1
|
Dong X, Ran X, Hou C, Zhou Z, Wang Z, Zhang T. Theoretical insights into the linker effects on the turn-on fluorescence behaviors in pyridazinone-containing NO probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124761. [PMID: 38955069 DOI: 10.1016/j.saa.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Fluorescent probes with preferred photophysical properties have attracted considerable attention for their advantages in real-time and accurate detection of signalling molecules in living organisms. Nitric oxide (NO) is a ubiquitous cellular messenger closely associated with many physiological and pathological processes. A NO fluorescent probe, PYSNO, based on the pyridazinone (PY) scaffold with o-phenylenediamine as the receptor and thiophene (S) as the linker has been synthesized. Inspired by the experimental guidance, three other dyes (PYSSNO, PYSONO and PYONO) were theoretically designed by replacing the S linker with thieno[3,2-b]thiophene (SS), thieno[3,2-b]thiophene 1,1-dioxide (SO) and thiophene 1,1-dioxide (O) groups. The photophysical properties were theoretically investigated in aqueous solution, by the combined time-dependent density functional theory, polarizable continuum model and thermal vibration correlation function approaches. Our results indicate that the emission wavelengths of all the designed dyes show red shifts due to either an increase in the conjugation length or electron-accepting ability of the linkers compared to PYSNO. The photoinduced electron transfer (PET) processes are all absent in these systems. PYSSNO and PYSONO are theoretically expected to be promising candidates for novel NO fluorescent probes, but the suitability of PYONO as a NO probe is compromised by the predicted non-luminescent emission before and after reaction with NO. Our study not only offers valuable insights into the detailed structure-property relationships, but also opens a new avenue for the rational design of efficient fluorescent sensors for NO detection.
Collapse
Affiliation(s)
- Xiaoxu Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xin Ran
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Chengshuo Hou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ziheng Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiming Wang
- AIE Institute, State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, PR China.
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
2
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
3
|
Spanolios EM, Lewis RE, Caldwell RN, Jilani SZ, Haynes CL. Progress and limitations in reactive oxygen species quantitation. Chem Commun (Camb) 2024; 60:12487-12501. [PMID: 39373601 DOI: 10.1039/d4cc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Reactive oxygen species (ROS) are a set of oxygen- and nitrogen-containing radicals. They are produced from a wide range of sources. In biological contexts, cellular stress leads to an overproduction of ROS, which can lead to genetic damage and disease development. In industry, ROS are often productively used for water purification or for analyzing the possible toxicity of an industrial process. Because of their ubiquity, detection of ROS has been an analytical goal across a range of fields. To understand complicated systems and origins of ROS production, it is necessary to move from qualitative detection to quantitation. Analytical techniques that combine quantitation, high spatial and temporal resolution, and good specificity represent detection methods that can fill critical gaps in ROS research. Herein, we discuss the continued progress and limitations of fluorescence, electrochemical, and electron paramagnetic resonance detection of ROS over the last ten years, giving suggestions for the future of the field.
Collapse
|
4
|
Zhang Y, Wang S, Zhang L, Peng T. Development of a urea-bond cleavage reaction induced by nitric oxide for fluorescence imaging. J Mater Chem B 2024; 12:10248-10257. [PMID: 39291486 DOI: 10.1039/d4tb01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nitric oxide (NO) is a multifunctional signalling molecule with indispensable roles in physiological processes, but its abnormal production is implicated in various disease conditions. Detecting NO is crucial for interrogating its biological roles. Although many o-phenylenediamine-based fluorescent probes have been developed, only a small fraction has been employed in vivo. Moreover, these probes largely require direct modifications of the fluorophore backbones to render NO responsiveness, which restricts the general applicability of o-phenylenediamine-based probe designs to other types of fluorophores. Here, we report the rational development, optimization, and application of a NO-induced urea-bond cleavage reaction for selective fluorescence detection and imaging of NO in living systems. Through rational design and extensive screening, we identified a 2-aminophenylurea-derived functionality that can react with NO through N-nitrosation, acyltriazole formation, and hydrolysis to induce the cleavage of the urea bond and release of the amino-containing coumarin fluorophore. By caging different amino-containing fluorophore scaffolds with the 2-aminophenylurea-derived functionality, we modularly developed a series of NO fluorescent probes with different excitation and emission profiles for the detection of NO in aqueous solutions and live cells. Among these probes, the near-infrared probe has been demonstrated to enable in vivo fluorescence visualization of elevated endogenous levels of NO in a murine inflammation model. Overall, this study provides a NO-induced urea-bond cleavage reaction and establishes the utility of this reaction for the general and modular development of NO fluorescent probes, thus opening new opportunities for studying and manipulating NO in biological systems.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Lina Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
5
|
Ye C, Lin S, Li J, Meng P, Huang L, Li D. Comprehensive insights into fluorescent probes for the determination nitric oxide for diseases diagnosis. Bioorg Chem 2024; 150:107505. [PMID: 38865860 DOI: 10.1016/j.bioorg.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Nitric oxide (NO) plays an important role in multiple physiological processes of the body involved in regulation, such as cardiovascular relaxation, neural homeostasis, and immune regulation, etc. The real-time monitoring of NO is of great significance in the investigation of related disease mechanisms and the evaluation of pharmacodynamics. Fluorescent probes are considered as a highly promising approach for pharmaceutical analysis and bioimaging due to their non-invasive character, real-time detection, and high sensitivity. However, there are still some challenges in the determination of biological nitric oxide with fluorescent probes, such as low anti-interference ability, poor function modifiability, and low organ specificity. Therefore, it would be beneficial to develop a new generation of fluorescent probes for real-time bioimaging of NO in vivo after this systematic summary.
Collapse
Affiliation(s)
- Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Jinyi Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Peng Meng
- Fujian Inspection and Research Institute for Product Quality, Fuzhou 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
6
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
7
|
Patra DC, Mondal SP. Paper-based Electrochemical Sensor Integrated with Gold Nanoparticle-Decorated Carbon Cloth as a Working Electrode for Nitric Oxide Detection in Artificial Tears. ACS APPLIED BIO MATERIALS 2024; 7:5247-5257. [PMID: 39010742 DOI: 10.1021/acsabm.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nitric oxide (NO) in human tears regulates numerous ocular surface processes, such as tear generation, corneal wound healing, conjunctival vascular tone, and so forth. Any deviation from its normal concentration is linked to various ocular syndromes, including microbial keratitis, conjunctivitis, pterygium, dry eye, retinitis, glaucoma, and so forth. Therefore, precise monitoring of NO in tears can be considered as a potential biomarker for ocular diseases. Here, we report a highly sensitive and selective electrochemical NO sensor using carbon ink-based electrodes. Counter, working (WE), and reference electrodes have been designed and painted on a butter paper by using carbon ink. To improve the sensing performance, the WE has been modified with a gold nanoparticle (Au NP)-deposited carbon cloth (CC). Such a paper-based sensor demonstrated high sensitivity of ∼0.34 μA μM-1 cm-2, ultralow detection limit of ∼2.35 nM, wide linear range of 10 nM-0.4 mM, and fast response time (0.35 s). The sensor also showed excellent stability and selectivity toward the interfering agents in human body fluids. Such a low-cost, flexible paper-based sensor was employed for the detection of NO in artificial tears.
Collapse
Affiliation(s)
- Dulal Chandra Patra
- Department of Physics, National Institute of Technology, Agartala 799046, India
| | | |
Collapse
|
8
|
Xi Y, Bai S, Tian Y, Lv Y, Ji L, Li W, He G, Yang L. Golgi-targeted NIR fluorescent probe with large stokes shift for real-time monitoring of nitric oxide in depression model. Bioorg Chem 2024; 148:107476. [PMID: 38788368 DOI: 10.1016/j.bioorg.2024.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Depression is a debilitating mental illness that poses a serious threat to human health. Nitric Oxide (NO), as an important gasotransmitter, is closely associated with the pathogenesis of depressive disorders. Effective monitoring of NO fluctuation is beneficial for the diagnosis of depression and therapy assessment of antidepressants. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with depression diseases. Herein, we developed a NIR dye TJ730-based fluorescent probe TJ730-Golgi-NO incorporating benzenesulfonamide as a Golgi-targeted moiety and the thiosemicarbazide group for NO detection. The probe exhibited turn-on fluorescence ability and a large Stokes shift of 158 nm, which shows high sensitivity, selectivity, and rapid response (<1 min) for NO detection. TJ730-Golgi-NO could detect exogenous and endogenous NO in cells stimulated by Glu and LPS, and target Golgi apparatus. Moreover, we disclose a significant increase of NO in the depression model and a weak fluorescence evidenced in the fluoxetine-treated depression mice. This study provides a competent tool for studying the function of NO and helping improve the effective treatment of depression diseases.
Collapse
Affiliation(s)
- Yanbei Xi
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Shiqiong Bai
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yuan Tian
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Yanan Lv
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Liguo Ji
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China
| | - Wenqiang Li
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Guangjie He
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China; Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| | - Linlin Yang
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan Province, PR China.
| |
Collapse
|
9
|
Atia NN, Khashaba PY, El Zohny SA, Rageh AH. Development of an innovative turn-on fluorescent probe for targeted in-vivo detection of nitric oxide in rat brain extracts as a biomarker for migraine disease. Talanta 2024; 272:125763. [PMID: 38368832 DOI: 10.1016/j.talanta.2024.125763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Nitric oxide (NO) is one of the reactive nitrogen species (RNS) that has been proposed to be a key signaling molecule in migraine. Migraine is a neurological disorder that is linked to irregular NO levels, which necessitates precise NO quantification for effective diagnosis and treatment. This work introduces a novel fluorescent probe, 2,3-diaminonaphthelene-1,4-dione (DAND), which was designed and synthesized to selectively detect NO in-vitro and in-vivo as a migraine biomarker. DAND boasts high aqueous solubility, biocompatibility, and facile synthesis, which enable highly selective and sensitive detection of NO under physiological conditions. NO reacts with diamine moieties (recognition sites) of DAND, results in the formation of a highly fluorescent product (DAND-NO) known as 1H-naphtho[2,3-d][1,2,3]triazole-4,9-dione at λem 450 nm. The fluorescence turn-on sensing mechanism operates through an intramolecular charge transfer (ICT) mechanism. To maximize fluorescence signal intensity, parameters including DAND concentration, reaction temperature, reaction time and pH were systematically optimized for sensitive and precise NO determination. The enhanced detection capability (LOD = 0.08 μmol L-1) and high selectivity of the probe make it a promising tool for NO detection in brain tissue homogenates. This demonstrates the potential diagnostic value of the probe for individuals suffering from migraine. Furthermore, this study sheds light on the potential role of zolmitriptan (ZOLM), an antimigraine medication, in modulating NO levels in the brain of rats with nitroglycerin-induced migraine, emphasizing its significant impact on reducing NO levels. The obtained results could have significant implications for understanding how ZOLM affects NO levels and may aid in the development of more targeted and effective migraine treatment strategies.
Collapse
Affiliation(s)
- Noha N Atia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Pakinaz Y Khashaba
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, 71515, Egypt
| | - Sally A El Zohny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, 71515, Egypt
| | - Azza H Rageh
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
10
|
Xu Z, Liu S, Xu L, Li Z, Zhang X, Kang H, Liu Y, Yu J, Jing J, Niu G, Zhang X. A novel ratiometric fluorescent probe with high selectivity for lysosomal nitric oxide imaging. Anal Chim Acta 2024; 1297:342303. [PMID: 38438223 DOI: 10.1016/j.aca.2024.342303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024]
Abstract
Nitric oxide (NO) plays critical roles in both physiology and pathology, serving as a significant signaling molecule. Recent investigations have uncovered the pivotal role of lysosome as a critical organelle where intracellular NO exists and takes function. In this study, we developed a novel ratiometric fluorescent probe called XL-NO and modified it with a morpholine unit, which followed the intramolecular charge transfer (ICT) mechanism. The probe could detect lysosomal nitric oxide with high selectivity and sensitivity. The probe XL-NO contained a secondary amine moiety that could readily react with NO in lysosomes, leading to the formation of the N-nitrosation product. The N-nitroso structure enhanced the capability in push-pull electron, which obviously led to the change of fluorescence from 621 nm to 521 nm. In addition, XL-NO was discovered to have some evident advantages, such as significant ratiometric signal (I521/I621) change, strong anti-interference ability, good biocompatibility, and a low detection limit (LOD = 44.3 nM), which were crucial for the detection of lysosomal NO. To evaluate the practical application of XL-NO, NO imaging experiments were performed in both living cells and zebrafish. The results from these experiments confirmed the feasibility and reliability of XL-NO for exogenous/endogenous NO imaging and lysosome targeting.
Collapse
Affiliation(s)
- Zhiling Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Songtao Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Liren Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zichun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoli Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Hao Kang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yifan Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jin Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Jing Jing
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Xiaoling Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials, Analytical and Testing Center, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
11
|
Hu J, Wang R, Liao W, Hu J, Li L, Cheng Z, Chen WH. A novel donor-acceptor fluorescent probe for the fluorogenic/ chromogenic detection and bioimaging of nitric oxide. Anal Chim Acta 2024; 1296:342333. [PMID: 38401928 DOI: 10.1016/j.aca.2024.342333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024]
Abstract
Nitric oxide (NO) plays an essential role in regulating various physiological and pathological processes. This has spurred various efforts to develop feasible methods for the detection of NO. Herein we designed and synthesized a novel donor-acceptor fluorescent probe Car-NO for the selective and specific detection of NO. Reaction of Car-NO with NO generated a new donor-acceptor structure with strong intramolecular charge transfer (ICT) effect, and led to remarkable chromogenic change from yellow to blue and dramatic fluorescence quenching. Car-NO exhibited high selectivity, excellent sensitivity, and rapid response for the detection of NO. In addition, the nanoparticles prepared from Car-NO (i.e., Car-NO NPs) showed strong NIR emission and high selectivity/sensitivity. Car-NO NPs was successfully employed to image both endogenous and exogenous NO in HeLa and RAW 264.7 cells. The present findings reveal that Car-NO is a promising probe for the detection and bioimaging of NO.
Collapse
Affiliation(s)
- Jingxin Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Ruiya Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Wantao Liao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China
| | - Lanqing Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Wen-Hua Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529020, PR China.
| |
Collapse
|
12
|
Zhang Y, Wang S, Sun Y, Xu H, Xu Z, Liang X, Yang J, Song W, Chen M, Fang M. Evaluation of a biomarker (NO) dynamics in inflammatory zebrafish and periodontitis saliva samples via a fast-response and sensitive fluorescent probe. Bioorg Chem 2024; 143:107014. [PMID: 38061180 DOI: 10.1016/j.bioorg.2023.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Many pathological processes include nitric oxide (NO), a signaling transduction molecule. Tumors, cardiovascular, cerebrovascular, neurodegenerative, and other illnesses are linked to abnormal NO levels. Thus, evaluating NO levels in vitro and in vivo is crucial for studying chemical biology process of associated disorders. This work devised and manufactured a coumarin-based fluorescent probe ZPS-NO to detect nitric oxide (NO). The reaction between ZPS-NO and NO produced a highly selective and sensitive optical response that caused a powerful fluorescence "turn-on" effect with a ultra-low NO detection limit of 14.5 nM. Furthermore, the probe was applied to sense and image NO in living cells and inflammatory model of zebrafish, as well as to detect NO in periodontitis patients' saliva samples. We anticipate that probe ZPS-NO will serve as a practical and effective tool for assessing the interactions and evaluation of periodontitis development.
Collapse
Affiliation(s)
- Yibin Zhang
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, PR China
| | - Shaocai Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Yu Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Hanbo Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Zihan Xu
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Xin Liang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Jianguang Yang
- Department of Periodontal Disease, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| | - Minghui Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, PR China.
| |
Collapse
|
13
|
Ghosh P, Saha S, Mukherjee S, Chattopadhyay A, Sahoo P. Direct fluorescence labelling of NO inside plant cells. Org Biomol Chem 2023; 21:9270-9274. [PMID: 37970956 DOI: 10.1039/d3ob01647a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitric oxide (NO) plays a key role in regulating plant growth, enhances nutrient uptake, and activates disease and stress tolerance mechanisms in most plants. NO is marked as a potential tool for improving the yield and quality of horticultural crop species. Research on NO in plant species can provide an abundance of valuable information regarding this. Hence, we have prepared a simple chemosensor (NPO) for the detection of endogenous NO in chickpea saplings. NPO selectively interacts with NO as determined through a chemodosimetric method to clearly show both the colorimetric and fluorometric changes. After the interaction with NO, the colorless NPO turns yellow as observed by the naked eye and shows bright cyan-blue fluorescence under a UV lamp. The 1 : 1 stoichiometric ratio between NPO and NO is determined from Job's plot resulting in a stable diazeniumdiolate product. The interaction mechanism is well established by absorption, fluorescence titration, NMR titration, HRMS, and DFT calculations. This method has successfully been employed in the plant's root and stem systems to label NO. Confocal microscopy images might help us to understand the endogenous NO generation and the mechanism that happens inside plant tissues.
Collapse
Affiliation(s)
- Priyotosh Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Shrabani Saha
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | | - Prithidipa Sahoo
- Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
| |
Collapse
|
14
|
Singh A, Singh G, Kaur N, Singh N. Fabrication of FRET based nano sensor from biomass-derived fluorescent carbon quantum dots and naphthalimide for ratiometric detection of nitric oxide: To examine nitrite levels in meat samples. Anal Chim Acta 2023; 1270:341444. [PMID: 37311616 DOI: 10.1016/j.aca.2023.341444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a ubiquitous, gaseous, free radical signaling molecule which plays a key role in physiological and pathological processes. Literature reports revealed that the conventional methods such as colorimetry, electron paramagnetic resonance (EPR), electrochemical etc. to detect NO are costly, time consuming and lack resolution, particularly in aqueous or biological system. Thus, in this context, herein we have developed covalently linked biomass derived carbon quantum dots (CQDs) and naphthalimide based nano sensor system for FRET based ratiometric detection of nitric oxide (NO) in pure aqueous media. The CQDs derived from orange peels were characterized using UV-visible absorption, fluorescence spectroscopy, PXRD, TEM, FT-IR and zeta potential studies. Further, the obtained CQDs were functionalized with amine functionality, and subsequently linked with naphthalimide derivative (5) using terephthaldehyde through covalent bond formation. The conjugation of naphthalimide (5) and functionalized CQDs was studied using DLS, zeta potential, FT-IR and time resolved fluorescence spectroscopy. The excitation of developed nano sensor system at λex 360 nm results in fluorescence emission at λem 530 nm which establishes the FRET pair between the CQDs and naphthalimide unit. However, in the presence of NO, the observed FRET pair abolishes due to the cleavage of NO susceptible imine bond. The developed sensor demonstrates high selectivity towards NO with limit of detection (LOD) and limit of quantification (LOQ) of 15 nM and 50 nM respectively. Further, the developed sensor system was also utilized for indirect detection of nitrite (NO2-) in food samples for food safety and monitoring.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India.
| |
Collapse
|
15
|
Debnath S, Ghosh R, Pragti, Mukhopadhyay S, Baskaran KV, Chatterjee PB. Fabrication of a paper-based facile and low-cost microfluidic device and digital imaging technique for point-of-need monitoring of hypochlorite. Analyst 2023; 148:4072-4083. [PMID: 37486009 DOI: 10.1039/d3an00533j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lab-on-a-paper-based devices are promising alternatives to the existing arduous techniques for point-of-need monitoring. The present work reports an instant and facile method to produce a microfluidic paper-based analytical device (μPAD). The fabricated μPAD has been used to detect hypochlorite (OCl-) by incorporating newly synthesized chromo-fluorogenic ratiometric probes 1 and 2 into the sample reception zone. The probes showed high selectivity and fast response (<10 s) toward OCl- with an excellent linear relationship in the concentration range of 0-100 μM. The concentration-dependent fluorometric change driven by the reaction of 1@μPAD with OCl- has been monitored using gel-doc imaging systems, which is unprecedented. Digitizing the intensity of the colour solution with different mathematical models of colour has developed a straightforward method for monitoring OCl- without any interference from its competitors. 1@μPAD can detect OCl- at ∼10 times lower than the WHO recommended limit. The detection limit of 1@μPAD via a digital camera-based fluorescence technique was found to be better over digital camera-based cuvette assays. Therefore, 1@μPAD has been successfully utilized to monitor OCl- in actual environmental water samples with portability, ease of use, and sensitivity. The analytical RSD was found to be ≤3% based on fluorimetric detection using 1@μPAD. The chemodosimetric reaction between OCl- and the probe was evidenced by UV-vis and fluorescence spectroscopy, 1H NMR, and ESI-MS. The rapid response time, biocompatibility, low cytotoxicity, 100% aqueous solubility, ratiometric feature, and exclusive OCl- selectivity over other competitive ROS/RNS successfully lead to the application of the probes for bioimaging of exogenous as well as endogenous OCl- in normal cells (HEK293) and cancerous cells (HeLa).
Collapse
Affiliation(s)
- Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Pragti
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | - Suman Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Indore, Indore, India
| | | | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
16
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
17
|
Arnau Del Valle C, Thomas P, Galindo F, Muñoz MP, Marín MJ. Gold nanoparticle-based two-photon fluorescent nanoprobe for monitoring intracellular nitric oxide levels. J Mater Chem B 2023; 11:3387-3396. [PMID: 36919860 DOI: 10.1039/d3tb00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nitric oxide (NO) plays an important role in the regulation of the immune, cardiovascular and nervous systems. Consequently, being able to monitor and quantify intracellular NO levels would provide a greater understanding of the implications of this molecule in the different biological processes, including, for example, in cancer. Here, we report a broadly applicable two-photon excitable fluorescent nanoprobe able to detect and potentially quantify NO levels in an extensive range of cellular environments. The nanoprobe consists of a thiolated photoinduced electron transfer-based two=photon fluorescent probe attached onto the surface of 2.4 ± 0.7 nm gold nanoparticles (DANPY-NO@AuNPs). The nanoprobe, which can be synthesised in a reproducible manner and exhibits great stability when stored at room temperature, is able to selectively detect NO in solution, with a dynamic range up to 150 μM, and at pH values of biological relevance. DANPY-NO@AuNPs were able to selectively detect endogenous NO in RAW264.7γ NO- macrophages and THP-1 human leukemic cells; and endogenous and exogenous NO in endothelial cells. The nanoprobe accumulated in the acidic organelles of the tested cell lines showing negligible toxicity. Importantly, DANPY-NO@AuNPs showed potential to quantify intracellular NO concentrations in MDA-MB-231 breast cancer cells. The biological evaluation of the nanoprobe was undertaken using confocal laser scanning (images and intracellular emission spectra) and multiphoton microscopies, and flow cytometry. Based on their excellent sensitivity and stability, and outstanding versatility, DANPY-NO@AuNPs can be applied for the spatiotemporal monitoring of in vitro and in vivo NO levels.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Paul Thomas
- Henry Wellcome Laboratory for Cell Imaging, Faculty of Science, University of East Anglia, Norwich Research Park, Norwich, NR4 7T, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana, 12071, Spain
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK. .,Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
18
|
Shang Z, Shu L, Liu J, Meng Q, Wang Y, Sun J, Zhang R, Zhang Z. Triphenylamine-embedded copper(II) complex as a "turn-on" fluorescent probe for the detection of nitric oxide in living animals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4537-4544. [PMID: 36314283 DOI: 10.1039/d2ay01629j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) is one of three major signaling molecules, which is involved in a large amount of physiological and pathological processes in biological systems. Furthermore, more and more evidence indicates that NO levels are closely associated with several aspects of human health. Accordingly, it is of great significance to develop a convenient and reliable detection method for NO in biological systems. In this work, a novel triphenylamine-embedded copper(II) complex (NZ-Cu2+) has been developed to be used as a fluorescence probe for the detection of NO in living animals. The proposed sensing mechanism of NZ-Cu2+ towards NO has been confirmed by high-resolution mass spectrometry, spectroscopic titration and density functional theory calculation. NO induced the conversion of paramagnetic Cu2+ to diamagnetic Cu+, which blocked the photoinduced electron transfer process of NZ-Cu2+, resulting in a remarkable enhancement of the emission spectra. The NZ-Cu2+ probe possesses several advantages including high selectivity, low detection limit (12.9 nM), long emission wavelength (640 nm), large Stokes shift (201 nm), fast response time (60 s) and low cytotoxicity. More importantly, NZ-Cu2+ has been successfully applied to detect NO in vivo by fluorescence imaging.
Collapse
Affiliation(s)
- Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Li Shu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianhua Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| | - Jianguo Sun
- Eye Institute and Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China.
| |
Collapse
|
19
|
He C, Zhu J, Zhang H, Qiao R, Zhang R. Photoacoustic Imaging Probes for Theranostic Applications. BIOSENSORS 2022; 12:947. [PMID: 36354456 PMCID: PMC9688356 DOI: 10.3390/bios12110947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic imaging (PAI), an emerging biomedical imaging technology, capitalizes on a wide range of endogenous chromophores and exogenous contrast agents to offer detailed information related to the functional and molecular content of diseased biological tissues. Compared with traditional imaging technologies, PAI offers outstanding advantages, such as a higher spatial resolution, deeper penetrability in biological tissues, and improved imaging contrast. Based on nanomaterials and small molecular organic dyes, a huge number of contrast agents have recently been developed as PAI probes for disease diagnosis and treatment. Herein, we report the recent advances in the development of nanomaterials and organic dye-based PAI probes. The current challenges in the field and future research directions for the designing and fabrication of PAI probes are proposed.
Collapse
Affiliation(s)
| | | | | | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
20
|
Arnau Del Valle C, Williams L, Thomas P, Johnson R, Raveenthiraraj S, Warren D, Sobolewski A, Muñoz MP, Galindo F, Marín MJ. A highly photostable and versatile two-photon fluorescent probe for the detection of a wide range of intracellular nitric oxide concentrations in macrophages and endothelial cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112512. [PMID: 35850002 DOI: 10.1016/j.jphotobiol.2022.112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is involved in many biological processes affecting the cardiovascular, nervous and immune systems. Intracellular NO can be monitored using fluorescent probes in combination with fluorescence imaging techniques. Most of the currently available NO fluorescent molecular probes are excited via one-photon excitation using UV or Vis light, which results in poor penetration and high photodamage to living tissues. Here, we report a two-photon fluorescent molecular probe, DANPY-NO, able to detect NO in live cells. The probe consists of an o-phenylenediamine linked to a naphthalimide core; and operates via photoinduced electron transfer. DANPY-NO exhibits good sensitivity (LOD of 77.8 nM) and high selectivity towards NO, and is stable over a broad range of pHs. The probe targeted acidic organelles within macrophages and endothelial cells, and demonstrated enhanced photostability over a commercially available NO probe. DANPY-NO was used to selectively detect endogenous NO in RAW264.7ϒ NO- macrophages, THP-1 human leukemic cells, primary mouse (bone marrow-derived) macrophages and endothelial cells. The probe was also able to detect exogenous NO in endothelial cells and distinguish between increasing concentrations of NO. The NO detection was evidenced using confocal laser scanning and two-photon microscopies, and flow cytometry. Further evidence was obtained by recording the changes in the intracellular fluorescence emission spectrum of the probe. Importantly, the probe displayed negligible toxicity to the analysed biological samples. The excellent sensitivity, selectivity, stability and versatility of DANPY-NO confirm its potential for in vitro and in vivo imaging of NO.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Lewis Williams
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Paul Thomas
- Faculty of Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Robert Johnson
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | - Derek Warren
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Anastasia Sobolewski
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - María Paz Muñoz
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón de la Plana 12071, Spain
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
21
|
Li P, Li R, Wang K, Liu Q, Ren B, Ding Y, Guan R, Cao D. A julolidine-chalcone-based fluorescent probe for detection of Al 3+ in real water sample and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121213. [PMID: 35398807 DOI: 10.1016/j.saa.2022.121213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A fluorescent probe 1 based on julolidine-chalcone derivative, which can specifically recognize aluminum ion with high selectivity and anti-interference, was developed. Probe 1 has good fluorescence stability and can detect Al3+ with turn-on fluorescence in a wide pH range of 4.0-9.0. The probe has good repeatability for the detection of Al3+ and fluorescence turn-on and off can be repeated with the alternate Al3+ and EDTA. The sensing mechanism is speculated that Al3+ will coordinate with hydroxyl oxygen and carbonyl oxygen on the probe through in situ 1H NMR and HRMS combing with Job's plot. The probe can also detect Al3+ in actual water samples and applied to monitor Al3+ in biological system.
Collapse
Affiliation(s)
- Panpan Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Runsen Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kangnan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baosheng Ren
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyu Ding
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
22
|
Mutreja V, Kumar A, Sareen S, Pathania K, Sandhu H, Kataria R, Pawar SV, Mehta SK, Park J. Aggregation‐Induced Quenching of Carbon Dots for Detection of Nitric oxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202200448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vishal Mutreja
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
- Division Chemistry University Institute of Sciences Chandigarh University Gharuan, Mohali Punjab India
- School of Electrical Engineering and Computer Science University of Ottawa Ottawa ON K1 N 6 N5 Canada
| | - Ajay Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Shweta Sareen
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Khushboo Pathania
- University Institute of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Harshit Sandhu
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Ramesh Kataria
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences (UIPS) Panjab University Chandigarh 160014 India
| | - Surinder K. Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh India
| | - Jeongwon Park
- School of Electrical Engineering and Computer Science University of Ottawa Ottawa ON K1 N 6 N5 Canada
- Department of Electrical and Biomedical Engineering University of Nevada Reno USA
| |
Collapse
|
23
|
Carbon dots as Reactive Nitrogen Species nanosensors. Anal Chim Acta 2022; 1202:339654. [DOI: 10.1016/j.aca.2022.339654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022]
|
24
|
An activatable fluorescent probe for imaging endogenous nitric oxide via the eNOS enzymatic pathway. Bioorg Med Chem Lett 2022; 59:128544. [DOI: 10.1016/j.bmcl.2022.128544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/22/2022]
|
25
|
Liang M, Liu Z, Zhang Z, Mei Y, Tian Y. A two-photon ratiometric fluorescent probe for real-time imaging and quantification of NO in neural stem cells during activation regulation. Chem Sci 2022; 13:4303-4312. [PMID: 35509464 PMCID: PMC9006966 DOI: 10.1039/d2sc00326k] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes. Herein, a two-photon ratiometric fluorescent probe (NOP) was developed for real-time imaging and quantification of NO based on fluorescence resonance energy transfer-photoinduced electron transfer (FRET-PET). In this developed probe, coumarin (CM) and naphthalimide with o-phenylenediamine (NPM) were rationally designed as a fluorescent donor and acceptor, respectively, to enable a ratiometric fluorescence response to NO. The developed NO probe demonstrated good detection linearity with the concentration of NO in the range of 0.100–200 μM, with a detection limit of 19.5 ± 1.00 nM. Considering the advantages of high selectivity, good accuracy and rapid dynamic response (<15 s), the developed NO probe was successfully applied for real-time imaging and accurate quantification of NO in neural stem cells (NSCs) and different regions of mouse brain tissue with a penetration depth of 350 μm. Using this powerful tool, it was found that NO regulated the activation and differentiation of quiescent NSCs (qNSCs). In addition, NO-induced differentiation of qNSCs into neurons was found to be dose-dependent: 50.0 μM NO caused about 50.0% of qNSCs to differentiate into neurons. Moreover, different regions of the mouse brain were observed to be closely related to the concentration of NO, and the concentration of NO in the DG region was found to be lower than that in the S1BF, CA1, LD and CPu of the Alzheimer's disease (AD) mouse brain. The symptoms of AD mice were significantly improved through the treatment with NO-activated NSCs in the DG region. Developing a novel tool capable of real-time monitoring and accurate quantification of NO is critical to understanding its role in physiological and pathological processes.![]()
Collapse
Affiliation(s)
- Mengyu Liang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhonghui Zhang
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuxiao Mei
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
26
|
Muñoz Resta I, Bedrina B, Martínez-Planes E, Minguela A, Galindo F. Detection of subcellular nitric oxide in mitochondria using a pyrylium probe: assays in cell cultures and peripheral blood. J Mater Chem B 2021; 9:9885-9892. [PMID: 34821904 DOI: 10.1039/d1tb02326h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent probes for the detection of intracellular nitric oxide (NO) are abundant, but those targeted to the mitochondria are scarce. Among those molecules targeting mitochondrial NO (mNO), the majority use a triphenylphosphonium (TPP) cation as a vector to reach such organelles. Here we describe a simple molecule (mtNOpy) based on the pyrylium structure, made in a few synthetic steps, capable of detecting selectively NO (aerated medium) over other reactive species. The calculated detection limit for mtNOpy is 88 nM. The main novelty of this probe is that it has a simple molecular architecture and can act both as a fluorogenic and as a mitochondriotropic agent, without using TPP. mtNOpy has been tested in two different scenarios: (a) in a controlled environment of cell line cultures (human colon carcinoma HT-29 cells and mouse macrophage RAW 264.7 cells), using confocal laser scanning microscopy, and (b) on a much more complex sample of peripheral blood, using flow cytometry. In the first context, mtNOpy has been found to be responsive (turn-on fluorescence) to exogenous and endogenous NO stimuli (via SNAP donor and LPS stimulation, respectively). In the second area, mtNOpy has been able to discriminate between NO-generating phagocytes (neutrophils and monocytes) from other leukocytes (NK, B and T cells).
Collapse
Affiliation(s)
- Ignacio Muñoz Resta
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Begoña Bedrina
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Elena Martínez-Planes
- Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120, Murcia, Spain
| | - Alfredo Minguela
- Servicio de Inmunología, Hospital Universitario Virgen de la Arrixaca, El Palmar, 30120, Murcia, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. V. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
27
|
Wang Y, Zhou F, Meng Q, Zhang S, Jia H, Wang C, Zhang R, Zhang Z. A Novel Fluorescence Probe for the Reversible Detection of Bisulfite and Hydrogen Peroxide Pair in Vitro and in Vivo. Chem Asian J 2021; 16:3419-3426. [PMID: 34476907 DOI: 10.1002/asia.202100926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Indexed: 12/17/2022]
Abstract
The detection of changes in the reactive oxygen species (ROS)/reactive sulfur species (RSS) couple is important for studying the cellular redox state. Herein, we developed a 1,8-naphthalimide-based fluorescence probe (NI) for the reversible detection of bisulfite (HSO3 - ) and hydrogen peroxide (H2 O2 ) in vitro and in vivo. NI has been designed with a reactive ethylene unit which specifically reacts with HSO3 - by a Michael addition reaction mechanism, resulting in the quenching of yellow fluorescence at 580 nm and the appearing of green fluorescence at 510 nm upon excitation at 500 nm and 430 nm, respectively. The addition product (NI-HSO3 ) could be specifically oxidized to form the original C=C bond of NI, recovering the fluorescence emission and color. The detection limits of NI for HSO3 - and NI-HSO3 for H2 O2 were calculated to be 2.05 μM and 4.23 μM, respectively. The reversible fluorescence response of NI towards HSO3 - /H2 O2 couple can be repeated for at least five times. NI is reliable at a broad pH range (pH 3.0-11.5) and features outstanding selectivity, which enabled its practical applications in biological and food samples. Monitoring the reversible and dynamic inter-conversion between HSO3 - and H2 O2 in vitro and in vivo has been verified by fluorescence imaging in live HeLa cells, adult zebrafish and nude mice. Moreover, NI has been successfully applied to detect of HSO3 - levels in food samples.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Fang Zhou
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Songhe Zhang
- Anshan Tumor Hospital, 339 Shenhua Road, Lishan District, Anshan, Liaoning Province, P. R. China
| | - Hongmin Jia
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Cuiping Wang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning Province, 114051, P. R. China
| |
Collapse
|
28
|
Gong ZH, Wei ZN, Liu YZ, Xiao LF. [ARTICLE WITHDRAWN] Semiconducting Polymer Dot-Based Ratiometric Fluorescence Nanoprobe for DNA Detection. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5776-5783. [PMID: 33980392 DOI: 10.1166/jnn.2021.19496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHER IN MAY 2021
Collapse
Affiliation(s)
- Zhen-Hu Gong
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Zong-Nan Wei
- Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China
| | - Yi-Zhang Liu
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| | - Lu-Fei Xiao
- School of Food and Environmental Engineering, Chuzhou Polytechnic, Chuzhou 239000, PR China
| |
Collapse
|
29
|
A novel aggregation induced emission probe based on coumarin scaffold for imaging hypochlorite in cells and zebrafish. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Yang X, Wang Y, Shang Z, Zhang Z, Chi H, Zhang Z, Zhang R, Meng Q. Quinoline-based fluorescent probe for the detection and monitoring of hypochlorous acid in a rheumatoid arthritis model. RSC Adv 2021; 11:31656-31662. [PMID: 35496887 PMCID: PMC9041640 DOI: 10.1039/d1ra06224g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 01/30/2023] Open
Abstract
The development of effective bioanalytical methods for the visualization of hypochlorous acid (HOCl) in situ in rheumatoid arthritis (RA) directly contributes to better understanding the roles of HOCl in this disease. In this work, a new quinoline-based fluorescence probe (HQ) has been developed for the detection and visualization of a HOCl-mediated inflammatory response in a RA model. HQ possesses a donor–π–acceptor (D–π–A) structure that was designed by conjugating p-hydroxybenzaldehyde (electron donor) and 1-ethyl-4-methylquinolinium iodide (electron acceptor) through a C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C double bond. In the presence of HOCl, oxidation of phenol to benzoquinone led to the red-shift (93 nm) of the adsorption and intense quenching of the fluorescence emission. The proposed response reaction mechanism was verified by high performance liquid chromatography (HPLC) and high-resolution mass spectroscopy (HRMS) titration analysis. The remarkable color changes of the HQ solution from pale yellow to pink enabled the application of HQ-stained chromatography plates for the “naked-eye” detection of HOCl in real-world water samples. HQ featured high selectivity and sensitivity (6.5 nM), fast response time (<25 s) to HOCl, reliability at different pH (3.0 to 11.5) and low cytotoxicity. HQ's application in biological systems was then demonstrated by the monitoring of HOCl-mediated treatment response to RA. This work thus provided a new tool for the detection and imaging of HOCl in inflammatory disorders. A quinoline-based fluorescent probe (HQ) has been designed and synthesized for the monitoring of HOCl-mediated treatment response of a rheumatoid arthritis (RA) model and “naked-eye” detection of HOCl in real water samples.![]()
Collapse
Affiliation(s)
- Xinyi Yang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zhuye Shang
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Haijun Chi
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5928002
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane 4072 Australia
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning Anshan Liaoning 114051 P. R. China +86-412-5929627
| |
Collapse
|
31
|
Zhang SX, Marzluff EM, Lindgren CA. Quantitative determination of nitric oxide from tissue samples using liquid chromatography-Mass spectrometry. MethodsX 2021; 8:101412. [PMID: 34430307 PMCID: PMC8374528 DOI: 10.1016/j.mex.2021.101412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
We report a method to measure NO by reacting it with carboxy-PTIO to form carboxy-PTI. The carboxy-PTI is quantified by liquid chromatography – mass spectrometry (LCMS). This method can quantitate NO concentrations ranging from 5 nM to 1 μM.
Ever since it was found to mediate the endothelium-dependent dilation of blood vessels, nitric oxide (NO) has generated enormous research interest throughout the biological sciences. Over thirty years of research has identified NO as a ubiquitous and versatile regulatory factor utilized by both vertebrates and invertebrates. The short lifetime and low concentration of NO make quantitation difficult. Here we report a method for measuring NO using the selective reaction with 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide (carboxy-PTIO) to form carboxy-PTI. We used tandem mass spectrometry to verify the validity of this reaction, and liquid chromatography – mass spectrometry to quantitate the amount of carboxy-PTI formed. Using diethylamine nonoate as a NO donor we demonstrate this method can quantitate NO concentrations with a detection limit of 5 nM. We successfully determined the amount of NO generated endogenously by frog heart/aorta when stimulated by carbachol, a non-selective acetylcholine receptor agonist. Based on these results, we suggest that this technique can be useful for the quantitative determination of NO in biological samples.We report a method to measure NO by reacting it with carboxy-PTIO to form carboxy-PTI. The carboxy-PTI is quantified by liquid chromatography mass spectrometry (LCMS). This method can quantitate NO concentrations ranging from 5 nM to 1 µM
Collapse
Affiliation(s)
- Stephen X Zhang
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States
| | - Elaine M Marzluff
- Department of Chemistry, Grinnell College, Grinnell, IA 50112, United States
| | - Clark A Lindgren
- Department of Biology, Grinnell College, Grinnell, IA 50112, United States
| |
Collapse
|
32
|
Dang Y, Ruan L, Tian Y, Xu Z, Zhang W. Nitric Oxide Prodrug Delivery and Release Monitoring Based on a Galactose-Modified Multifunctional Nanoprobe. Anal Chem 2021; 93:7625-7634. [PMID: 34010568 DOI: 10.1021/acs.analchem.1c00287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nitric oxide (NO)-based cancer therapy has attracted much attention in recent years owing to its broad effects on cancer. Low concentrations of NO stimulate cancer cell progression, while its higher levels induce cell apoptosis, and thus, it has motivated the development of probes for in situ NO release monitoring. In this work, a galactose-modified benzothiadiazole-based fluorescent probe (GalNONP/C) was synthesized as both a NO-responsive nanoprobe and NO prodrug carrier. The probe exhibited far-red emission in the range from 550 to 800 nm, and the response showed acidity preference. The galactose on the probe enabled selective targeting of hepatocellular carcinoma (HCC) cells by binding to the asialoglycoprotein receptor (ASGPR) on the cell surface. The probe also delivered low-molecular weight NO prodrug JS-K into cells and monitored the real-time release of the generated NO. Furthermore, in vivo NO imaging with tumor targeting was demonstrated in HCC orthotopic transplantation nude mice and liver sections. Compared with the control experiment using a probe without NO prodrug loading, higher fluorescence response of NO was detected in the cell (3.0 times) and liver slices of the HCC tumor model (2.7 times). This strategy may pave the way to develop nanoprobes for in situ NO monitoring and therapy evaluation in NO-related cancer therapy.
Collapse
Affiliation(s)
- Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liting Ruan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
33
|
Zhong X, Yang Q, Chen Y, Jiang Y, Dai Z. Aggregation-induced fluorescence probe for hypochlorite imaging in mitochondria of living cells and zebrafish. J Mater Chem B 2021; 8:7375-7381. [PMID: 32647844 DOI: 10.1039/d0tb01496f] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypochlorite is an important active oxygen species formed in living organisms, and rapid and highly sensitive detection of trace hypochlorite is of great significance for understanding the mechanism of diseases caused by abnormal hypochlorite concentrations at an early stage. Although aggregation-induced emission (AIE) probes are highly important for analyte de-tection in living organisms, there is a lack of AIE probes for hypochlorite detection. In this study, two AIE probes based on benzothiazole derivatives (BTD-1 and BTD-2) were designed and synthesized. Both probes exhibited good AIE charac-teristics and allowed different visual detection for hypochlorite. Additionally, the two probes could be used to detect endogenous hypochlorite in mitochondria and were successfully applied for in vivo hypochlorite imaging in zebrafish.
Collapse
Affiliation(s)
- Xiuli Zhong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | |
Collapse
|
34
|
Kim SJ, Park SY, Yoon SA, Kim C, Kang C, Lee MH. Naphthalimide-4-(4-nitrophenyl)thiosemicarbazide: A Fluorescent Probe for Simultaneous Monitoring of Viscosity and Nitric Oxide in Living Cells. Anal Chem 2021; 93:4391-4397. [PMID: 33617243 DOI: 10.1021/acs.analchem.0c04019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracellular viscosity is a physicochemical factor that determines the outcomes of various biological processes, while nitric oxide (NO) is an essential signaling molecule that controls many cellular processes, including oxidative stress. Anticipating that both may be interrelated with a variety of pathologies, their simultaneous measurement would be highly valuable for the investigation of the pathological condition of cells. However, the development of a sensor for such simultaneous detection has not been attempted yet. Herein, we present the synthesis of naphthalimide-4-(4-nitrophenyl)thiosemicarbazide, probe 1, and its application to living cells under conditions of lipopolysaccharide or nystatin treatment, adopted as oxidative stress and altered intracellular viscosity models, respectively. The probe showed increased fluorescence in response to elevation of viscosity and NO levels at 470 and 550 nm, respectively, in the solution studies. When the probe was used for a confocal microscopic study of HeLa cells under stressed conditions, simultaneous monitoring of viscosity and NO level elevations was possible through fluorescence imaging using band-pass filters of 420-475 and 505-600 nm, respectively, upon excitation at a wavelength of 405 nm. Interestingly, both the cellular viscosity and NO levels increased together under lipopolysaccharide or nystatin treatment. Therefore, we suggest that probe 1 is a fluorescent chemical probe that enables the monitoring of alterations in intracellular viscosity and NO levels in living cells, which would be valuable in studies of various cellular damage models.
Collapse
Affiliation(s)
- Su Jung Kim
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Sun Young Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Shin A Yoon
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| | - Changshin Kim
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Chulhun Kang
- The School of East-West Medical Science, Kyung Hee University, Yongin 17104, Korea
| | - Min Hee Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
35
|
Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116199] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Mou J, Qi H, Xiang R, Xu S, Liu J, Meng S, Chen N, Xue Y, Pei D. A novel fluorescence sensor for relay recognition of zinc ions and nitric oxide through fluorescence ‘off–on–off’ functionality. NEW J CHEM 2021. [DOI: 10.1039/d0nj05018k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fluorescent ‘off–on–off’ probe for relay recognition of Zn2+ and nitro oxide (NO) was constructed with the detection limit of 10−8 mol L−1.
Collapse
Affiliation(s)
- Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
- School of Pharmacy
| | - Hao Qi
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Rui Xiang
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Shaofeng Xu
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Jie Liu
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Sihan Meng
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Ninghai Chen
- School of Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy
- Xuzhou Medical University
- Xuzhou
- China
- School of Pharmacy
| | - Dongsheng Pei
- Department of Pathology
- Xuzhou Medical University
- Xuzhou 221006
- China
| |
Collapse
|
37
|
A single benzene fluorescent probe for efficient formaldehyde sensing in living cells using glutathione as an amplifier. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112091. [PMID: 33285487 DOI: 10.1016/j.jphotobiol.2020.112091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022]
Abstract
Formaldehyde (FA), a simple reactive carbonyl molecule, is endogenously produced in the cell at various physiological condition. At elevated level, FA causes severe cell toxicity as well as damage in macromolecules such proteins and DNA. For detecting FA in living cell, we identify a small but effective fluorescent turn on probe comprising single benzene-based orothophenylenediamine compound. Further study reveals that carboxylic group in orothophenylenediamine plays the important role in enhancing fluorescent signal than another electron withdrawing group. It is even interesting to observe the occurrence of fluorescent enhancement in glutathione (GSH) environment which is generally abundant in every cell. Our probe enables to detect FA over other bio-analytes efficiently with limit of detection of 123 nM and 355-fold of enhancement in cellular mimicking conditions. Moreover, this probe could be useful in discriminating cell that has high concentration of FA as well as GSH.
Collapse
|
38
|
He X, Zheng Z, Zhang F, Xu C, Xu W, Ye L, Sun X, Zhou Z, Shen J. Mitochondria-Targeted Chemosensor to Discriminately and Continuously Visualize HClO and H 2S with Multiresponse Fluorescence Signals for In Vitro and In Vivo Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:7886-7897. [PMID: 35019529 DOI: 10.1021/acsabm.0c01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive molecules play a vital role in the process of regulating the redox balance in the intracellular environment, especially in maintaining the function of organelles. To explore the association and function of bioactive molecules in organelles, it is essential to develop a chemosensor tool that uses multiresponse fluorescence signals to distinguish between and track two related bioactive molecules in organelles. However, the development of sensors with multiresponse functions is still a challenging task. Herein, we present a unique and practical single chemosensor (Mito-CTC) that can monitor HClO (as an oxidative substance) and H2S (as a reductive substance) in mitochondria (organelle targeting) with multiresponse fluorescence signals. The response of the sensor to HClO and H2S changes from red to green and blue channel emission simultaneously, respectively, thereby providing a specific signal response to reductive/oxidative substances in the mitochondria. Using a single chemosensor, we have realized multichannel bioimaging of the exogenous and endogenous HClO and H2S in cellular mitochondria. Additionally, the excellent properties of the sensor Mito-CTC can be used to reveal the relationship between HClO and H2S in mitochondria. Meanwhile, Mito-CTC has been endowed with the ability to image in bacteria and zebrafish attributed to the good permeability and low cytotoxicity. Expectantly, drug-induced liver injury (DILI) caused by fluoxetine (an antidepressant drug) and the degree of drug-induced toxicity to the liver were evaluated using Mito-CTC through discriminating and imaging HClO, indicating that Mito-CTC has the potential function of evaluating the toxicity of the drug to the liver.
Collapse
Affiliation(s)
- Xiaojun He
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziman Zheng
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Feifan Zhang
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Chuchu Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Xu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lisong Ye
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoshuai Sun
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhan Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jianliang Shen
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
39
|
Song DN, Zhang DJ, Wang YL, Wang JJ, Xing XS, Lv ZY, Liu F, Han JX, Zhang RC, Liao SJ, Zhang R. Luminescent Thermochromic Silver Iodides as Wavelength-Dependent Thermometers. Inorg Chem 2020; 59:13067-13077. [PMID: 32870670 DOI: 10.1021/acs.inorgchem.0c00606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Luminescent thermochromic materials with a dramatic shift of emission band under different temperatures are highly desirable in temperature sensing fields. However, the design of the synthesis of such compounds remains a great challenge. In this work, two new luminescent thermochromic silver iodides, (emIm)Ag3I4 (1) and (emIm)Ag2I3 (2) (emIm = 1-ethyl-3-methyl imidazole), have been synthesized under solvothermal conditions. Compound 1 features a [Ag3I4]- anionic layer, while compound 2 possesses an infinite [Ag2I3]- chain structure, both of which are charge balanced by emIm+ cations. Particularly, they display luminescent thermochromism with a significant wavelength shift of emission maximum with temperature change. They represent rare examples of infinite layered or chain silver iodides that show luminescent thermochromism. Furthermore, the results indicate that compounds 1 and 2 are promising wavelength-dependent luminescent thermometers.
Collapse
Affiliation(s)
- Dan-Na Song
- College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Dao-Jun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Yong-Lei Wang
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
| | - Jun-Jie Wang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Xiu-Shuang Xing
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Zhi-Ying Lv
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Fan Liu
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Jiang-Xia Han
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Ren-Chun Zhang
- Henan Province Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455002, China
| | - Shui-Jiao Liao
- College of Basic Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
40
|
Ramesh A, Kumar S, Brouillard A, Nandi D, Kulkarni A. A Nitric Oxide (NO) Nanoreporter for Noninvasive Real-Time Imaging of Macrophage Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000648. [PMID: 32390270 DOI: 10.1002/adma.202000648] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Macrophage-centered therapeutic approaches that rely on immune modulation of tumor associated macrophages (TAMs) from a pro-tumorigenic phenotype (M2) to an anti-tumorigenic phenotype (M1) have facilitated a paradigm shift in macrophage immunotherapy. However, limited clinical success has been achieved due to the low response rates observed in different types of cancers. The ability to measure immune response in real time is critical in order to differentiate responders from non-responders; however, there are currently no platforms to monitor real-time macrophage immunotherapy response. Hence, there is an immediate need to develop imaging techniques that can longitudinally monitor macrophage immunotherapy response. Nitric oxide (NO) produced as a result of activation of macrophages to an anti-tumorigenic state is considered as a hallmark of M1 and can be a direct indication of response. In this study, a NO nanoreporter (NO-NR) is reported that enables real-time monitoring of macrophage immunotherapy drugs in vitro and in vivo. Furthermore, it is observed that sustained inhibition of colony stimulating factor 1 receptor (CSF1R) using a CSF1R inhibitor-NO-NR system leads to enhanced efficacy and better imaging signal. In conclusion, a first-of-its-kind NO nanoreporter tool is reported that can be used as an activatable imaging agent to monitor macrophage immunotherapy response in real time.
Collapse
Affiliation(s)
- Anujan Ramesh
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Anthony Brouillard
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Dipika Nandi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
41
|
Chen Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide. Nitric Oxide 2020; 98:1-19. [DOI: 10.1016/j.niox.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
|
42
|
Liu J, Duan C, Zhang W, Ta HT, Yuan J, Zhang R, Xu ZP. Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells. Anal Chim Acta 2020; 1103:156-163. [DOI: 10.1016/j.aca.2019.12.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 02/02/2023]
|
43
|
Latha AV, Ayyappan M, Kallar AR, Kakkadavath RV, Victor SP, Selvam S. Fluorescence imaging of nitric oxide in living cells using o-phenylenediamine-rhodamine based polymeric nanosensors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110463. [DOI: 10.1016/j.msec.2019.110463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/17/2019] [Indexed: 01/12/2023]
|
44
|
Li H, Hao YH, Feng W, Song QH. Rapid and sensitive detection of nitric oxide by a BODIPY-based fluorescent probe in live cells: glutathione effects. J Mater Chem B 2020; 8:9785-9793. [DOI: 10.1039/d0tb01784a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutathione effects on the sensing reaction toward nitric oxide in live cells.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yu-Hao Hao
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Wei Feng
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Qin-Hua Song
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
45
|
Wei LF, Chen CY, Lai CK, Thirumalaivasan N, Wu SP. A nano-molar fluorescent turn-on probe for copper(II) detection in living cells. Methods 2019; 168:18-23. [DOI: 10.1016/j.ymeth.2019.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023] Open
|
46
|
Coutinho MS, Latocheski E, Neri JM, Neves ACO, Domingos JB, Cavalcanti LN, Gasparotto LHS, Moraes EP, Menezes FG. Rutin-modified silver nanoparticles as a chromogenic probe for the selective detection of Fe3+ in aqueous medium. RSC Adv 2019; 9:30007-30011. [PMID: 35531525 PMCID: PMC9072079 DOI: 10.1039/c9ra06653e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 11/21/2022] Open
Abstract
The use of rutin-modified silver nanoparticles for selective detection and sensitive quantification of Fe3+ in aqueous solution is described.
Collapse
Affiliation(s)
- Mayra S. Coutinho
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Eloah Latocheski
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | - Jannyely M. Neri
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Ana C. O. Neves
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | - Josiel B. Domingos
- Department of Chemistry
- Federal University of Santa Catarina
- Florianópolis
- Brazil
| | | | | | - Edgar P. Moraes
- Institute of Chemistry
- Federal University of Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|
47
|
Yang Y, Wang Y, Feng Y, Cao C, Song X, Zhang G, Liu W. Light-driven visualization of endogenous cysteine, homocysteine, and glutathione using a near-infrared fluorescent probe. J Mater Chem B 2019; 7:7723-7728. [DOI: 10.1039/c9tb01645g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Light-driven visualization of endogenous cysteine, homocysteine, and glutathione using a near-infrared fluorescent probe.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yingzhe Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yan Feng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Chen Cao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|