1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Wong DA, Shaver ZM, Cabezas MD, Daniel-Ivad M, Warfel KF, Prasanna DV, Sobol SE, Fernandez R, Nicol R, DeLisa MP, Balskus EP, Karim AS, Jewett MC. Development of cell-free platforms for discovering, characterizing, and engineering post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586624. [PMID: 39651187 PMCID: PMC11623507 DOI: 10.1101/2024.03.25.586624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTM installing proteins often suffer from low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free protein synthesis (CFPS) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and conjugate vaccines. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in conjugate vaccine production, enabling the identification of mutant OSTs and sites within a carrier protein that enable high efficiency production of conjugate vaccines. In total, we expect that our workflow will accelerate design-build-test cycles for engineering PTMs.
Collapse
|
3
|
Hoang-Phou S, Pal S, Slepenkin A, Abisoye-Ogunniyun A, Zhang Y, Gilmore SF, Shelby ML, Bourguet FA, Mohagheghi MV, Noy A, Rasley A, de la Maza LM, Coleman MA. CT584 Is Not a Protective Vaccine Antigen against Respiratory Chlamydial Challenge in Mice. Vaccines (Basel) 2024; 12:1134. [PMID: 39460301 PMCID: PMC11512284 DOI: 10.3390/vaccines12101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background:Chlamydia trachomatis is the most prevalent bacterial sexually transmitted pathogen in humans worldwide. Since chlamydial infection is largely asymptomatic with the potential for serious complications, a preventative vaccine is likely the most viable long-term answer to this public health threat. Cell-free protein synthesis (CFPS) utilizes the cellular protein manufacturing machinery decoupled from the requirement for maintaining cellular viability, offering the potential for flexible, rapid, and decentralized production of recombinant protein vaccine antigens. Methods: Here, we use CFPS to produce the full-length putative chlamydial type three secretion system (T3SS) needle-tip protein, CT584, for evaluation as a vaccine antigen in mouse models. High-speed atomic force microscopy (HS-AFM) (RIBM, Tsukuba, Japan) imaging and computer simulations confirm that CFPS-produced CT584 retains a native-like structure prior to immunization. Female mice were primed with CT584 adjuvanted with CpG-1826 intranasally (i.n.) or CpG-1826 + Montanide ISA 720 intramuscularly (i.m.), followed four weeks later by an i.m. boost before respiratory challenge with 104 inclusion forming units (IFU) of Chlamydia muridarum. Results: Immunization with CT584 generated robust antibody responses but weak cell-mediated immunity and failed to protect against i.n. challenge as demonstrated by body weight loss, increased lung weights, and the presence of high numbers of IFUs in the lungs. Conclusion: While CT584 was not a protective vaccine candidate, the speed and flexibility with which CFPS can be used to produce other potential chlamydial antigens make it an attractive technique for antigen production.
Collapse
Affiliation(s)
- Steven Hoang-Phou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (S.P.); (A.S.); (L.M.d.l.M.)
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (S.P.); (A.S.); (L.M.d.l.M.)
| | - Abisola Abisoye-Ogunniyun
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Sean F. Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Megan L. Shelby
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Feliza A. Bourguet
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Mariam V. Mohagheghi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA; (S.P.); (A.S.); (L.M.d.l.M.)
| | - Matthew A. Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA; (S.H.-P.); (A.A.-O.); (Y.Z.); (S.F.G.); (M.L.S.); (F.A.B.); (M.V.M.); (A.N.); (A.R.)
| |
Collapse
|
4
|
Collins M, Lau MB, Ma W, Shen A, Wang B, Cai S, La Russa M, Jewett MC, Qi LS. A frugal CRISPR kit for equitable and accessible education in gene editing and synthetic biology. Nat Commun 2024; 15:6563. [PMID: 39095367 PMCID: PMC11297044 DOI: 10.1038/s41467-024-50767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Equitable and accessible education in life sciences, bioengineering, and synthetic biology is crucial for training the next generation of scientists, fostering transparency in public decision-making, and ensuring biotechnology can benefit a wide-ranging population. As a groundbreaking technology for genome engineering, CRISPR has transformed research and therapeutics. However, hands-on exposure to this technology in educational settings remains limited due to the extensive resources required for CRISPR experiments. Here, we develop CRISPRkit, an affordable kit designed for gene editing and regulation in high school education. CRISPRkit eliminates the need for specialized equipment, prioritizes biosafety, and utilizes cost-effective reagents. By integrating CRISPRi gene regulation, colorful chromoproteins, cell-free transcription-translation systems, smartphone-based quantification, and an in-house automated algorithm (CRISPectra), our kit offers an inexpensive (~$2) and user-friendly approach to performing and analyzing CRISPR experiments, without the need for a traditional laboratory setup. Experiments conducted by high school students in classroom settings highlight the kit's utility for reliable CRISPRkit experiments. Furthermore, CRISPRkit provides a modular and expandable platform for genome engineering, and we demonstrate its applications for controlling fluorescent proteins and metabolic pathways such as melanin production. We envision CRISPRkit will facilitate biotechnology education for communities of diverse socioeconomic and geographic backgrounds.
Collapse
Affiliation(s)
- Marvin Collins
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew B Lau
- Program of Biomedical Computation, Stanford University, Stanford, CA, 94305, USA
| | - William Ma
- Chinese International School, Hong Kong, 999077, Hong Kong SAR, China
| | - Aidan Shen
- East Chapel Hill High School, Chapel Hill, NC, 27514, USA
| | - Brenda Wang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Palma JA, Bunyatov MI, Hulbert SW, Jewett MC, DeLisa MP. Bacterial glycoengineering: Cell-based and cell-free routes for producing biopharmaceuticals with customized glycosylation. Curr Opin Chem Biol 2024; 81:102500. [PMID: 38991462 DOI: 10.1016/j.cbpa.2024.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Glycosylation plays a pivotal role in tuning the folding and function of proteins. Because most human therapeutic proteins are glycosylated, understanding and controlling glycosylation is important for the design, optimization, and manufacture of biopharmaceuticals. Unfortunately, natural eukaryotic glycosylation pathways are complex and often produce heterogeneous glycan patterns, making the production of glycoproteins with chemically precise and homogeneous glycan structures difficult. To overcome these limitations, bacterial glycoengineering has emerged as a simple, cost-effective, and scalable approach to produce designer glycoprotein therapeutics and vaccines in which the glycan structures are engineered to reduce heterogeneity and improve biological and biophysical attributes of the protein. Here, we discuss recent advances in bacterial cell-based and cell-free glycoengineering that have enabled the production of biopharmaceutical glycoproteins with customized glycan structures.
Collapse
Affiliation(s)
- Jaymee A Palma
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mehman I Bunyatov
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
DeWinter MA, Wong DA, Fernandez R, Kightlinger W, Thames AH, DeLisa MP, Jewett MC. Establishing a Cell-Free Glycoprotein Synthesis System for Enzymatic N-GlcNAcylation. ACS Chem Biol 2024; 19:1570-1582. [PMID: 38934647 DOI: 10.1021/acschembio.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
N-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human N-linked glycans is the difficulty of installing a single N-acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (N-GlcNAcylation). Here, we develop an in vitro method for N-GlcNAcylating proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. We use cell-free protein synthesis (CFPS) to test promiscuous PglB variants previously reported in the literature for the ability to produce N-GlcNAc and successfully determine that PglB with an N311V mutation (PglBN311V) exhibits increased GlcNAc transferase activity relative to the wild-type enzyme. We then improve the transfer efficiency by producing CFPS extracts enriched with PglBN311V and further optimize the reaction conditions, achieving a 98.6 ± 0.5% glycosylation efficiency. We anticipate this method will expand the glycoengineering toolbox for therapeutic research and biomanufacturing.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Derek A Wong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Regina Fernandez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Cell-free Protein Synthesis and Microbial Process Development, National Resilience Inc.,, Oakland, California 94606, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Petrova VV, Solovev YV, Porozov YB, Polynski MV. Will We Witness Enzymatic or Pd-(Oligo)Peptide Catalysis in Suzuki Cross-Coupling Reactions? J Org Chem 2024; 89:8478-8485. [PMID: 38861408 DOI: 10.1021/acs.joc.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite the development of numerous advanced ligands for Pd-catalyzed Suzuki cross-coupling reaction, the potential of (oligo)peptides serving as ligands remains unexplored. This study demonstrates via density functional theory (DFT) modeling that (oligo)peptide ligands can drive superior activity compared to classic phosphines in these reactions. The utilization of natural amino acids such as Met, SeMet, and His leads to strong binding of the Pd center, thereby ensuring substantial stability of the system. The increasing sustainability and economic viability of (oligo)peptide synthesis open new prospects for applying Pd-(oligo)peptide systems as greener catalysts. The feasibility of de novo engineering an artificial Pd-based enzyme for Suzuki cross-coupling is discussed, laying the groundwork for future innovations in catalytic systems.
Collapse
Affiliation(s)
- Vlada V Petrova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
- Quantum Chemistry Department, Institute of Chemistry, St. Petersburg State University, Universitetsky Prospect 26, Saint Petersburg 198504, Russia
| | - Yaroslav V Solovev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Yuri B Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Kantemirovskaya Street 3-1A, Saint Petersburg 194100, Russia
- Advitam Laboratory, Vodovodska 158, Belgrade 11147, Serbia
| | - Mikhail V Polynski
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
9
|
Hoang-Phou S, Pal S, Slepenkin A, Abisoye-Ogunniyun A, Zhang Y, Gilmore SF, Shelby M, Bourguet F, Mohagheghi M, Noy A, Rasley A, de la Maza LM, Coleman MA. Evaluation in mice of cell-free produced CT584 as a Chlamydia vaccine antigen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597210. [PMID: 38895407 PMCID: PMC11185655 DOI: 10.1101/2024.06.04.597210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chlamydia trachomatis is the most prevalent bacterial sexually transmitted pathogen worldwide. Since chlamydial infection is largely asymptomatic with the potential for serious complications, a preventative vaccine is likely the most viable long-term answer to this public health threat. Cell-free protein synthesis (CFPS) utilizes the cellular protein manufacturing machinery decoupled from the requirement for maintaining cellular viability, offering the potential for flexible, rapid, and de-centralized production of recombinant protein vaccine antigens. Here, we use CFPS to produce the putative chlamydial type three secretion system (T3SS) needle-tip protein, CT584, for use as a vaccine antigen in mouse models. High-speed atomic force microscopy (HS-AFM) imaging and computer simulations confirm that CFPS-produced CT584 retains a native-like structure prior to immunization. Female mice were primed with CT584 adjuvanted with CpG-1826 intranasally (i.n.) or CpG-1826 + Montanide ISA 720 intramuscularly (i.m.), followed four-weeks later by an i.m. boost before respiratory challenge with 104 inclusion forming units (IFU) of Chlamydia muridarum. Immunization with CT584 generated robust antibody responses but weak cell mediated immunity and failed to protect against i.n. challenge as demonstrated by body weight loss, increased lungs' weights and the presence of high numbers of IFUs in the lungs. While CT584 alone may not be the ideal vaccine candidate, the speed and flexibility with which CFPS can be used to produce other potential chlamydial antigens makes it an attractive technique for antigen production.
Collapse
Affiliation(s)
- Steven Hoang-Phou
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Anatoli Slepenkin
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Abisola Abisoye-Ogunniyun
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Yuliang Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Sean F Gilmore
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Megan Shelby
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Feliza Bourguet
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Mariam Mohagheghi
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Aleksandr Noy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Amy Rasley
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Matthew A Coleman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
| |
Collapse
|
10
|
Silva SJRD, Magalhães JJFD, Matthews Q, Divarzak ALL, Mendes RPG, Santos BNR, Cabral DGDA, Silva JBD, Kohl A, Pardee K, Pena L. Development and field validation of a reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) for the rapid detection of chikungunya virus in patient and mosquito samples. Clin Microbiol Infect 2024; 30:810-815. [PMID: 38460820 PMCID: PMC11161457 DOI: 10.1016/j.cmi.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVES We aimed to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) platform for the rapid detection of chikungunya virus (CHIKV) in both patient and mosquito samples from Brazil. METHODS We optimized an RT-LAMP assay and then evaluated the specificity and sensitivity using visual detection. In comparison with the RT-qPCR reference method, we validated the utility of this assay as a molecular diagnostic test in a reference laboratory for arbovirus diagnostics using 100 serum samples collected from suspected CHIKV cases. RESULTS Our RT-LAMP assay specifically detected CHIKV without cross-reactivity against other arboviruses. The limit of detection of our RT-LAMP was estimated in -1.18 PFU (confidence interval [CI] ranging from -2.08 to 0.45), resulting in a similar analytical sensitivity when directly compared with the reference standard RT-qPCR assay. Then, we demonstrate the ability of our RT-LAMP assay to detect the virus in different human specimens (serum, urine, and saliva), and crude lysate of Aedes aegypti mosquitoes in as little as 20-30 minutes and without a separate RNA isolation step. Lastly, we showed that our RT-LAMP assay could be lyophilized and reactivated by adding water, indicating potential for room-temperature storage. Our RT-LAMP had a clinical sensitivity of 100% (95% CI, 90.97-100.00%), clinical specificity of 96.72% (95% CI, 88.65-99.60%), and overall accuracy of 98.00% (95% CI, 92.96-99.76%). DISCUSSION Taken together, these findings indicate that the RT-LAMP assay reported here solves important practical drawbacks to the deployment of molecular diagnostics in the field and can be used to improve testing capacity, particularly in low- and middle-income countries.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil; Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), Recife, Pernambuco, Brazil; University of Pernambuco (UPE), Serra Talhada Campus, Serra Talhada, Pernambuco, Brazil; Public Health Laboratory of the XI Regional Health, Pernambuco, Brazil
| | - Quinn Matthews
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Bárbara Nazly Rodrigues Santos
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | | | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK; Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (Lavite), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil.
| |
Collapse
|
11
|
Kofman C, Willi JA, Karim AS, Jewett MC. Ribosome Pool Engineering Increases Protein Biosynthesis Yields. ACS CENTRAL SCIENCE 2024; 10:871-881. [PMID: 38680563 PMCID: PMC11046459 DOI: 10.1021/acscentsci.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
The biosynthetic capability of the bacterial ribosome motivates efforts to understand and harness sequence-optimized versions for synthetic biology. However, functional differences between natively occurring ribosomal RNA (rRNA) operon sequences remain poorly characterized. Here, we use an in vitro ribosome synthesis and translation platform to measure protein production capabilities of ribosomes derived from all unique combinations of 16S and 23S rRNAs from seven distinct Escherichia coli rRNA operon sequences. We observe that polymorphisms that distinguish native E. coli rRNA operons lead to significant functional changes in the resulting ribosomes, ranging from negligible or low gene expression to matching the protein production activity of the standard rRNA operon B sequence. We go on to generate strains expressing single rRNA operons and show that not only do some purified in vivo expressed homogeneous ribosome pools outperform the wild-type, heterogeneous ribosome pool but also that a crude cell lysate made from the strain expressing only operon A ribosomes shows significant yield increases for a panel of medically and industrially relevant proteins. We anticipate that ribosome pool engineering can be applied as a tool to increase yields across many protein biomanufacturing systems, as well as improve basic understanding of ribosome heterogeneity and evolution.
Collapse
Affiliation(s)
- Camila Kofman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica A. Willi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford California 94305, United States
| |
Collapse
|
12
|
Lee SJ, Kim DM. Cell-Free Synthesis: Expediting Biomanufacturing of Chemical and Biological Molecules. Molecules 2024; 29:1878. [PMID: 38675698 PMCID: PMC11054211 DOI: 10.3390/molecules29081878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing demand for sustainable alternatives underscores the critical need for a shift away from traditional hydrocarbon-dependent processes. In this landscape, biomanufacturing emerges as a compelling solution, offering a pathway to produce essential chemical materials with significantly reduced environmental impacts. By utilizing engineered microorganisms and biomass as raw materials, biomanufacturing seeks to achieve a carbon-neutral footprint, effectively counteracting the carbon dioxide emissions associated with fossil fuel use. The efficiency and specificity of biocatalysts further contribute to lowering energy consumption and enhancing the sustainability of the production process. Within this context, cell-free synthesis emerges as a promising approach to accelerate the shift towards biomanufacturing. Operating with cellular machinery in a controlled environment, cell-free synthesis offers multiple advantages: it enables the rapid evaluation of biosynthetic pathways and optimization of the conditions for the synthesis of specific chemicals. It also holds potential as an on-demand platform for the production of personalized and specialized products. This review explores recent progress in cell-free synthesis, highlighting its potential to expedite the transformation of chemical processes into more sustainable biomanufacturing practices. We discuss how cell-free techniques not only accelerate the development of new bioproducts but also broaden the horizons for sustainable chemical production. Additionally, we address the challenges of scaling these technologies for commercial use and ensuring their affordability, which are critical for cell-free systems to meet the future demands of industries and fully realize their potential.
Collapse
Affiliation(s)
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-Ro, Daejeon 34134, Republic of Korea;
| |
Collapse
|
13
|
Lee MS, Lee JA, Biondo JR, Lux JE, Raig RM, Berger PN, Bernhards CB, Kuhn DL, Gupta MK, Lux MW. Cell-Free Protein Expression in Polymer Materials. ACS Synth Biol 2024; 13:1152-1164. [PMID: 38467017 PMCID: PMC11036507 DOI: 10.1021/acssynbio.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.
Collapse
Affiliation(s)
- Marilyn S. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jennifer A. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Defense
Threat Reduction Agency, 2800 Bush River Road, Gunpowder, Maryland 21010, United States
| | - John R. Biondo
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Excet
Inc., 6225 Brandon Avenue,
Suite 360, Springfield, Virginia 22150, United States
| | - Jeffrey E. Lux
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Rebecca M. Raig
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Pierce N. Berger
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Casey B. Bernhards
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L. Kuhn
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Maneesh K. Gupta
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
14
|
Sánchez-Costa M, Urigoitia A, Comino N, Arnaiz B, Khatami N, Ruiz-Hernandez R, Diamanti E, Abarrategi A, López-Gallego F. In-Hydrogel Cell-Free Protein Expression System as Biocompatible and Implantable Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15993-16002. [PMID: 38509001 DOI: 10.1021/acsami.4c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care. To this aim, we first entrap cell-free extracts (CFEs) from Escherichia coli containing the transcription-translation machinery, together with plasmid DNA encoding the super folded green fluorescence protein (sGFP) as a model protein, into hydrogels using various preparation methods. Agarose hydrogels result in the most suitable biomaterials to confine the protein synthesis system, demonstrating efficient sGFP production and diffusion from the core to the surface of the hydrogel. Freeze-drying (FD) of agarose hydrogels still allows for the synthesis and diffusion of sGFP, yielding a more attractive biomaterial for its reconstitution and implementation at the point of care. FD-agarose hydrogels are biocompatible in vitro, allowing for the colonization of cell microenvironments along with cell proliferation. Implantation assays of this biomaterial in a preclinical mouse model proved the feasibility of this protein synthesis approach in an in vivo context and indicated that the physical properties of the biomaterials influence their immune responses. This work introduces a promising avenue for biomaterial fabrication, enabling the in vivo synthesis and targeted delivery of proteins and opening new paths for advanced protein therapeutic approaches based on biocompatible biomaterials.
Collapse
Affiliation(s)
| | - Ane Urigoitia
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Natalia Comino
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Blanca Arnaiz
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Neda Khatami
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- Polymat, University of Basque Country UPV/EHU, Donostia/San Sebastián 20018, Gipuzkoa, Spain
| | | | - Eleftheria Diamanti
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
| | - Ander Abarrategi
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| | - Fernando López-Gallego
- CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48013Bilbao, Spain
| |
Collapse
|
15
|
Kocalar S, Miller BM, Huang A, Gleason E, Martin K, Foley K, Copeland DS, Jewett MC, Saavedra EA, Kraves S. Validation of Cell-Free Protein Synthesis Aboard the International Space Station. ACS Synth Biol 2024; 13:942-950. [PMID: 38442491 PMCID: PMC10949350 DOI: 10.1021/acssynbio.3c00733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Cell-free protein synthesis (CFPS) is a rapidly maturing in vitro gene expression platform that can be used to transcribe and translate nucleic acids at the point of need, enabling on-demand synthesis of peptide-based vaccines and biotherapeutics as well as the development of diagnostic tests for environmental contaminants and infectious agents. Unlike traditional cell-based systems, CFPS platforms do not require the maintenance of living cells and can be deployed with minimal equipment; therefore, they hold promise for applications in low-resource contexts, including spaceflight. Here, we evaluate the performance of the cell-free platform BioBits aboard the International Space Station by expressing RNA-based aptamers and fluorescent proteins that can serve as biological indicators. We validate two classes of biological sensors that detect either the small-molecule DFHBI or a specific RNA sequence. Upon detection of their respective analytes, both biological sensors produce fluorescent readouts that are visually confirmed using a hand-held fluorescence viewer and imaged for quantitative analysis. Our findings provide insights into the kinetics of cell-free transcription and translation in a microgravity environment and reveal that both biosensors perform robustly in space. Our findings lay the groundwork for portable, low-cost applications ranging from point-of-care health monitoring to on-demand detection of environmental hazards in low-resource communities both on Earth and beyond.
Collapse
Affiliation(s)
- Selin Kocalar
- Leigh
High School, 5210 Leigh
Ave, San Jose, California 95124, United States
- Massachusetts
Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Bess M. Miller
- Division
of Genetics, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, Massachusetts 02115, United States
| | - Ally Huang
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Emily Gleason
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kathryn Martin
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| | - Kevin Foley
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - D. Scott Copeland
- Boeing
Defense, Space & Security, 6398 Upper Brandon Dr, Houston, Texas 77058, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | | | - Sebastian Kraves
- miniPCR
bio, 1770 Massachusetts
Ave, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
16
|
Steinkühler J, Peruzzi JA, Krüger A, Villaseñor CG, Jacobs ML, Jewett MC, Kamat NP. Improving Cell-Free Expression of Model Membrane Proteins by Tuning Ribosome Cotranslational Membrane Association and Nascent Chain Aggregation. ACS Synth Biol 2024; 13:129-140. [PMID: 38150067 DOI: 10.1021/acssynbio.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Citlayi G Villaseñor
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Bidstrup EJ, Kwon YH, Kim K, Bandi CK, Aw R, Jewett MC, DeLisa MP. Cell-Free Systems for the Production of Glycoproteins. Methods Mol Biol 2024; 2762:309-328. [PMID: 38315374 DOI: 10.1007/978-1-0716-3666-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cell-free protein synthesis (CFPS), whereby cell lysates are used to produce proteins from a genetic template, has matured as an attractive alternative to standard biomanufacturing modalities due to its high volumetric productivity contained within a distributable platform. Initially, cell-free lysates produced from Escherichia coli, which are both simple to produce and cost-effective for the production of a wide variety of proteins, were unable to produce glycosylated proteins as E. coli lacks native glycosylation machinery. With many important therapeutic proteins possessing asparagine-linked glycans that are critical for structure and function, this gap in CFPS production capabilities was addressed with the development of cell-free expression of glycoproteins (glycoCFE), which uses the supplementation of extracted lipid-linked oligosaccharides and purified oligosaccharyltransferases to enable glycoprotein production in the CFPS reaction environment. In this chapter, we highlight the basic methods for the preparation of reagents for glycoCFE and the protocol for expression and glycosylation of a model protein using a more productive, yet simplified, glycoCFE setup. Beyond this initial protocol, we also highlight how this protocol can be extended to a wide range of alternative glycan structures, oligosaccharyltransferases, and acceptor proteins as well as to a one-pot cell-free glycoprotein synthesis reaction.
Collapse
Affiliation(s)
- Erik J Bidstrup
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Yong Hyun Kwon
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Keehun Kim
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Chandra Kanth Bandi
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Rochelle Aw
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
18
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
19
|
Hulbert SW, Desai P, Jewett MC, DeLisa MP, Williams AJ. Glycovaccinology: The design and engineering of carbohydrate-based vaccine components. Biotechnol Adv 2023; 68:108234. [PMID: 37558188 DOI: 10.1016/j.biotechadv.2023.108234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.
Collapse
Affiliation(s)
- Sophia W Hulbert
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Primit Desai
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew P DeLisa
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA; Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Cornell Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA.
| | - Asher J Williams
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
20
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
21
|
Brookwell AW, Gonzalez JL, Martinez AW, Oza JP. Development of Solid-State Storage for Cell-Free Expression Systems. ACS Synth Biol 2023; 12:2561-2577. [PMID: 37490644 DOI: 10.1021/acssynbio.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The fragility of biological systems during storage, transport, and utilization necessitates reliable cold-chain infrastructure and limits the potential of biotechnological applications. In order to unlock the broad applications of existing and emerging biological technologies, we report the development of a novel solid-state storage platform for complex biologics. The resulting solid-state biologics (SSB) platform meets four key requirements: facile rehydration of solid materials, activation of biochemical activity, ability to support complex downstream applications and functionalities, and compatibility for deployment in a variety of reaction formats and environments. As a model system of biochemical complexity, we utilized crudeEscherichia colicell extracts that retain active cellular metabolism and support robust levels of in vitro transcription and translation. We demonstrate broad versatility and utility of SSB through proof-of-concepts for on-demand in vitro biomanufacturing of proteins at a milliliter scale, the activation of downstream CRISPR activity, as well as deployment on paper-based devices. SSBs unlock a breadth of applications in biomanufacturing, discovery, diagnostics, and education in resource-limited environments on Earth and in space.
Collapse
Affiliation(s)
- August W Brookwell
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Jorge L Gonzalez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andres W Martinez
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Javin P Oza
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
22
|
Thames AH, Rische CH, Cao Y, Krier-Burris RA, Kuang FL, Hamilton RG, Bronzert C, Bochner BS, Jewett MC. A Cell-Free Protein Synthesis Platform to Produce a Clinically Relevant Allergen Panel. ACS Synth Biol 2023; 12:2252-2261. [PMID: 37553068 PMCID: PMC10768853 DOI: 10.1021/acssynbio.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Allergens are used in the clinical diagnosis (e.g., skin tests) and treatment (e.g., immunotherapy) of allergic diseases. With growing interest in molecular allergy diagnostics and precision therapies, new tools are needed for producing allergen-based reagents. As a step to address this need, we demonstrate a cell-free protein synthesis approach for allergen production of a clinically relevant allergen panel composed of common allergens spanning a wide range of phylogenetic kingdoms. We show that allergens produced with this approach can be recognized by allergen-specific immunoglobulin E (IgE), either monoclonals or in patient sera. We also show that a cell-free expressed allergen can activate human cells such as peripheral blood basophils and CD34+ progenitor-derived mast cells in an IgE-dependent manner. We anticipate that this cell-free platform for allergen production will enable diagnostic and therapeutic technologies, providing useful tools and treatments for both the allergist and allergic patient.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Clayton H Rische
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Rebecca A Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Charles Bronzert
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
23
|
Stark JC, Jaroentomeechai T, Warfel KF, Hershewe JM, DeLisa MP, Jewett MC. Rapid biosynthesis of glycoprotein therapeutics and vaccines from freeze-dried bacterial cell lysates. Nat Protoc 2023:10.1038/s41596-022-00799-z. [PMID: 37328605 DOI: 10.1038/s41596-022-00799-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/22/2022] [Indexed: 06/18/2023]
Abstract
The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.
Collapse
Affiliation(s)
- Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Matthew P DeLisa
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- Simpson-Querrey Institute, Northwestern University, Chicago, IL, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Peruzzi JA, Galvez NR, Kamat NP. Engineering transmembrane signal transduction in synthetic membranes using two-component systems. Proc Natl Acad Sci U S A 2023; 120:e2218610120. [PMID: 37126679 PMCID: PMC10175788 DOI: 10.1073/pnas.2218610120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023] Open
Abstract
Cells use signal transduction across their membranes to sense and respond to a wide array of chemical and physical signals. Creating synthetic systems which can harness cellular signaling modalities promises to provide a powerful platform for biosensing and therapeutic applications. As a first step toward this goal, we investigated how bacterial two-component systems (TCSs) can be leveraged to enable transmembrane-signaling with synthetic membranes. Specifically, we demonstrate that a bacterial two-component nitrate-sensing system (NarX-NarL) can be reproduced outside of a cell using synthetic membranes and cell-free protein expression systems. We find that performance and sensitivity of the TCS can be tuned by altering the biophysical properties of the membrane in which the histidine kinase (NarX) is integrated. Through protein engineering efforts, we modify the sensing domain of NarX to generate sensors capable of detecting an array of ligands. Finally, we demonstrate that these systems can sense ligands in relevant sample environments. By leveraging membrane and protein design, this work helps reveal how transmembrane sensing can be recapitulated outside of the cell, adding to the arsenal of deployable cell-free systems primed for real world biosensing.
Collapse
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL60208
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
| | - Nina R. Galvez
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Neha P. Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL60208
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| |
Collapse
|
25
|
Thames AH, Moons SJ, Wong DA, Boltje TJ, Bochner BS, Jewett MC. GlycoCAP: A Cell-Free, Bacterial Glycosylation Platform for Building Clickable Azido-Sialoglycoproteins. ACS Synth Biol 2023; 12:1264-1274. [PMID: 37040463 PMCID: PMC10758250 DOI: 10.1021/acssynbio.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Glycan-binding receptors known as lectins represent a class of potential therapeutic targets. Yet, the therapeutic potential of targeting lectins remains largely untapped due in part to limitations in tools for building glycan-based drugs. One group of desirable structures is proteins with noncanonical glycans. Cell-free protein synthesis systems have matured as a promising approach for making glycoproteins that may overcome current limitations and enable new glycoprotein medicines. Yet, this approach has not been applied to the construction of proteins with noncanonical glycans. To address this limitation, we develop a cell-free glycoprotein synthesis platform for building noncanonical glycans and, specifically, clickable azido-sialoglycoproteins (called GlycoCAP). The GlycoCAP platform uses an Escherichia coli-based cell-free protein synthesis system for the site-specific installation of noncanonical glycans onto proteins with a high degree of homogeneity and efficiency. As a model, we construct four noncanonical glycans onto a dust mite allergen (Der p 2): α2,3 C5-azido-sialyllactose, α2,3 C9-azido-sialyllactose, α2,6 C5-azido-sialyllactose, and α2,6 C9-azido-sialyllactose. Through a series of optimizations, we achieve more than 60% sialylation efficiency with a noncanonical azido-sialic acid. We then show that the azide click handle can be conjugated with a model fluorophore using both strain-promoted and copper-catalyzed click chemistry. We anticipate that GlycoCAP will facilitate the development and discovery of glycan-based drugs by granting access to a wider variety of possible noncanonical glycan structures and also provide an approach for functionalizing glycoproteins by click chemistry conjugation.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Sam J Moons
- Synvenio B.V., Mercator 3, Nijmegen 6525ED, The Netherlands
| | - Derek A Wong
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Thomas J Boltje
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen 6525AJ, The Netherlands
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
26
|
DeWinter MA, Thames AH, Guerrero L, Kightlinger W, Karim AS, Jewett MC. Point-of-Care Peptide Hormone Production Enabled by Cell-Free Protein Synthesis. ACS Synth Biol 2023; 12:1216-1226. [PMID: 36940255 DOI: 10.1021/acssynbio.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
In resource-limited settings, it can be difficult to safely deliver sensitive biologic medicines to patients due to cold chain and infrastructure constraints. Point-of-care drug manufacturing could circumvent these challenges since medicines could be produced locally and used on-demand. Toward this vision, we combine cell-free protein synthesis (CFPS) and a 2-in-1 affinity purification and enzymatic cleavage scheme to develop a platform for point-of-care drug manufacturing. As a model, we use this platform to synthesize a panel of peptide hormones, an important class of medications that can be used to treat a wide variety of diseases including diabetes, osteoporosis, and growth disorders. With this approach, temperature-stable lyophilized CFPS reaction components can be rehydrated with DNA encoding a SUMOylated peptide hormone of interest when needed. Strep-Tactin affinity purification and on-bead SUMO protease cleavage yield peptide hormones in their native form that are recognized by ELISA antibodies and that can bind their respective receptors. With further development to ensure proper biologic activity and patient safety, we envision that this platform could be used to manufacture valuable peptide hormone drugs in a decentralized way.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
27
|
Rasor BJ, Karim AS, Alper HS, Jewett MC. Cell Extracts from Bacteria and Yeast Retain Metabolic Activity after Extended Storage and Repeated Thawing. ACS Synth Biol 2023; 12:904-908. [PMID: 36848582 DOI: 10.1021/acssynbio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cell-free synthetic biology enables rapid prototyping of biological parts and synthesis of proteins or metabolites in the absence of cell growth constraints. Cell-free systems are frequently made from crude cell extracts, where composition and activity can vary significantly based on source strain, preparation and processing, reagents, and other considerations. This variability can cause extracts to be treated as black boxes for which empirical observations guide practical laboratory practices, including a hesitance to use dated or previously thawed extracts. To better understand the robustness of cell extracts over time, we assessed the activity of cell-free metabolism during storage. As a model, we studied conversion of glucose to 2,3-butanediol. We found that cell extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an 18-month storage period and repeated freeze-thaw cycles retain consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on extract behavior.
Collapse
|
28
|
Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol 2023; 79:102888. [PMID: 36641905 DOI: 10.1016/j.copbio.2022.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Vaccines are vital for protection against existing and emergent diseases. Current vaccine production strategies are limited by long production times, risky viral material, weak immunogenicity, and poor stability, ultimately restricting the safe or rapid production of vaccines for widespread utilization. Cell-free protein synthesis (CFPS) systems, which use extracted transcriptional and translational machinery from cells, are promising tools for vaccine production because they can rapidly produce proteins without the constraints of living cells, have a highly optimizable open system, and can be used for on-demand biomanufacturing. Here, we review how CFPS systems have been explored for the production of subunit, conjugate, virus-like particle (VLP), and membrane-augmented vaccines and as a tool in vaccine design. We also discuss efforts to address potential limitations with CFPS such as the presence of endotoxins, poor protein folding, reaction stability, and glycosylation to enable promising future vaccine design and production.
Collapse
|
29
|
Jung KJ, Rasor BJ, Rybnicky GA, Silverman AD, Standeven J, Kuhn R, Granito T, Ekas HM, Wang BM, Karim AS, Lucks JB, Jewett MC. At-home, cell-free synthetic biology education modules for transcriptional regulation and environmental water quality monitoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523248. [PMID: 36711593 PMCID: PMC9881948 DOI: 10.1101/2023.01.09.523248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by just-adding-water and DNA to freeze-dried crude extracts of Escherichia coli . We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a 'build-your-own' activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high school students in their classrooms - and at home - without professional laboratory equipment or researcher oversight. This work promises to catalyze access to interactive synthetic biology education opportunities.
Collapse
Affiliation(s)
- Kirsten J. Jung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | - Blake J. Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Grant A. Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Adam D. Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | | | - Robert Kuhn
- Centennial High School, Roswell, GA 30076, USA
- Fulton County Schools Innovation Academy, Alpharetta, GA 30009, USA
| | | | - Holly M. Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Brenda M. Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Center for Water Research, Northwestern University, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| |
Collapse
|