1
|
Amiri M, Hashemi Z, Chekin F. Zinc oxide nanoparticles decorated nitrogen doped porous reduced graphene oxide-based hybrid to sensitive detection of hydroxychloroquine in plasma and urine. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:4. [PMID: 39775200 PMCID: PMC11706907 DOI: 10.1007/s10856-024-06847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The antimalarial hydroxychloroquine (HCQ) has considered for the treatment of systemic lupus erythematosus. Moreover, HCQ has been used as a drug to treat Coronavirus disease (COVID-19). In this work, nitrogen doped porous reduced graphene oxide (NprGO) has been prepared via environmentally friendly process using Fummaria Parviflora extract. A catalyst based on ZnO nanoparticles-nitrogen doped porous reduced graphene oxide (ZnO-NprGO) was prepared by hydrothermal method and characterized. The diameter of ZnO nanoparticles was ~22-37 nm, which were inserted between the NprGO sheets effectively prevented their aggregation. The ZnO-NprGO hybrid had high surface area and good electro-catalytic property, suiting for determination of HCQ. The ZnO-NprGO modified carbon paste electrode (CPE)-based sensor operated in a wide concentration range of 0.07-5.5 μmol L-1 with low limit of detection of 57 nmol L-1 and sensitivity of 14.175 μA μmol-1 L. Remarkably, the ZnO-NprGO/CPE sensor indicated acceptable accuracy, reproducibility, and stability. In addition, the proposed sensor was applied to detection of HCQ in biological samples and the recoveries were 92.0-102.5%, with relative standard deviations of 1.9-4.3%. The unique physical structure of ZnO-NprGO, as well as its chemical and electrical properties, make it promising interface for use in sensors and nanoelectronic applications.
Collapse
Affiliation(s)
- Mohammad Amiri
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Zahra Hashemi
- Department of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fereshteh Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
| |
Collapse
|
2
|
Jain S, Lamba BY, Dubey SK. Recent advancements in the sensors for food analysis to detect gluten: A mini-review [2019-2023]. Food Chem 2024; 449:139204. [PMID: 38613992 DOI: 10.1016/j.foodchem.2024.139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
People with celiac disease or gluten sensitivity may experience an immune reaction to the protein called gluten, which is present in wheat, barley, and rye. A strict gluten-free diet is the sole cure for these ailments. There are chances of food fraud about the claim of being gluten-free food items. As a result, there is a rising need for trustworthy and precise ways to identify gluten. There are many methods to detect gluten in food samples viz., enzyme-linked immunosorbent assay 1 Surface plasmon resonance (SPR), Electrochemical sensors, Fluorescence-based sensors, etc. The use of sensors is one of the most promising methods for gluten detection. For detecting gluten, a variety of sensors, including optical, electrochemical, and biosensors, have been developed with different limits of detection and sensitivity. The present review reports the recent advancements (2019-2023) in the development of sensors for gluten detection in food. We may conclude that sensitivity and limit of detection are not related to the type of sensor used (aptamer or antibody-based), however, there are advancements, with the year, on the simplicity of the material used like paper-based sensors and paradigm shift to reagent free sensors by the spectral analysis. Also, recent work shows the potential of IoT-based studies for gluten detection.
Collapse
Affiliation(s)
- Sapna Jain
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India.
| | - Bhawna Yadav Lamba
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| | - Sanjeev Kumar Dubey
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| |
Collapse
|
3
|
Wu Y, Chen K, Wang F. C-undecylcalix[4]resorcinarene Langmuir-Blodgett/Porous Reduced Graphene Oxide Composite Film as a Electrochemical Sensor for the Determination of Tryptophan. BIOSENSORS 2023; 13:1024. [PMID: 38131784 PMCID: PMC10742033 DOI: 10.3390/bios13121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
In this study, a composite film was developed for the electrochemical sensing of tryptophan (Trp). Porous reduced graphene oxide (PrGO) was utilized as the electron transfer layer, and a C-undecylcalix[4]resorcinarene Langmuir-Blodgett (CUCR-LB) film served as the molecular recognition layer. Atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, scanning electron microscopy (SEM), and electrochemical experiments were employed to analyze the characteristics of the CUCR-LB/PrGO composite film. The electrochemical behavior of Trp on the CUCR-LB/PrGO composite film was investigated, revealing a Trp linear response range of 1.0 × 10-7 to 3.0 × 10-5 mol L-1 and a detection limit of 3.0 × 10-8 mol L-1. Furthermore, the developed electroanalytical method successfully determined Trp content in an amino acid injection sample. This study not only introduces a rapid and reliable electrochemical method for the determination of Trp but also presents a new strategy for constructing high-performance electrochemical sensing platforms.
Collapse
Affiliation(s)
| | | | - Fei Wang
- School of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou 450007, China; (Y.W.); (K.C.)
| |
Collapse
|
4
|
Manikandan V, Min SC. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review. Int J Biol Macromol 2023; 252:126381. [PMID: 37595723 DOI: 10.1016/j.ijbiomac.2023.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In food production sectors, food spoilage and contamination are major issues that threaten and negatively influence food standards and safety. Several physical, chemical, and biological methods are used to extend the shelf-life of food products, but they have their limitations. Henceforth, researchers and scientists resort to novel methods to resolve these existing issues. Nanomaterials-based extension of food shelf life has broad scope rendering a broad spectrum of activity including high antioxidant and antimicrobial activity. Numerous research investigations have been made to identify the possible roles of nanoparticles in food preservation. A wide range of nanomaterials via different approaches is ultimately applied for food preservation. Among them, chemically synthesized methods have several limitations, unlike biological synthesis. However, biological synthesis protocols are quite expensive and laborious. Predominant studies demonstrated that nanoparticles can protect fruits and vegetables by preventing microbial contamination. Though several nanomaterials designated for food preservation are available, detailed knowledge of the mechanism remains unclear. Hence, this review aims to highlight the various nanomaterials and their roles in increasing the shelf life of food products. Adding to the novel market trends, nano-packaging will open new frontiers and prospects for ensuring food safety and quality.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
5
|
Liu M, Huang J, Ma S, Yu G, Liao A, Pan L, Hou Y. Allergenicity of wheat protein in diet: Mechanisms, modifications and challenges. Food Res Int 2023; 169:112913. [PMID: 37254349 DOI: 10.1016/j.foodres.2023.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Wheat is widely available in people's daily diets. However, some people are currently experiencing IgE-mediated allergic reactions to wheat-based foods, which seriously impact their quality of life. Thus, it is imperative to provide comprehensive knowledge and effective methods to reduce the risk of wheat allergy (WA) in food. In the present review, recent advances in WA symptoms, the major allergens, detection methods, opportunities and challenges in establishing animal models of WA are summarized and discussed. Furthermore, an updated overview of the different modification methods that are currently being applied to wheat-based foods is provided. This study concludes that future approaches to food allergen detection will focus on combining multiple tools to rapidly and accurately quantify individual allergens in complex food matrices. Besides, biological modification has many advantages over physical or chemical modification methods in the development of hypoallergenic wheat products, such as enzymatic hydrolysis and fermentation. It is worth noting that using biotechnology to edit wheat allergen genes to produce allergen-free food may be a promising method in the future which could improve the safety of wheat foods and the health of allergy sufferers.
Collapse
Affiliation(s)
- Ming Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Jihong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, PR China; School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| |
Collapse
|
6
|
Zhang R, Yan C, Zong Z, Qu W, Yao L, Xu J, Zhu Y, Yao B, Chen W. Taking glucose as intermediate bridge-signal-molecule for on-site and convenient detection of ochratoxin A in rice with portable glucose meter. Food Chem 2023; 400:134007. [DOI: 10.1016/j.foodchem.2022.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
|
7
|
Epitope-imprinted Polydopamine and Reduced Graphene Oxide-Based Sensing Interface for Label-free Detection of Gliadin. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Tasić ŽZ, Petrović Mihajlović MB, Simonović AT, Radovanović MB, Antonijević MM. Recent Advances in Electrochemical Sensors for Caffeine Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:9185. [PMID: 36501886 PMCID: PMC9735645 DOI: 10.3390/s22239185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The determination of target analytes at very low concentrations is important for various fields such as the pharmaceutical industry, environmental protection, and the food industry. Caffeine, as a natural alkaloid, is widely consumed in various beverages and medicines. Apart from the beneficial effects for which it is used, caffeine also has negative effects, and for these reasons it is very important to determine its concentration in different mediums. Among numerous analytical techniques, electrochemical methods with appropriate sensors occupy a special place since they are efficient, fast, and entail relatively easy preparation and measurements. Electrochemical sensors based on carbon materials are very common in this type of research because they are cost-effective, have a wide potential range, and possess relative electrochemical inertness and electrocatalytic activity in various redox reactions. Additionally, these types of sensors could be modified to improve their analytical performances. The data available in the literature on the development and modification of electrochemical sensors for the determination of caffeine are summarized and discussed in this review.
Collapse
|
9
|
Momeni A, Rostami-Nejad M, Salarian R, Rabiee M, Aghamohammadi E, Zali MR, Rabiee N, Tay FR, Makvandi P. Gold-based nanoplatform for a rapid lateral flow immunochromatographic test assay for gluten detection. BMC Biomed Eng 2022; 4:5. [PMID: 35596200 PMCID: PMC9121606 DOI: 10.1186/s42490-022-00062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
Background Gluten, a food allergen, is available in foods derived from wheat, rye and barley. It damages the small intestine and causes celiac disease. Herein, we designed a rapid immunochromatographic lateral flow test assay for detecting the gluten contents of raw materials. In this rapid test, the presence of gluten was screened through the capturing of gliadin (a toxic component of gluten) by two identical gliadin monoclonal antibodies. One of the antibodies was immobilized on the membrane in the test zone as a capture reagent. The other antibody was labeled with gold nanoparticles (AuNPs) as a detector reagent. Results Gold nanoparticles with a size of about 20 nm were synthesized and conjugated to the gliadin monoclonal antibodies. The detection limit of the experimental assay was 20 ppm and positive results were visualized after 15 min using only 40 μL of the extracted sample for each test. Analysis of different flour samples identified the best sensitivity and specificity of the lateral flow test strip (LFTS). Conclusion The experimental LFTS is an easy-to-use and rapid method for the screening of gluten level in raw materials. The LFTS may be employed to ensure the safety of foods.
Collapse
Affiliation(s)
- Arefe Momeni
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Reza Salarian
- Biomedical Engineering Department, Maziar University, Royan, Iran.
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Elham Aghamohammadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia. .,Department of Physics, Sharif University of Technology, Tehran, Iran.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
10
|
Zhang Q, Ma S, Zhuo X, Wang C, Wang H, Xing Y, Xue Q, Zhang K. An ultrasensitive electrochemical sensing platform based on silver nanoparticle-anchored 3D reduced graphene oxide for rifampicin detection. Analyst 2022; 147:2156-2163. [PMID: 35438693 DOI: 10.1039/d2an00452f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile strategy has been reported to anchor silver nanoparticles (Ag NPs) onto three-dimensional reduced graphene oxide (3D rGO) via a green and simple method. An accurate and reliable electrochemical sensing platform based on Ag NPs/3D rGO was designed for the ultrasensitive detection of rifampicin (RIF). The morphology and features of Ag NPs/3D rGO were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Raman spectroscopy and electrochemical measurements. The interface of the modified electrode presented effective electrical activity for the analysis of RIF due to the large electrochemically active surface area and excellent electron transport ability. The sensor exhibited a good linear relationship in the range of 0.01 nM-45 μM and a low detection limit of 0.810 nM (S/N = 3). Crucially, the fabricated Ag NPs/3D rGO sensor was successfully utilized to assess RIF in human blood, drug and aquatic product samples. This sensing platform exhibited outstanding electrochemical performance for RIF detection and showed great potential application in clinical diagnosis, pharmaceutical and food-related fields.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China. .,School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shangshang Ma
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China. .,School of Chemical Engineering, China University of Mining and Technology, Xuzhou, 221100, China
| | - Xin Zhuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Hongyan Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Yuying Xing
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Qingyuan Xue
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China
| | - Keying Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China. .,School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, China.,State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
11
|
Zhu X, Zhao XH, Zhang Q, Zhang N, Soladoye OP, Aluko RE, Zhang Y, Fu Y. How does a celiac iceberg really float? The relationship between celiac disease and gluten. Crit Rev Food Sci Nutr 2022; 63:9233-9261. [PMID: 35435771 DOI: 10.1080/10408398.2022.2064811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Celiac disease (CD) is an autoimmune intestinal disease caused by intolerance of genetically susceptible individuals after intake of gluten-containing grains (including wheat, barley, etc.) and their products. Currently, CD, with "iceberg" characteristics, affects a large population and is distributed over a wide range of individuals. This present review summarizes the latest research progress on the relationship between CD and gluten. Furthermore, the structure and function of gluten peptides related to CD, gluten detection methods, the effects of processing on gluten and gluten-free diets are emphatically reviewed. In addition, the current limitations in CD research are also discussed. The present work facilitates a comprehensive understanding of CD as well as gluten, which can provide a theoretical reference for future research.
Collapse
Affiliation(s)
- Xiaoxue Zhu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Xin-Huai Zhao
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Qiang Zhang
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, P. R. China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Olugbenga P Soladoye
- Agriculture and Agri-Food Canada, Government of Canada, Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, China
- National Demonstration Center for Experimental Food Science and Technology Education, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
McCord CP, Ozer T, Henry CS. Synthesis and grafting of diazonium tosylates for thermoplastic electrode immunosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5056-5064. [PMID: 34651620 PMCID: PMC8628260 DOI: 10.1039/d1ay00965f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
For electrochemical immunosensors, inexpensive electrodes with fast redox kinetics, and simple stable methods of electrode functionalization are vital. However, many inexpensive and easy to fabricate electrodes suffer from poor redox kinetics, and functionalization can often be difficult and/or unstable. Diazonium tosylates are particularly stable soluble salts that can be useful for electrode functionalization. Recently developed thermoplastic electrodes (TPEs) have been inexpensive, moldable, and highly electroactive carbon composite materials. Herein, the synthesis and grafting of diazonium tosylate salts were optimized for modification of TPEs and used to develop the first TPE immunosensors. With diazonium tosylates, TPEs were amine functionalized either directly through grafting of p-aminophenyl diazonium salt or indirectly through grafting p-nitrophenyl diazonium salt followed by electrochemical reduction to an amine. Diazonium tosylates were synthesized in situ as a paste in 6 min. Once the reaction paste was spread over the electrodes, near monolayer coverage (1.0 ± 0.2 nmol cm-2) was achieved for p-nitrophenyl diazonium salt within 5 min. Amine functionalized electrodes were conjugated to C-reactive protein (CRP) antibodies. Antibody-modified TPEs were applied for the sensitive detection of CRP, a biomarker of cardiovascular disease using electrochemical enzyme-linked immunosorbent assays (ELISA). LODs were determined to be 2 ng mL-1 in buffer, with high selectivity against interfering species for both functionalization methods. The direct p-aminophenyl modification method had the highest sensitivity to CRP and was further tested in spiked serum with an LOD of 10 ng mL-1. This low-cost and robust TPE immunosensor platform can be easily adapted for other analytes and multiplexed detection.
Collapse
Affiliation(s)
- Cynthia P McCord
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Tugba Ozer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
14
|
Nazila Samimi Tehrani, Masoumi M, Chekin F, Baei MS. Hybrid Interface Based on Carboxymethyl Cellulose/N-Doped Porous Reduced Graphene Oxide for On-Demand Electrochemical Release of Imatinib. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521080139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Jiang D, Sheng K, Jiang H, Wang L. A biomimetic "intestinal microvillus" cell sensor based on 3D bioprinting for the detection of wheat allergen gliadin. Bioelectrochemistry 2021; 142:107919. [PMID: 34371348 DOI: 10.1016/j.bioelechem.2021.107919] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
A biomimetic "intestinal microvillus" electrochemical cell sensor based on three-dimensional (3D) bioprinting was developed, which can specifically and accurately detect wheat gliadin. Self-assembled flower-like copper oxide nanoparticles (FCONp) and hydrazide-functionalized multiwalled carbon nanotubes (MWCNT-CDH) were innovatively synthesized to improve the sensor performance. A conductive biocomposite hydrogel (bioink) was prepared by mixing FCONp and MWCNT-CDH based on GelMA gel. The cluster-shaped microvillus structure of small intestine was accurately printed on the screen printing electrode with the prepared bioink using stereolithography 3D-bioprinting technology, and then the Rat Basophilic Leukemia cells were immobilized on the gel skeleton. Next, the developed cell sensor was used to effectively detect wheat allergen gliadin. The experimental results show that the bioprinted cell sensor sensitively detects wheat gliadin when the optimized cell numbers and immobilized time are 1 × 106 cells/mL and 10 min, respectively. The linear detection range is 0.1-0.8 ng/mL, and the detection limit is 0.036 ng/mL. The electrochemical cell sensor based on 3D printing technology has excellent stability and reproducibility. Thus, a simple and novel electrochemical detection approach for food allergens was established in this study with potential application in food safety detection and evaluation.
Collapse
Affiliation(s)
- Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Kaikai Sheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 211198, PR China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
16
|
Khan R, Radoi A, Rashid S, Hayat A, Vasilescu A, Andreescu S. Two-Dimensional Nanostructures for Electrochemical Biosensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3369. [PMID: 34066272 PMCID: PMC8152006 DOI: 10.3390/s21103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.g., the electronic properties, performance, and mechanical flexibility-and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted recognition and transduction properties, and increased robustness, sensitivity, and selectivity for detection of a variety of analytes that can positively impact many fields. Herein, we first provide an overview of the recently developed 2D nanostructures focusing on the characteristics that are most relevant for the design of practical biosensors. Then, we discuss the integration of these materials with bio-elements such as bacteriophages, antibodies, nucleic acids, enzymes, and proteins, and we provide examples of applications in the environmental, food, and clinical fields. We conclude with a discussion of the manufacturing challenges of these devices and opportunities for the future development and exploration of these nanomaterials to design field-deployable biosensors.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Sidra Rashid
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Akhtar Hayat
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| |
Collapse
|
17
|
Tajik S, Beitollahi H, Garkani Nejad F, Dourandish Z, Khalilzadeh MA, Jang HW, Venditti RA, Varma RS, Shokouhimehr M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind Eng Chem Res 2021; 60:1112-1136. [PMID: 35340740 PMCID: PMC8943708 DOI: 10.1021/acs.iecr.0c04952] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human population is generally subjected to diverse pollutants and contaminants in the environment like those in the air, soil, foodstuffs, and drinking water. Therefore, the development of novel purification techniques and efficient detection devices for pollutants is an important challenge. To date, experts in the field have designed distinctive analytical procedures for the detection of pollutants including gas chromatography/mass spectrometry and atomic absorption spectroscopy. While the mentioned procedures enjoy high sensitivity, they suffer from being laborious, expensive, require advanced skills for operation, and are inconvenient to deploy as a result of their massive size. Therefore, in response to the above-mentioned limitations, electrochemical sensors are being developed that enjoy robustness, selectivity, sensitivity, and real-time measurements. Considerable advancements in nanomaterials-based electrochemical sensor platforms have helped to generate new technologies to ensure environmental and human safety. Recently, investigators have expanded considerable effort to utilize polymer nanocomposites for building the electrochemical sensors in view of their promising features such as very good electrocatalytic activities, higher electrical conductivity, and effective surface area in comparison to the traditional polymers. Herein, the first section of this review briefly discusses the most important methods for polymer nanocomposites synthesis, such as in situ polymerization, direct mixing of polymer and nanofillers (melt-mixing and solution-mixing), sol-gel, and electrochemical methods. It then summarizes the current utilization of polymer nanocomposites for the preparation of electrochemical sensors as a novel approach for monitoring and detecting environmental pollutants which include heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, nitrite, and hydrazine in different mediums. Finally, the current challenges and future directions for the polymer nanocomposites-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Mohammad A Khalilzadeh
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Richard A Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States; Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc 783 71, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Abstract
The present paper presents a gliadin detection method. This method is based on a modified Ti electrode. Modification was performed by a simple and cheap anodization. Then, a layer of graphene oxide was added, and gliadin antibody was fixed on the electrode surface. Using this complex system, electrochemical impedance spectroscopy was used for gliadin detection. Solutions with known gliadin (a fraction from gluten) content were used for analysis. Impedance measured at a certain frequency and coating resistance were analyzed. Better results (good linearity and lower detection limit) were obtained by plotting impedance at a certain frequency versus gliadin concentration. Coating resistance was proved to be in linear dependency with gliadin concentration only at lower concentrations. This system based on titanium nanostructured electrode has the potential to be used for gluten contamination detection from foods.
Collapse
|
19
|
Recent progress in analytical method development to ensure the safety of gluten-free foods for celiac disease patients. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Vatandost E, Saraei AG, Chekin F, Raeisi SN, Shahidi S. Antioxidant, Antibacterial and Anticancer Performance of Reduced Graphene Oxide Prepared via Green Tea Extract Assisted Biosynthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202001920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elham Vatandost
- Department of Food Science and Technology Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | | | - Fereshteh Chekin
- Department of Chemistry Ayatollah Amoli Branch Islamic Azad University Amol Iran
| | | | - Seyed‐Ahmad Shahidi
- Department of Food Science and Technology Ayatollah Amoli Branch Islamic Azad University Amol Iran
| |
Collapse
|
21
|
Tehrani NS, Masoumi M, Chekin F, Baei MS. Nitrogen Doped Porous Reduced Graphene Oxide Hybrid as a Nanocarrier of Imatinib Anticancer Drug. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220080157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Green tea extract assisted green synthesis of reduced graphene oxide: Application for highly sensitive electrochemical detection of sunset yellow in food products. FOOD CHEMISTRY-X 2020; 6:100085. [PMID: 32577617 PMCID: PMC7300139 DOI: 10.1016/j.fochx.2020.100085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
The search to find simple, cost-effective, environmentally friendly method for synthesising of reduced graphene oxide (rGO) has motivated the use of various natural materials. Also, monitoring of sunset yellow (SY) level in foods due to the potential negative side effects is imperative. In this study, tea extract was explored as reducing and stabilizing agent for synthesising of rGO. The rGO modified carbon paste electrode (rGO/CPE) was used as a highly sensitive electrochemical sensor for the detection of SY. The rGO/CPE, due to the large surface area, showed strong enhancement effect on electrochemical oxidation of SY. Under optimized conditions, linear range between 0.05 and 10 µM with a detection limit of 27 nM could be achieved. The proposed sensor was used to determine the amount of SY in food products with satisfactory results, and the results were in good agreement with the results obtained by UV-Vis spectroscopy.
Collapse
|
23
|
Sakr MA, Elgammal K, Delin A, Serry M. Performance-Enhanced Non-Enzymatic Glucose Sensor Based on Graphene-Heterostructure. SENSORS (BASEL, SWITZERLAND) 2019; 20:E145. [PMID: 31878328 PMCID: PMC6982948 DOI: 10.3390/s20010145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
Non-enzymatic glucose sensing is a crucial field of study because of the current market demand. This study proposes a novel design of glucose sensor with enhanced selectivity and sensitivity by using graphene Schottky diodes, which is composed of graphene (G)/platinum oxide (PtO)/n-silicon (Si) heterostructure. The sensor was tested with different glucose concentrations and interfering solutions to investigate its sensitivity and selectivity. Different structures of the device were studied by adjusting the platinum oxide film thickness to investigate its catalytic activity. It was found that the film thickness plays a significant role in the efficiency of glucose oxidation and hence in overall device sensitivity. 0.8-2 μA output current was obtained in the case of 4-10 mM with a sensitivity of 0.2 A/mM.cm2. Besides, results have shown that 0.8 A and 15 A were obtained by testing 4 mM glucose on two different PtO thicknesses, 30 nm and 50 nm, respectively. The sensitivity of the device was enhanced by 150% (i.e., up to 30 A/mM.cm2) by increasing the PtO layer thickness. This was attributed to both the increase of the number of active sites for glucose oxidation as well as the increase in the graphene layer thickness, which leads to enhanced charge carriers concentration and mobility. Moreover, theoretical investigations were conducted using the density function theory (DFT) to understand the detection method and the origins of selectivity better. The working principle of the sensors puts it in a competitive position with other non-enzymatic glucose sensors. DFT calculations provided a qualitative explanation of the charge distribution across the graphene sheet within a system of a platinum substrate with D-glucose molecules above. The proposed G/PtO/n-Si heterostructure has proven to satisfy these factors, which opens the door for further developments of more reliable non-enzymatic glucometers for continuous glucose monitoring systems.
Collapse
Affiliation(s)
- Mahmoud A. Sakr
- Graduate Program in Nanotechnology, The American University in Cairo (AUC), New Cairo 11835, Egypt;
- Department of Mechanical Engineering, The American University in Cairo (AUC), New Cairo 11835, Egypt
| | - Karim Elgammal
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden; (K.E.); (A.D.)
- Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Anna Delin
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden; (K.E.); (A.D.)
- Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- Department of Physics and Astronomy, Materials Theory Division, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Mohamed Serry
- Department of Mechanical Engineering, The American University in Cairo (AUC), New Cairo 11835, Egypt
| |
Collapse
|
24
|
Hazhir N, Chekin F, Raoof JB, Fathi S. A porous reduced graphene oxide/chitosan-based nanocarrier as a delivery system of doxorubicin. RSC Adv 2019; 9:30729-30735. [PMID: 35529364 PMCID: PMC9072489 DOI: 10.1039/c9ra04977k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/09/2019] [Indexed: 02/03/2023] Open
Abstract
Nowadays, the concept of drug transmission is an important topic in the field of drug delivery research. Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. In this study, we report the development of a novel platform for the loading and release of doxorubicin (DOX). It is based on porous reduced graphene oxide (prGO) nanosheets and chitosan (CS) biocompatible polymer, where prGO can be dispersed in chitosan through amide linkages. The loading and release of DOX on the CS-prGO nanocomposite were investigated by voltammetry, FE-SEM, and FTIR and UV-Vis spectroscopy methods. We showed that chitosan-modified prGO (CS-prGO) was an extremely efficient matrix. An efficient loading of DOX (86% at pH 7.00, time 3 h and initial concentration of 0.5 mg mL-1) was observed on CS-prGO as compared to the case of prGO due to the presence of the -OH and -NH2 groups of chitosan. At the normal physiological pH of 7.00, approximately 10% of DOX could be released from CS-prGO in a time span of 1 h; however, when exposed to pH 4.00, 25% of DOX was released in 1 h. After 20 h, 18% and 62% of DOX was released at pH 7.00 and 4.00, respectively. This illustrates the major benefits of the developed approach for biomedical applications.
Collapse
Affiliation(s)
- N Hazhir
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| | - F Chekin
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| | - J B Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran Babolsar Iran +98-121-2517087 +98-121-2517087
| | - Sh Fathi
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University Amol Iran
| |
Collapse
|
25
|
Zareyy B, Chekin F, Fathi S. NiO/Porous Reduced Graphene Oxide as Active Hybrid Electrocatalyst for Oxygen Evolution Reaction. RUSS J ELECTROCHEM+ 2019. [DOI: 10.1134/s102319351903011x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
A solid-state sensor based on poly(2,4,6-triaminopyrimidine) grafted with electrochemically reduced graphene oxide: Fabrication, characterization, kinetics and potential analysis on ephedrine. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Bottari F, Moretto LM, Ugo P. Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Abstract
Gluten is among the 14 major food allergens officially recognized by Regulation (EU) No. 1169/2011. The risk to coeliac patients from gluten presence in the food products they consume is likely due to the unintentional contamination of naturally gluten-free (GF) and GF-labelled products, or to hidden sources of gluten in processed GF products. The aim of this paper is to provide a snapshot of gluten risk analysis, with emphasis on immunological methods currently used in gluten detection. The study highlights that immunoassays have some advantages over other analytical methods in gluten determination and are suitable for routine tests. However, some factors (e.g., complexity of the food matrix, type of the applied antibody, gluten extraction procedures and lack of reference material) affect the reliability of obtained results. Hence, efforts are required at an analytical level to overcome the drawbacks of the immunological methods currently available. Harmonization is necessary, so as to assist both consumers in making safe food choices, and the food industry in gluten risk assessment, management and communication.
Collapse
|
29
|
Huang X, Wei S, Yao S, Zhang H, He C, Cao J. Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. J Pharm Biomed Anal 2018; 164:607-614. [PMID: 30469110 DOI: 10.1016/j.jpba.2018.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
Abstract
A molecularly imprinted electrochemical sensor for toltrazuril (TZR) detection based on molecularly imprinted polymers (MIPs) immobilized on reduced graphene oxide (rGO) and titanium dioxide (TiO2) modified platinum (Pt) electrode surface was fabricated for the first time. The synergistic fast electron transfer ability, large electroactive surface area and high catalytic activity from rGO and TiO2 contribute to amplify the electrochemical signal and consequently improve the sensitivity of the sensor. The cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) tests were used to evaluate the performance of the electrochemical sensor. The results showed that the electrochemical sensor possessed high sensitivity, good selectivity and anti-interference ability toward TZR. By using the DPV, the electrochemical sensor displayed a wide linear concentration range from 0.43 to 42.54 μg/L, with a limit of detection of 0.21 μg/L (S/N = 3). Moreover, the recoveries and relative standard deviations (RSD) were 85.0%-97.0% and 3.5%-6.4% at three concentration levels, respectively, implying that the established sensor is promising for the accurate detection of TZR at trace levels in chicken muscle and egg samples.
Collapse
Affiliation(s)
- Xiangjin Huang
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Shoulian Wei
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| | - Su Yao
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Huasheng Zhang
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Chunlin He
- Zhaoqing Institute for Food Control, Zhaoqing, 526060, China
| | - Jiangfei Cao
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| |
Collapse
|
30
|
Recent progress in nanomaterial-based assay for the detection of phytotoxins in foods. Food Chem 2018; 277:162-178. [PMID: 30502132 DOI: 10.1016/j.foodchem.2018.10.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/03/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
Phytotoxins refers to toxic chemicals derived from plants. They include both secondary metabolites that are dose-dependently toxic and allergens that can cause anaphylactic shock in sensitive individuals. Detecting phytotoxins in foods is increasingly important. Conventional methods for detecting phytotoxins lack sufficient sensitivity and operational convenience. Nanomaterial-based determination assays show great competence in fast and accurate sensing of trace substances. In the present review, representative phytotoxin categories of alkaloids, cyanides, and proteins are discussed. Application of notable nanomaterials, e.g. carbon nanotubes, graphene oxide, magnetic nanoparticles, metal-based nanotools, and quantum dots, in specific sensing strategies to fit the physiochemical properties of the target toxins are summarized. Nanomaterials mainly play four roles in phytotoxin detection: 1) analyte enricher; 2) sensor structure mediator; 3) target recognizer or reactant; 4) signaling agent. Great achievements have been made in the detection of trace plant-derived toxins in food matrices, yet there are still challenges awaiting further investigation.
Collapse
|
31
|
Huang C, Sheth S, Li M, Ran G, Song Q. Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta 2018; 190:292-297. [PMID: 30172512 DOI: 10.1016/j.talanta.2018.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/20/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
First time the luminescent switch-on probe using novel water-soluble cyclometallated iridium complex (Ir-dc) has been developed for sensitive and selective detection of gluten in the presence of several interfering elements. Linear concentration range of gluten is obtained from 5 to 200 µg/mL with a limit of detection 2.6 µg/mL. The Ir-dc complex responded to the broad pH range which is advantageous for the detection of gluten in various food samples. Additionally, It has been successfully employed for the detection of gluten in commercial food samples of wheat flour and oats with highest recovery values, indicating applicability of Ir-dc for practical usage.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Sujitraj Sheth
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Mengyuan Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qijun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
32
|
Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – New trends. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Kahlouche K, Jijie R, Hosu I, Barras A, Gharbi T, Yahiaoui R, Herlem G, Ferhat M, Szunerits S, Boukherroub R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta 2017; 178:432-440. [PMID: 29136845 DOI: 10.1016/j.talanta.2017.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
Abstract
Microsystems play an important role in many biological and environmental applications. The integration of electrical interfaces into such miniaturized systems provides new opportunities for electrochemical sensing where high sensitivity and selectivity towards the analyte are requested. This can be only achieved upon controlled functionalization of the working electrode, a challenge for compact microsystems. In this work, we demonstrate the benefit of electrophoretic deposition (EPD) of reduced graphene oxide/polyethylenimine (rGO/PEI) for the selective modification of a gold (Au) microelectrode in a microsystem comprising a Pt counter and a Ag/AgCl reference electrode. The functionalized microsystem was successfully applied for the sensing of dopamine with a detection limit of 50nM. Additionally, the microsystem exhibited good performance for the detection of dopamine levels in meat samples.
Collapse
Affiliation(s)
- Karima Kahlouche
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France; Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France; Centre for Development of Advanced Technologies (CDTA), Baba Hassen, Algeria; Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Roxana Jijie
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Ioana Hosu
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France
| | - Tijani Gharbi
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Reda Yahiaoui
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Guillaume Herlem
- Laboratoire de Nanomédecine, imagerie et thérapeutique, EA 4662, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Marhoun Ferhat
- Semiconductors and Functional Materials Laboratory, University of Laghouat, Algeria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| |
Collapse
|
34
|
Huang J, Yue G, Yang J, Bai S, Hu Q, Wang L. Design, synthesis and application of carboxylic multi-walled carbon nanotubes/tetrahexahedral platinum nanocrystals nanocomposites biosensor for simultaneous determination of guanine and adenine in DNA. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Wang Q, Vasilescu A, Wang Q, Coffinier Y, Li M, Boukherroub R, Szunerits S. Electrophoretic Approach for the Simultaneous Deposition and Functionalization of Reduced Graphene Oxide Nanosheets with Diazonium Compounds: Application for Lysozyme Sensing in Serum. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12823-12831. [PMID: 28323404 DOI: 10.1021/acsami.6b15955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrophoretic deposition (EPD) of reduced graphene oxide nanosheets (rGO) offers several advantages over other surface coating approaches, including process simplicity, uniformity of the deposited films, and good control of the film thickness. The EPD conditions might also be of interest for the reduction of diazonium salts, which upon the release of N2 molecules and generation of radicals, can form covalent bonds with the sp2 hybridized carbon lattice atoms of rGO films. In this work, we report on the coating of gold electrodes in one step with rGO/polyethylenimine (PEI) thin films and their simultaneous modification using different phenyl (Ph) diazonium salt precursors bearing various functionalities such as -B(OH)2, -COOH, and -C≡CH. We show further the interest of such interfaces for designing highly sensitive sensing platforms. Azide-terminated lysozyme aptamers were clicked onto the rGO/PEI/Ph-alkynyl matrix and used for the sensing of lysozyme levels in patients suffering from inflammatory bowel disease (IBD), where lysozyme levels are up-regulated. The approach attained the required demand for the determination of lysozyme level in patients suffering from IBD with a 200 fM detection limit and a linear range up to 20 pM without signal amplification.
Collapse
Affiliation(s)
- Qian Wang
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Alina Vasilescu
- International Center of Biodynamics , 1B Intrarea Portocalelor, Sector 6, 060101, Bucharest, Romania
| | - Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Yannick Coffinier
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Musen Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University , Jinan 250061, China
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN , F-59000 Lille, France
| |
Collapse
|
36
|
Boulahneche S, Jijie R, Barras A, Chekin F, Singh SK, Bouckaert J, Medjram MS, Kurungot S, Boukherroub R, Szunerits S. On demand electrochemical release of drugs from porous reduced graphene oxide modified flexible electrodes. J Mater Chem B 2017; 5:6557-6565. [DOI: 10.1039/c7tb00687j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the advantages of an electrochemical control of drug release, only a handful of electrochemical-based release systems have been developed so far.
Collapse
Affiliation(s)
| | - Roxana Jijie
- Univ. Lille
- CNRS
- Centrale Lille
- ISEN
- Univ. Valenciennes
| | | | | | - Santosh K. Singh
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)
- UMR 8576 du CNRS et Université Lille
- 59658 Villeneuve d'Ascq
- France
| | - Mohamed Salah Medjram
- Laboratoire de Génie Chimique et Environnement Skikda (LGCES)
- Université de 20 août
- 1955-Skikda
- Algeria
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research
| | | | | |
Collapse
|