1
|
Cao S, Li L, An H, Mao G, Dai J, Ma Y. Development of dual-mode ELISA based on ALP-catalyzed APP hydrolysis for IL-6 detection. J Pharm Biomed Anal 2023; 236:115754. [PMID: 37783051 DOI: 10.1016/j.jpba.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
Sensitive and accurate detection of interleukin 6 (IL-6) is crucial for the early diagnosis of cerebral infarction to improve patient survival rates. However, the low-abundance of IL-6 in cerebral infarction presents a significant challenge in developing effective diagnosis method. Herein, we studied and analyzed the strong fluorescence property of 4-aminophenol phosphate (APP) and developed an enzyme-linked immunosorbent assay (ELISA) for IL-6 detection. The detection was based on the integration of optical signal change induced by alkaline phosphatase (ALP)-catalyzed APP hydrolysis and ALP-mediated ELISA. The generated colorimetric signal of 4-aminophenol, APP hydrolysis product, was used for ELISA of IL-6 with a detection limit of 0.1 ng/mL, and the visual detection of IL-6 was achieved. The changes in APP fluorescence have a good linear relationship with the logarithm of IL-6 concentration in the range of 0.005 ng/mL to 5.0 ng/mL, with a detection limit of 0.001 ng/mL, which was 100 times lower than that of conventional pNPP-based ELISA. Furthermore, the constructed ELISA effectively distinguished between samples from patients with cerebral infarction and volunteers with non-cerebral infarction, and the severity of symptoms was well distinguished based on IL-6 measurement. The dual-mode ELISA demonstrated high feasibility of low-abundance biomarker detection and displayed good potential for accurate in vitro diagnosis.
Collapse
Affiliation(s)
- Shijie Cao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Leyao Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongwei An
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
McDonald R, Larsen M, Liu Z, Southekal S, Eudy J, Guda C, Kumar TR. RNA-seq analysis identifies age-dependent changes in expression of mRNAs - encoding N-glycosylation pathway enzymes in mouse gonadotropes. Mol Cell Endocrinol 2023; 574:111971. [PMID: 37301504 PMCID: PMC10528389 DOI: 10.1016/j.mce.2023.111971] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/β subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHβ subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHβ results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHβ subunit in pituitaries of women.
Collapse
Affiliation(s)
- Rosemary McDonald
- Garduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - James Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - T Rajendra Kumar
- Garduate Program in Integrated Physiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Ganjalizadeh V, Hawkins AR, Schmidt H. Adaptive time modulation technique for multiplexed on-chip particle detection across scales. OPTICA 2023; 10:812-818. [PMID: 38818330 PMCID: PMC11138143 DOI: 10.1364/optica.489068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Integrated optofluidic biosensors have demonstrated ultrasensitivity down to single particle detection and attomolar target concentrations. However, a wide dynamic range is highly desirable in practice and can usually only be achieved by using multiple detection modalities or sacrificing linearity. Here, we demonstrate an analysis technique that uses temporal excitation at two different time scales to simultaneously enable digital and analog detection of fluorescent targets. We demonstrated the seamless detection of nanobeads across eight orders of magnitude from attomolar to nanomolar concentration. Furthermore, a combination of spectrally varying modulation frequencies and a closed-loop feedback system that provides rapid adjustment of excitation laser powers enables multiplex analysis in the presence of vastly different concentrations. We demonstrated this ability to detect across scales via an analysis of a mixture of fluorescent nanobeads at femtomolar and picomolar concentrations. This technique advances the performance and versatility of integrated biosensors, especially toward point-of-use applications.
Collapse
Affiliation(s)
- Vahid Ganjalizadeh
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Aaron R. Hawkins
- Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah, 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California, 95064, USA
| |
Collapse
|
4
|
Yuan H, Chen P, Wan C, Li Y, Liu BF. Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. Trends Analyt Chem 2022; 157:116814. [PMID: 36373139 PMCID: PMC9637550 DOI: 10.1016/j.trac.2022.116814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022]
Abstract
The Coronavirus disease 2019 (COVID-19) outbreak has urged the establishment of a global-wide rapid diagnostic system. Current widely-used tests for COVID-19 include nucleic acid assays, immunoassays, and radiological imaging. Immunoassays play an irreplaceable role in rapidly diagnosing COVID-19 and monitoring the patients for the assessment of their severity, risks of the immune storm, and prediction of treatment outcomes. Despite of the enormous needs for immunoassays, the widespread use of traditional immunoassay platforms is still limited by high cost and low automation, which are currently not suitable for point-of-care tests (POCTs). Microfluidic chips with the features of low consumption, high throughput, and integration, provide the potential to enable immunoassays for POCTs, especially in remote areas. Meanwhile, luminescence detection can be merged with immunoassays on microfluidic platforms for their good performance in quantification, sensitivity, and specificity. This review introduces both homogenous and heterogenous luminescence immunoassays with various microfluidic platforms. We also summarize the strengths and weaknesses of the categorized methods, highlighting their recent typical progress. Additionally, different microfluidic platforms are described for comparison. The latest advances in combining luminescence immunoassays with microfluidic platforms for POCTs of COVID-19 are further explained with antigens, antibodies, and related cytokines. Finally, challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Huijuan Yuan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Mao Q, Ma S, Schrickel PL, Zhao P, Wang J, Zhang Y, Li S, Wang C. Review detection of Newcastle disease virus. Front Vet Sci 2022; 9:936251. [PMID: 35982920 PMCID: PMC9378970 DOI: 10.3389/fvets.2022.936251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Newcastle disease (ND) is an acute and highly contagious disease caused by the Newcastle disease virus (NDV) infecting poultry, which has caused great harm to the poultry industry around the world. Rapid diagnosis of NDV is important to early treatment and early institution of control measures. In this review, we comprehensively summarize the most recent research into NDV, including historical overview, molecular structure, and infection mechanism. We then focus on detection strategies for NDV, including virus isolation, serological assays (such as hemagglutination and hemagglutination-inhibition tests, enzyme linked immunosorbent assay, reporter virus neutralization test, Immunofluorescence assay, and Immune colloidal gold technique), molecular assays (such as reverse transcription polymerase chain reaction, real-time quantitative PCR, and loop-mediated isothermal amplification) and other assays. The performance of the different serological and molecular biology assays currently available was also analyzed. To conclude, we examine the limitations of currently available strategies for the detection of NDV to lay the groundwork for new detection assays.
Collapse
Affiliation(s)
- Qian Mao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shengming Ma
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, China
| | - Philip Luke Schrickel
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Jingya Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Yuhua Zhang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Shuangyu Li
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest Agriculture and Forestry University, Xianyang, China
- *Correspondence: Chengbao Wang
| |
Collapse
|
7
|
Wu W, Tan X, Zupancic J, Schardt JS, Desai AA, Smith MD, Zhang J, Xie L, Oo MK, Tessier PM, Fan X. Rapid and Quantitative In Vitro Evaluation of SARS-CoV-2 Neutralizing Antibodies and Nanobodies. Anal Chem 2022; 94:4504-4512. [PMID: 35238533 PMCID: PMC9356539 DOI: 10.1021/acs.analchem.2c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutralizing monoclonal antibodies and nanobodies have shown promising results as potential therapeutic agents for COVID-19. Identifying such antibodies and nanobodies requires evaluating the neutralization activity of a large number of lead molecules via biological assays, such as the virus neutralization test (VNT). These assays are typically time-consuming and demanding on-lab facilities. Here, we present a rapid and quantitative assay that evaluates the neutralizing efficacy of an antibody or nanobody within 1.5 h, does not require BSL-2 facilities, and consumes only 8 μL of a low concentration (ng/mL) sample for each assay run. We tested the human angiotensin-converting enzyme 2 (ACE2) binding inhibition efficacy of seven antibodies and eight nanobodies and verified that the IC50 values of our assay are comparable with those from SARS-CoV-2 pseudovirus neutralization tests. We also found that our assay could evaluate the neutralizing efficacy against three widespread SARS-CoV-2 variants. We observed increased affinity of these variants for ACE2, including the β and γ variants. Finally, we demonstrated that our assay enables the rapid identification of an immune-evasive mutation of the SARS-CoV-2 spike protein, utilizing a set of nanobodies with known binding epitopes.
Collapse
Affiliation(s)
- Weishu Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Zupancic
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John S Schardt
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew D Smith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jie Zhang
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
| | - Liangzhi Xie
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China.,Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Maung Khaing Oo
- Optofluidic Bioassay, LLC, Ann Arbor, Michigan 48103, United States
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Peng P, Liu C, Li Z, Xue Z, Mao P, Hu J, Xu F, Yao C, You M. Emerging ELISA Derived Technologies for in vitro Diagnostics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 2022; 414:2883-2902. [PMID: 35064302 PMCID: PMC8782221 DOI: 10.1007/s00216-021-03872-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/19/2022]
Abstract
Foodborne diseases caused by pathogenic bacteria pose a serious threat to human health. Early and rapid detection of foodborne pathogens is an urgent task for preventing disease outbreaks. Microfluidic devices are simple, automatic, and portable miniaturized systems. Compared with traditional techniques, microfluidic devices have attracted much attention because of their high efficiency and convenience in the concentration and detection of foodborne pathogens. This article firstly reviews the bio-recognition elements integrated on microfluidic chips in recent years and the progress of microfluidic chip development for pathogen pretreatment. Furthermore, the research progress of microfluidic technology based on optical and electrochemical sensors for the detection of foodborne pathogenic bacteria is summarized and discussed. Finally, the future prospects for the application and challenges of microfluidic chips based on biosensors are presented.
Collapse
Affiliation(s)
- Fang Mi
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Cunming Hu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ying Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Li Wang
- Department of Cuisine and Tourism, Xinjiang Bingtuan Xingxin Vocational and Technical College, Urumqi, 830074, China
| | - Fei Peng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - PengFei Geng
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China
| | - Ming Guan
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830017, China.
| |
Collapse
|
10
|
Lin D, Li B, Fu L, Qi J, Xia C, Zhang Y, Chen J, Choo J, Chen L. A novel polymer-based nitrocellulose platform for implementing a multiplexed microfluidic paper-based enzyme-linked immunosorbent assay. MICROSYSTEMS & NANOENGINEERING 2022; 8:53. [PMID: 35600221 PMCID: PMC9120459 DOI: 10.1038/s41378-022-00385-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/14/2022] [Accepted: 04/11/2022] [Indexed: 05/20/2023]
Abstract
Nitrocellulose (NC) membranes, as porous paper-like substrates with high protein-binding capabilities, are very popular in the field of point-of-care immunoassays. However, generating robust hydrophobic structures in NC membranes to fabricate microfluidic paper-based analytical devices (μPADs) remains a great challenge. At present, the main method relies on an expensive wax printer. In addition, NC membranes very easy to adhere during the printing process due to electrostatic adsorption. Herein, we developed a facile, fast and low-cost strategy to fabricate μPADs in NC membranes by screen-printing polyurethane acrylate (PUA) as a barrier material for defining flow channels and reaction zones. Moreover, hydrophobic barriers based on UV-curable PUA can resist various surfactant solutions and organic solvents that are generally used in immunoassays and biochemical reactions. To validate the feasibility of this PUA-based NC membrane for immunoassays in point-of-care testing (POCT), we further designed and assembled a rotational paper-based analytical device for implementing a multiplexed enzyme-linked immunosorbent assay (ELISA) in a simple manner. Using the proposed device under the optimal conditions, alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) could be identified, with limits of detection of 136 pg/mL and 174 pg/mL, respectively, which are below the threshold values of these two cancer biomarkers for clinical diagnosis. We believe that this reliable device provides a promising platform for the diagnosis of disease based on ELISA or other related bioassays in limited settings or remote regions.
Collapse
Affiliation(s)
- Dong Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- School of Pharmacy, Binzhou Medical University, 264003 Yantai, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Ji Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
| | - Yi Zhang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul, 06974 South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974 South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation; Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003 Yantai, China
- School of Pharmacy, Binzhou Medical University, 264003 Yantai, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 266071 Qingdao, China
| |
Collapse
|
11
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
12
|
Rashid F, Baghla R, Kale P, Shah M, Malakar D, Pillai M. Absolute Quantification of Follicle Stimulating Hormone (FSH) Using Its Signature Peptides and Enzymatic Digestion in Human Serum by UPLC/LC–MS/MS. Chromatographia 2021. [DOI: 10.1007/s10337-021-04057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Song Q, Sun X, Dai Z, Gao Y, Gong X, Zhou B, Wu J, Wen W. Point-of-care testing detection methods for COVID-19. LAB ON A CHIP 2021; 21:1634-1660. [PMID: 33705507 DOI: 10.1039/d0lc01156h] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.
Collapse
Affiliation(s)
- Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. and Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Xindi Sun
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Yibo Gao
- Shenzhen Shineway Technology Corporation, Shenzhen, Guangdong, China
| | - Xiuqing Gong
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China.
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, China.
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Zong C, Wang R, Jiang F, Zhang D, Yang H, Wang J, Lu X, Li F, Li P. Metal enhanced chemiluminescence nanosensor for ultrasensitive bioassay based on silver nanoparticles modified functional DNA dendrimer. Anal Chim Acta 2021; 1165:338541. [PMID: 33975696 DOI: 10.1016/j.aca.2021.338541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
A novel metal enhanced chemiluminescence (MEC) nanosensor was developed for ultrasensitive biosensing and imaging, based on functional DNA dendrimer (FDD), proximity-dependent DNAzyme and silver nanoparticles (AgNPs). The FDD containing two split G-quadruplex structures was prepared through an enzyme-free and step-by-step assembly strategy, and then reacted with AgNPs and hemin molecules to form the FDD/hemin/AgNPs facilely. Such a MEC nanosensor consisted of three modules: FDD (scaffold), the generated G-quadruplex/hemin DNAzyme (signal reporter) and AgNPs (chemiluminescence enhancer). The MEC effect was achieved by controlling the length of DNA sequences between AgNPs on the periphery of FDD and DNAzymes inside it. Such nanosensor exhibited 9-fold amplification and another 6.4-fold metal enhancement in chemiluminescence intensity, which can be easily applied into trace detection of multiple protein markers using a disposable protein immunoarray. The FDD/hemin/AgNPs-based multiplex MEC imaging assay showed wide linear ranges over 5 orders of magnitude and detection limits down to 5× 10-5 ng L-1 and 1.8 × 10-4 U mL-1 for cardiac troponin T and carcinoma antigen 125, demonstrating a promising potential in application to protein analysis and clinical diagnosis. Moreover, the MEC nanosensor can be effectively delivered into cells with excellent biocompatibility and outstanding stability, offering a new tool for detection of intracellular targets and suggesting wide applications in bioassay.
Collapse
Affiliation(s)
- Chen Zong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ruike Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fan Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Duoduo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Junhong Wang
- Jiangsu Province Hospital, Nanjing Medical University First Affiliated Hospital, Nanjing, 210029, PR China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
15
|
Ongaro L, Alonso CAI, Zhou X, Brûlé E, Li Y, Schang G, Parlow AF, Steyn F, Bernard DJ. Development of a Highly Sensitive ELISA for Measurement of FSH in Serum, Plasma, and Whole Blood in Mice. Endocrinology 2021; 162:6105044. [PMID: 33475143 PMCID: PMC7894055 DOI: 10.1210/endocr/bqab014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2020] [Indexed: 01/09/2023]
Abstract
Follicle-stimulating hormone (FSH) regulates gonadal function and fertility. Measurement of FSH in bodily fluids and tissues is possible with radioimmunoassays and enzyme-linked immunosorbent assays (ELISAs). Recently, several novel assays were developed to measure pituitary hormones including growth hormone, prolactin, and luteinizing hormone in mice from small sample volumes. Here, we describe a novel and sensitive ELISA that enables the accurate measurement of FSH in serum, plasma, and whole blood from female and male mice. The assay can also be used to measure FSH in murine pituitary lysates and cell culture media. In summary, the new methodology described here will enable investigators to measure FSH from a variety of biological samples in mice accurately, at low cost, and in their own laboratories.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | | | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Emilie Brûlé
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Yining Li
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
| | - Albert F Parlow
- National Hormone & Peptide Program, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Frederik Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane & Women’s Hospital, Queensland, Brisbane, Australia
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
- Correspondence: Daniel J. Bernard, PhD, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Chen L, Zhang G, Liu L, Li Z. Emerging biosensing technologies for improved diagnostics of COVID-19 and future pandemics. Talanta 2021; 225:121986. [PMID: 33592734 PMCID: PMC7733602 DOI: 10.1016/j.talanta.2020.121986] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Diagnostic tools play significant roles in the fight against COVID-19 and other pandemics. Existing tests, such as RT-qPCR, have limitations including long assay time, low throughput, inadequate sensitivity, and suboptimal portability. Emerging biosensing technologies hold the promise to develop tests that are rapid, highly sensitive, and suitable for point-of-care testing, which could significantly facilitate the testing of COVID-19. Despite that, practical applications of such biosensors in pandemics have yet to be achieved. In this review, we consolidate the newly developed diagnostic tools for COVID-19 using emerging biosensing technologies and discuss their application promise. In particular, we present nucleic acid tests and antibody tests of COVID-19 based on both conventional and emerging biosensing methods. We then provide perspectives on the existing challenges and potential solutions.
Collapse
Affiliation(s)
- Linzhe Chen
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | | | - Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Zhang X, Li G, Chen G, Zhu N, Wu D, Wu Y, James TD. Recent progresses and remaining challenges for the detection of Zika virus. Med Res Rev 2021; 41:2039-2108. [PMID: 33559917 DOI: 10.1002/med.21786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022]
Abstract
Zika virus (ZIKV) has emerged as a particularly notorious mosquito-borne flavivirus, which can lead to a devastating congenital syndrome in the fetuses of pregnant mothers (e.g., microcephaly, spasticity, craniofacial disproportion, miscarriage, and ocular abnormalities) and cause the autoimmune disorder Guillain-Barre' syndrome of adults. Due to its severity and rapid dispersal over several continents, ZIKV has been acknowledged to be a global health concern by the World Health Organization. Unfortunately, the ZIKV has recently resurged in India with the potential for devastating effects. Researchers from all around the world have worked tirelessly to develop effective detection strategies and vaccines for the prevention and control of ZIKV infection. In this review, we comprehensively summarize the most recent research into ZIKV, including the structural biology and evolution, historical overview, pathogenesis, symptoms, and transmission. We then focus on the detection strategies for ZIKV, including viral isolation, serological assays, molecular assays, sensing methods, reverse transcription loop mediated isothermal amplification, transcription-mediated amplification technology, reverse transcription strand invasion based amplification, bioplasmonic paper-based device, and reverse transcription isothermal recombinase polymerase amplification. To conclude, we examine the limitations of currently available strategies for the detection of ZIKV, and outline future opportunities and research challenges.
Collapse
Affiliation(s)
- Xianlong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guang Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Niu Zhu
- Department of Public Health, Xi'an Medical University, Xi'an, China
| | - Di Wu
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
18
|
Wall MA, Padmanabhan V, Shikanov A. Hormonal Stimulation of Human Ovarian Xenografts in Mice: Studying Folliculogenesis, Activation, and Oocyte Maturation. Endocrinology 2020; 161:5939202. [PMID: 33099627 PMCID: PMC7671278 DOI: 10.1210/endocr/bqaa194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Ovarian tissue cryopreservation and banking provides a fertility preservation option for patients who cannot undergo oocyte retrieval; it is quickly becoming a critical component of assisted reproductive technology programs across the world. While the transplantation of cryopreserved ovarian tissue has resulted in over 130 live births, the field has ample room for technological improvements. Specifically, the functional timeline of grafted tissue and each patient's probability of achieving pregnancy is largely unpredictable due to patient-to-patient variability in ovarian reserve, lack of a reliable method for quantifying follicle numbers within tissue fragments, potential risk of reintroduction of cancer cells harbored in ovarian tissues, and an inability to control follicle activation rates. This review focuses on one of the most common physiological techniques used to study human ovarian tissue transplantation, xenotransplantation of human ovarian tissue to mice and endeavors to inform future studies by discussing the elements of the xenotransplantation model, challenges unique to the use of human ovarian tissue, and novel tissue engineering techniques currently under investigation.
Collapse
Affiliation(s)
- Monica Anne Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence: Ariella Shikanov, PhD, 2126 LBME, Ann and Robert H. Lurie Biomedical Engineering Building, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
19
|
Tan X, Krel M, Dolgov E, Park S, Li X, Wu W, Sun YL, Zhang J, Khaing Oo MK, Perlin DS, Fan X. Rapid and quantitative detection of SARS-CoV-2 specific IgG for convalescent serum evaluation. Biosens Bioelectron 2020; 169:112572. [PMID: 32916610 PMCID: PMC7468592 DOI: 10.1016/j.bios.2020.112572] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022]
Abstract
Convalescent serum with a high abundance of neutralization IgG is a promising therapeutic agent for rescuing COVID-19 patients in the critical stage. Knowing the concentration of SARS-CoV-2 S1-specific IgG is crucial in selecting appropriate convalescent serum donors. Here, we present a portable microfluidic ELISA technology for rapid (15 min), quantitative, and sensitive detection of anti-SARS-CoV-2 S1 IgG in human serum with only 8 μL sample volume. We first identified a humanized monoclonal IgG that has a high binding affinity and a relatively high specificity towards SARS-CoV-2 S1 protein, which can subsequently serve as the calibration standard of anti-SARS-CoV-2 S1 IgG in serological analyses. We then measured the abundance of anti-SARS-CoV-2 S1 IgG in 16 convalescent COVID-19 patients. Due to the availability of the calibration standard and the large dynamic range of our assay, we were able to identify "qualified donors" for convalescent serum therapy with only one fixed dilution factor (200 ×). Finally, we demonstrated that our technology can sensitively detect SARS-CoV-2 antigens (S1 and N proteins) with pg/mL level sensitivities in 40 min. Overall, our technology can greatly facilitate rapid, sensitive, and quantitative analysis of COVID-19 related markers for therapeutic, diagnostic, epidemiologic, and prognostic purposes.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mila Krel
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Enriko Dolgov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - Xuzhou Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weishu Wu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yun-Lu Sun
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jie Zhang
- Sino Biological Inc, Beijing, 100176, China; Beijing Key Laboratory of Monoclonal Antibody Research and Development, Beijing, 100176, China
| | | | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA.
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Zschätzsch M, Ritter P, Henseleit A, Wiehler K, Malik S, Bley T, Walther T, Boschke E. Monitoring bioactive and total antibody concentrations for continuous process control by surface plasmon resonance spectroscopy. Eng Life Sci 2020; 19:681-690. [PMID: 32624961 DOI: 10.1002/elsc.201900014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Monoclonal antibodies have become an increasingly important part of fundamental research and medical applications. To meet the high market demand for monoclonal antibodies in the biopharmaceutical sector, industrial manufacturing needs to be achieved by large scale, highly productive and consistent production processes. These are subject to international guidelines and have to be monitored intensely due to high safety standards for medical applications. Surface plasmon resonance spectroscopy - a fast, real-time, and label-free bio-sensing method - represents an interesting alternative to the quantification of monoclonal antibody concentrations by enzyme-linked immunosorbent assay during monoclonal antibody production. For the application of monitoring bioactive and total monoclonal antibody concentrations in cell culture samples, a surface plasmon resonance assay using a target-monoclonal antibody model system was developed. In order to ensure the subsequent detection of bioactive monoclonal antibody concentrations, suitable immobilization strategies of the target were identified. A significant decrease of the limit of detection was achieved by using an adapted affinity method compared to the commonly used amine coupling. Furthermore, the system showed limit of detection in the low ng/mL range similar to control quantifications by enzyme-linked immunosorbent assay. Moreover, the comparison of total to bioactive monoclonal antibody concentrations allows analysis of antibody production efficiency. The development of an alternative quantification system to monitor monoclonal antibody production was accomplished using surface plasmon resonance with the advantage of low analyte volume, shorter assay time, and biosensor reusability by target-layer regeneration. The established method provides the basis for the technical development of a surface plasmon resonance-based system for continuous process monitoring.
Collapse
Affiliation(s)
- Marlen Zschätzsch
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | - Anja Henseleit
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | | | | | - Thomas Bley
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Thomas Walther
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| | - Elke Boschke
- Institute of Natural Materials Technology Technische Universität Dresden Dresden Germany
| |
Collapse
|
21
|
Chen W, Shao F, Xianyu Y. Microfluidics-Implemented Biochemical Assays: From the Perspective of Readout. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903388. [PMID: 31532891 DOI: 10.1002/smll.201903388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/20/2019] [Indexed: 05/05/2023]
Abstract
Over the past decades, microfluidics has emerged as an increasingly important tool to perform biochemical assays for diagnosis and healthcare. The precise fluid control and molecule manipulation within microfluidics greatly contribute to developing assays with simplicity and convenience. The advantages of microfluidics, including decreased consumption of reagents and samples, lower operating and analysis time, much lower cost, and higher integration and automation over traditional systems, offer a great platform to meet the needs of point-of-care applications. In this Review, versatile strategies are outlined and recent advances in microfluidics-implemented assays are discussed from the perspective of readout, because a convenient and straightforward readout is what a biochemical assay requires and the end user desires. Functions and properties arising from each readout are reviewed and the advantages and limitations of each readout are discussed together with current challenges and future perspectives.
Collapse
Affiliation(s)
- Wenwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518055, China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yunlei Xianyu
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
22
|
Tan X, Broses LJ, Zhou M, Day KC, Liu W, Li Z, Weizer AZ, Munson KA, Khaing Oo MK, Day ML, Fan X. Multiparameter urine analysis for quantitative bladder cancer surveillance of orthotopic xenografted mice. LAB ON A CHIP 2020; 20:634-646. [PMID: 31922156 DOI: 10.1039/c9lc01006h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human-derived orthotopic xenograft mouse model is an effective platform for performing in vivo bladder cancer studies to examine tumor development, metastasis, and therapeutic effects of drugs. To date, the surveillance of tumor progression in real time for orthotopic bladder xenografts is highly dependent on semi-quantitative in vivo imaging technologies such as bioluminescence. While these imaging technologies can estimate tumor progression, they are burdened with requirements such as anesthetics, specialized equipment, and genetic modification of the injected cell line. Thus, a convenient and non-invasive technology to quantitatively monitor the growth of bladder cancer in orthotopic xenografts is highly desired. In this work, using a microfluidic chemiluminescent ELISA platform, we have successfully developed a rapid, multiparameter urine-based and non-invasive biomolecular prognostic technology for orthotopic bladder cancer xenografts. This method consists of two steps. First, the concentrations of a panel of four urinary biomarkers are quantified from the urine of mice bearing orthotopic bladder xenografts. Second, machine learning and principal component analysis (PCA) algorithms are applied to analyze the urinary biomarkers, and subsequently, a score is assigned to indicate the tumor growth. With this methodology, we have quantitatively monitored the orthotopic growth of human bladder cancer that was inoculated with low, medium, and high cancer cell numbers. We also employed this method and performed a proof of principle experiment to examine the in vivo therapeutic efficacy of the EGFR inhibitor, dacomitinib.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine A Munson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Tan X, Chen Q, Zhu H, Zhu S, Gong Y, Wu X, Chen YC, Li X, Li MWH, Liu W, Fan X. Fast and Reproducible ELISA Laser Platform for Ultrasensitive Protein Quantification. ACS Sens 2020; 5:110-117. [PMID: 31829015 DOI: 10.1021/acssensors.9b01795] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Optofluidic lasers are currently of high interest for sensitive intracavity biochemical analysis. In comparison with conventional methods such as fluorescence and colorimetric detection, optofluidic lasers provide a method for amplifying small concentration differences in the gain medium, thus achieving high sensitivity. Here, we report the development of an on-chip ELISA (enzyme-linked immunosorbent assay) laser platform that is able to complete an assay in a short amount of time with small sample/reagent volumes, large dynamic range, and high sensitivity. The arrayed microscale reaction wells in the ELISA lasers can be microfabricated directly on dielectric mirrors, thus significantly improving the quality of the reaction wells and detection reproducibility. The details of the fabrication and characterization of those reaction wells on the mirror are described and the ELISA laser assay protocols are developed. Finally, we applied the ELISA laser to detecting IL-6, showing that a detection limit of about 0.1 pg/mL can be achieved in 1.5 h with 15 μL of sample/reagents per well. This work pushes the ELISA laser a step closer to solving problems in real-world biochemical analysis.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Qiushu Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Hongbo Zhu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Song Zhu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Gong
- Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, No. 2006, Xiyuan Avenue, Chengdu 611731, P. R. China
| | - Xiaoqin Wu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Yu-Cheng Chen
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore
| | - Xuzhou Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Maxwell Wei-Hao Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Wenyi Liu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Xue W, Tan X, Khaing Oo MK, Kulkarni G, Ilgen MA, Fan X. Rapid and sensitive detection of drugs of abuse in sweat by multiplexed capillary based immuno-biosensors. Analyst 2020; 145:1346-1354. [DOI: 10.1039/c9an02498k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drugs of abuse detection by multiplexed capillary based immuno-biosensors with competitive ELISA.
Collapse
Affiliation(s)
- Wen Xue
- Department of Biomedical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Xiaotian Tan
- Department of Biomedical Engineering
- University of Michigan
- Ann Arbor
- USA
| | | | | | - Mark A. Ilgen
- Department of Psychiatry
- University of Michigan
- Ann Arbor
- USA
| | - Xudong Fan
- Department of Biomedical Engineering
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|