min, and the detection limit for DC (3.4 nM) was 1-2 orders of magnitude lower than the reported ones. The distinguishment of DC from other tetracycline antibiotics was also achieved by the sensor. The sensor was applied to detecting DC in animal foodstuffs with satisfactory recoveries (80.0-104.0%). Hence, this work develops a rapid, sensitive and selective ratiometric sensor to monitor the DC residue in animal foodstuffs, also opens the window to construct ratiometric DC sensors with the fluorescence-scattering strategy.
Collapse
|
39
|
Moumen E, Bazzi L, El Hankari S. Metal-organic frameworks and their composites for the adsorption and sensing of phosphate. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214376] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Kim DY, Kim DG, Jeong B, Kim YI, Heo J, Lee HK. Reusable and pH-Stable Luminescent Sensors for Highly Selective Detection of Phosphate. Polymers (Basel) 2022; 14:190. [PMID: 35012212 PMCID: PMC8747124 DOI: 10.3390/polym14010190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/10/2022] Open
Abstract
Phosphate sensors have been actively studied owing to their importance in water environment monitoring because phosphate is one of the nutrients that result in algal blooms. As with other nutrients, seamless monitoring of phosphate is important for understanding and evaluating eutrophication. However, field-deployable phosphate sensors have not been well developed yet due to the chemical characteristics of phosphate. In this paper, we report on a luminescent coordination polymer particle (CPP) that can respond selectively and sensitively to a phosphate ion against other ions in an aquatic ecosystem. The CPPs with an average size of 88.1 ± 12.2 nm are embedded into membranes for reusable purpose. Due to the specific binding of phosphates to europium ions, the luminescence quenching behavior of CPPs embedded into membranes shows a linear relationship with phosphate concentrations (3-500 μM) and detection limit of 1.52 μM. Consistent luminescence signals were also observed during repeated measurements in the pH range of 3-10. Moreover, the practical application was confirmed by sensing phosphate in actual environmental samples such as tap water and lake water.
Collapse
Affiliation(s)
- Do Yeob Kim
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Dong Gyu Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Bongjin Jeong
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| | - Young Il Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Jungseok Heo
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (D.G.K.); (Y.I.K.)
| | - Hyung-Kun Lee
- ICT Creative Research Laboratory, Electronics & Telecommunications Research Institute, Daejeon 34129, Korea; (D.Y.K.); (B.J.)
| |
Collapse
|
42
|
Soni H, Prasad J, Pandya A, Soni SS, Sutariya PG. Disposable paper-based PET fluorescence probe linked with calix[4]arene for lithium and phosphate ion detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj04536b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a part of our ongoing research, we have synthesized a new fluorescence probe, p-C4A, based on a calix[4]arene substituted with 4-aminoquinoline moieties with amide linkages for lithium and phosphate ions.
Collapse
Affiliation(s)
- Heni Soni
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Jyoti Prasad
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382246, Gujarat, India
| | - Saurabh S. Soni
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| | - Pinkesh G. Sutariya
- Department of Chemistry, Sardar Patel University, V. V. Nagar, 388120, Gujarat, India
| |
Collapse
|
43
|
Du C, Wang Y, Pei K, Wu D, Qi W. An electrochemiluminescence dual “turn-on” strategy for alkaline phosphatase detection using a dual quenching Ru(bpy) 32+ encapsulated zeolite imidazole metal organic framework. Chem Commun (Camb) 2022; 58:12114-12117. [DOI: 10.1039/d2cc04270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemiluminescence (ECL) dual “turn-on” strategy is first designed to detect alkaline phosphatase (ALP) using a dual quenching Ru(bpy)32+ encapsulated zeolite imidazole metal organic framework (Ru(bpy)32+@ZIF-90).
Collapse
Affiliation(s)
- Chengpei Du
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yi Wang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Kanglin Pei
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Di Wu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
44
|
Xu Y, Huang T, Hu B, Meng M, Yan Y. Molecularly imprinted polydopamine coated CdTe@SiO2 as a ratiometric fluorescent probe for ultrafast and visual p-nitrophenol monitoring. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Sha H, Yan B. Dye-functionalized metal-organic frameworks with the uniform dispersion of MnO 2 nanosheets for visualized fluorescence detection of alanine aminotransferase. NANOSCALE 2021; 13:20205-20212. [PMID: 34850792 DOI: 10.1039/d1nr05376k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The wide applications of metal-organic framework (MOF) luminescent materials in the field of optics have attracted the general attention of researchers. Therefore, the development of simple and multifunctional MOF light-emitting platforms have become a research hotspot. The composites (MnO2@ZIF-8-luminol) were prepared by an in situ synthesis method and room-temperature covalent reaction. The composites and o-phenylenediamine (OPD) constitute a dual emission sensor for detecting alanine aminotransferase (ALT). OPD can be oxidized by MnO2 to 2,3-diaminophenazine (DAP) with yellow fluorescence emission, which inhibits the blue emission of luminol through fluorescence resonance energy transfer (FRET). The presence of tiopronin (TP) will destroy the FRET process, extinguishing the yellow fluorescence emission and restoring the blue fluorescence emission. The special effect between ALT and TP will further reverse the changes in the two fluorescent signals. Moreover, in the detection process, when the blue and yellow fluorescence energies in the system are within a certain range, a new white light emission will be generated, which causes the sensing of ALT to present ternary visualization. In addition, a high-security anti-counterfeiting platform is constructed by using the prepared materials and agarose hydrogels. The anti-counterfeiting platform can encrypt information on demand according to the luminous characteristics of different materials. This study not only provides a typical case of ternary visualization sensing by MOF-based materials but also develops a possible method for the construction of a MOF-based hydrogel anti-counterfeiting platform.
Collapse
Affiliation(s)
- Haifeng Sha
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| |
Collapse
|
46
|
Innovative ratiometric optical strategy: Nonconjugated polymer dots based fluorescence-scattering dual signal output for sensing mercury ions. Food Chem 2021; 374:131771. [PMID: 34894467 DOI: 10.1016/j.foodchem.2021.131771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
A new ratiometric platform was developed for sensing Hg2+, which combined fluorescence and scattering simultaneously. This ratiometric strategy reflected superiorities over conventional methods, since the two independent signals at irrelevant categories meet the requirements of sufficient wavelength separation, stimulation under one excitation, and collection on single instrument. Herein, nonconjugated polymer dots (N-PDs) were served as the recognition unit for Hg2+ with turn-off fluorescence and turn-on scattering. Additionally, two signal collection tactics were proposed to achieve fluorescence and scattering in a window: one was to record down-conversion fluorescence and second-order scattering spectra (FL@SOS), and the other was to gather the fluorescence excited by second-order diffraction light and first-order scattering (SODL-FL@FOS). This ratiometric sensor exhibited outstanding performance toward Hg2+ in the range of 0.1-50 μM with the detection limit of 27 nM. By contrast, the present proposal provided a more ingenious and scalable way to construct ratiometric sensor than traditional approach.
Collapse
|
47
|
Gong C, Li Z, Liu G, Pu S. Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH) 2 nanoprobe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119493. [PMID: 33556795 DOI: 10.1016/j.saa.2021.119493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The sensing of phosphate anion (PO43-) is an important subject for human health and environmental monitoring. Herein, a unique ratiometric fluorescent nanoprobe based on postsynthetic modification of metal-organic frameworks (MOF) UiO-66-(COOH)2 with Eu3+ and Ce3+ ions toward PO43- was proposed (designated as Eu/Ce/Uio-66-(COOH)2). The Eu/Ce/Uio-66-(COOH)2 nanoprobe exhibits three emission peaks at 377 nm, 509 nm, and 621 nm with the single excitation wavelength at 250 nm, respectively. The strong coordinating interaction between Ce3+ and O atoms in the PO43- group can result in the fluorescence quenching at 377 nm, while the fluorescence of 621 nm almost remains unchanged. Such a useful phenomenon is exploited for the construction of a ratiometric fluorescence platform for the detection of PO43-. The assay exhibited a good linear response in the 0.3-20 μM concentration range with the detection limit of 0.247 μM. In addition, this ratiometric fluorescent sensing method not only can be applied to read out PO43- concentration in real water samples, but also shows higher sensitivity, easier preparation and sensing procedures than other detection strategies.
Collapse
Affiliation(s)
- Congcong Gong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; YuZhang Normal University, Nanchang 330013, PR China.
| |
Collapse
|
48
|
Cheng H, Hui P, Peng J, Li W, Ma W, Wang H, Huang J, He X, Wang K. Enzymatic Behavior Regulation-Based Colorimetric and Electrochemiluminescence Sensing of Phosphate Using the Cobalt Oxyhydroxide Nanosheet. Anal Chem 2021; 93:6770-6778. [PMID: 33885275 DOI: 10.1021/acs.analchem.1c00557] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, a convenient and flexible assay for colorimetric and electrochemiluminescence (ECL) sensing of phosphate was proposed based on the enzymatic behavior regulation of the cobalt oxyhydroxide (CoOOH) nanosheet. CoOOH as a novel nanoenzyme exhibited a peroxidase-like activity, which could catalyze different substrates such as 2, 2'-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS) and 4-chloro-1-naphthol (4-CN) with hydrogen peroxide (H2O2) as the electron acceptor. Phosphate could specifically regulate the enzymatic behavior of the CoOOH nanosheet via the deactivating effect. A high level of phosphate enabled a weak color change of ABTS, which offered a "turn-off" model of the colorimetric assay with a limit of detection of 0.673 μM. Based on the similar enzymatic behavior, this strategy could then be applied in the ECL assay utilizing l-arginine-6-aza-2-thiothymine-protected gold nanoclusters (Arg-ATT-AuNCs) as ECL signal indicators. Specifically, 4-CN was catalyzed to generate the precipitate and lead to the quenching on ECL emission. Different from colorimetric behavior, phosphate with a high concentration could induce strong ECL performance, which enabled the "turn-on" model of the ECL assay with a more sensitive determination down to 0.434 nM. This flexible enzymatic behavior regulation could then allow the phosphate measurement in environmental samples including tap water and river water with satisfactory accuracy, which holds the potential in the field of environmental protection.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Pansen Hui
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jiaxin Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Li Z, Liu G, Fan C, Pu S. Ratiometric fluorescence for sensitive detection of phosphate species based on mixed lanthanide metal organic framework. Anal Bioanal Chem 2021; 413:3281-3290. [PMID: 33693975 DOI: 10.1007/s00216-021-03264-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Phosphate (PO43-) plays a major role in aquatic ecosystems and biosystems. Developing a highly sensitive and selective ratiometric fluorescence probe for detection of PO43- is of great significance to the ecological environment and human health. In this work, a novel dual lanthanide metal organic framework was synthesized via hydrothermal reaction based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand (designated as Tb-Ce-MOFs). The fluorescence of Tb-Ce-MOFs shows emission at 375 nm. In the presence of PO43-, with increased concentration of PO43-, the fluorescence intensity of Tb-Ce-MOFs at 500 nm and 550 nm increased, while the intensity at 375 nm was reduced. Hence, ratiometric fluorescence detecting of PO43- can be achieved by measuring the ratio of fluorescence at 550 nm (FL550) to 375 nm (FL375) in the fluorescent spectra of the Tb-Ce-MOFs. In this sensing approach, the Tb-Ce-MOFs probe exhibits highly sensitive and selective for detection of PO43-. The limit of detection is calculated to be 28 nM and the detection range is 0.1 to 10 μM. In addition, the Tb-Ce-MOFs were used in the detection of PO43- in real samples. We design and synthesize a mixed lanthanide metal organic framework fluorescence probe (Tb-Ce-MOFs) for ratiometric fluorescence for the detection of PO43- based on Tb3+ and Ce3+ as the center metal ions and terephthalic acid as the organic ligand.
Collapse
Affiliation(s)
- Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| | - Gang Liu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, Jiangxi, China.
- YuZhang Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|