1
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
3
|
Hao T, Zhang R, Ren S, Jia Y. Undecorated GFET for determinations of heavy metal ions aided by machine learning algorithms. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2022.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
4
|
Chen S, Sun Y, Fan X, Xu Y, Chen S, Zhang X, Man B, Yang C, Du J. Review on two-dimensional material-based field-effect transistor biosensors: accomplishments, mechanisms, and perspectives. J Nanobiotechnology 2023; 21:144. [PMID: 37122015 PMCID: PMC10148958 DOI: 10.1186/s12951-023-01898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
Field-effect transistor (FET) is regarded as the most promising candidate for the next-generation biosensor, benefiting from the advantages of label-free, easy operation, low cost, easy integration, and direct detection of biomarkers in liquid environments. With the burgeoning advances in nanotechnology and biotechnology, researchers are trying to improve the sensitivity of FET biosensors and broaden their application scenarios from multiple strategies. In order to enable researchers to understand and apply FET biosensors deeply, focusing on the multidisciplinary technical details, the iteration and evolution of FET biosensors are reviewed from exploring the sensing mechanism in detecting biomolecules (research direction 1), the response signal type (research direction 2), the sensing performance optimization (research direction 3), and the integration strategy (research direction 4). Aiming at each research direction, forward perspectives and dialectical evaluations are summarized to enlighten rewarding investigations.
Collapse
Affiliation(s)
- Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology, 30 Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiangyu Fan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yazhe Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shanshan Chen
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Jun Du
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
5
|
Pundir M, De Rosa MC, Lobanova L, Abdulmawjood S, Chen X, Papagerakis S, Papagerakis P. Structural properties and binding mechanism of DNA aptamers sensing saliva melatonin for diagnosis and monitoring of circadian clock and sleep disorders. Anal Chim Acta 2023; 1251:340971. [PMID: 36925277 DOI: 10.1016/j.aca.2023.340971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Circadian desynchrony with the external light-dark cycle influences the rhythmic secretion of melatonin which is among the first signs of circadian rhythm sleep disorders. An accurate dim light melatonin onset (established indicator of circadian rhythm sleep disorders) measurement requires lengthy assays, and antibody affinities alterations, especially in patients with circadian rhythm disorders whose melatonin salivary levels vary significantly, making antibodies detection mostly inadequate. In contrast, aptamers with their numerous advantages (e.g., target selectivity, structural flexibility in tuning binding affinities, small size, etc.) can become preferable biorecognition molecules for salivary melatonin detection with high sensitivity and specificity. This study thoroughly characterizes the structural property and binding mechanism of a single-stranded DNA aptamer full sequence (MLT-C-1) and its truncated versions (MLT-A-2, MLT-A-4) to decipher its optimal characteristics for saliva melatonin detection. We use circular dichroism spectroscopy to determine aptamers' conformational changes under different ionic strengths and showed that aptamers display a hairpin loop structure where few base pairs in the stem play a significant role in melatonin binding and formation of aptamer stabilized structure. Through microscale thermophoresis, aptamers demonstrated a high binding affinity in saliva samples (MLT-C-1F Kd = 12.5 ± 1.7 nM; MLT-A-4F Kd = 11.2 ± 1.6 nM; MLT-A-2F Kd = 2.4 ± 2.8 nM; limit-of-detection achieved in pM, highest sensitivity attained for MLT-A-2F aptamer with the lowest detection limit of 1.35 pM). Our data suggest that aptamers are promising as biorecognition molecules and provide the baseline parameters for the development of an aptamer-based point-of-care diagnostic system for melatonin detection and accurate profiling of its fluctuations in saliva.
Collapse
Affiliation(s)
- Meenakshi Pundir
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Maria C De Rosa
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada.
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada
| | - Shahad Abdulmawjood
- Department of Chemistry, Faculty of Science, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada; Department of Mechanical Engineering, School of Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada.
| | - Silvana Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48109, United States.
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, S7N 5E4, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada.
| |
Collapse
|
6
|
Słoma M. 3D printed electronics with nanomaterials. NANOSCALE 2023; 15:5623-5648. [PMID: 36880539 DOI: 10.1039/d2nr06771d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A large variety of printing, deposition and writing techniques have been incorporated to fabricate electronic devices in the last decades. This approach, printed electronics, has gained great interest in research and practical applications and is successfully fuelling the growth in materials science and technology. On the other hand, a new player is emerging, additive manufacturing, called 3D printing, introducing a new capability to create geometrically complex constructs with low cost and minimal material waste. Having such tremendous technology in our hands, it was just a matter of time to combine advances of printed electronics technology for the fabrication of unique 3D structural electronics. Nanomaterial patterning with additive manufacturing techniques can enable harnessing their nanoscale properties and the fabrication of active structures with unique electrical, mechanical, optical, thermal, magnetic and biological properties. In this paper, we will briefly review the properties of selected nanomaterials suitable for electronic applications and look closer at the current achievements in the synergistic integration of nanomaterials with additive manufacturing technologies to fabricate 3D printed structural electronics. The focus is fixed strictly on techniques allowing as much as possible fabrication of spatial 3D objects, or at least conformal ones on 3D printed substrates, while only selected techniques are adaptable for 3D printing of electronics. Advances in the fabrication of conductive paths and circuits, passive components, antennas, active and photonic components, energy devices, microelectromechanical systems and sensors are presented. Finally, perspectives for development with new nanomaterials, multimaterial and hybrid techniques, bioelectronics, integration with discrete components and 4D-printing are briefly discussed.
Collapse
Affiliation(s)
- Marcin Słoma
- Micro- and Nanotechnology Division, Institute of Metrology and Biomedical Engineering, Faculty of Mechatronics, Warsaw University of Technology, 8 Sw. A Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
7
|
Kusov PA, Kotelevtsev YV, Drachev VP. Cortisol Monitoring Devices toward Implementation for Clinically Relevant Biosensing In Vivo. Molecules 2023; 28:2353. [PMID: 36903600 PMCID: PMC10005364 DOI: 10.3390/molecules28052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cortisol is a steroid hormone that regulates energy metabolism, stress reactions, and immune response. Cortisol is produced in the kidneys' adrenal cortex. Its levels in the circulatory system are regulated by the neuroendocrine system with a negative feedback loop of the hypothalamic-pituitary-adrenal axis (HPA-axis) following circadian rhythm. Conditions associated with HPA-axis disruption cause deteriorative effects on human life quality in numerous ways. Psychiatric, cardiovascular, and metabolic disorders as well as a variety of inflammatory processes accompanying age-related, orphan, and many other conditions are associated with altered cortisol secretion rates and inadequate responses. Laboratory measurements of cortisol are well-developed and based mainly on the enzyme linked immunosorbent assay (ELISA). There is a great demand for a continuous real-time cortisol sensor that is yet to be developed. Recent advances in approaches that will eventually culminate in such sensors have been summarized in several reviews. This review compares different platforms for direct cortisol measurements in biological fluids. The ways to achieve continuous cortisol measurements are discussed. A cortisol monitoring device will be essential for personified pharmacological correction of the HPA-axis toward normal cortisol levels through a 24-h cycle.
Collapse
Affiliation(s)
- Pavel A. Kusov
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Yuri V. Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir P. Drachev
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
8
|
Krishnan SK, Nataraj N, Meyyappan M, Pal U. Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Anal Chem 2023; 95:2590-2622. [PMID: 36693046 PMCID: PMC11386440 DOI: 10.1021/acs.analchem.2c03399] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei106, Taiwan
| | - M Meyyappan
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati781039, Assam, India
| | - Umapada Pal
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla72570, Mexico
| |
Collapse
|
9
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
10
|
Zhang R, Hao T, Hu S, Wang K, Ren S, Tian Z, Jia Y. Electrolyte-Gated Graphene Field Effect Transistor-Based Ca 2+ Detection Aided by Machine Learning. SENSORS (BASEL, SWITZERLAND) 2022; 23:353. [PMID: 36616952 PMCID: PMC9824237 DOI: 10.3390/s23010353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Flexible electrolyte-gated graphene field effect transistors (Eg-GFETs) are widely developed as sensors because of fast response, versatility and low-cost. However, their sensitivities and responding ranges are often altered by different gate voltages. These bias-voltage-induced uncertainties are an obstacle in the development of Eg-GFETs. To shield from this risk, a machine-learning-algorithm-based LgGFETs' data analyzing method is studied in this work by using Ca2+ detection as a proof-of-concept. For the as-prepared Eg-GFET-Ca2+ sensors, their transfer and output features are first measured. Then, eight regression models are trained with the use of different machine learning algorithms, including linear regression, support vector machine, decision tree and random forest, etc. Then, the optimized model is obtained with the random-forest-method-treated transfer curves. Finally, the proposed method is applied to determine Ca2+ concentration in a calibration-free way, and it is found that the relation between the estimated and real Ca2+ concentrations is close-to y = x. Accordingly, we think the proposed method may not only provide an accurate result but also simplify the traditional calibration step in using Eg-GFET sensors.
Collapse
Affiliation(s)
- Rong Zhang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tiantian Hao
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Shihui Hu
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Kaiyang Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Shuhui Ren
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Ziwei Tian
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yunfang Jia
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
11
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
12
|
Tian L, Jiang M, Su M, Cao X, Jiang Q, Liu Q, Yu C. Sweat cortisol determination utilizing MXene and multi-walled carbon nanotube nanocomposite functionalized immunosensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Ganpat Chavan S, Kumar Yagati A, Koyappayil A, Go A, Yeon S, Lee MH. Recombinant Histidine-Tagged Nano-protein-based Highly Sensitive Electro-Sensing Device for Salivary Cortisol. Bioelectrochemistry 2022; 144:108046. [PMID: 35030457 DOI: 10.1016/j.bioelechem.2021.108046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022]
Abstract
We have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni2+ centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni2+ transition metal ions. Despite the variety of conventional assays available to monitor cortisol levels, they require bulky exterior outfits, which hinders use in the healthcare systems. Therefore, we performed a rapid, easy-to-implement, and low-cost quantitative electro-sensor to enable the real-time detection of cortisol levels in saliva samples. As a result, the cortisol electro-sensor fabricated with high specificity utilizing a GCE could measure cortisol levels with a detection limit of 0.95 ng/ml and sensitivity of 7.91 μA/(ng/mL), which is a practical approach in human saliva. Thus, protein nanoprobe-based cortisol biosensing showed high sensitivity and selectivity for the direct electro-sensing of cortisol for POCT.
Collapse
Affiliation(s)
- Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Ajay Kumar Yagati
- Institute of Analytical Chemistry/Chemo-and Biosensors, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Sangho Yeon
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heuseok-dong, Dongjak-Gu, Seoul 06974, South Korea.
| |
Collapse
|
15
|
Wang B, Zhao C, Wang Z, Yang KA, Cheng X, Liu W, Yu W, Lin S, Zhao Y, Cheung KM, Lin H, Hojaiji H, Weiss PS, Stojanović MN, Tomiyama AJ, Andrews AM, Emaminejad S. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. SCIENCE ADVANCES 2022; 8:eabk0967. [PMID: 34985954 PMCID: PMC8730602 DOI: 10.1126/sciadv.abk0967] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In2O3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array–based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.
Collapse
Affiliation(s)
- Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaoqing Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kyung-Ae Yang
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenzhuo Yu
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin M. Cheung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haisong Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hannaneh Hojaiji
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Milan N. Stojanović
- Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - A. Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (A.M.A.); (S.E.)
| |
Collapse
|