1
|
Wang H, Shan M, Gao Q, Wang J, Zhang R, Wang Y, Yao M, Xiao W. Efficient nepetalactone production in Saccharomyces cerevisiae via metabolic engineering and bioprocess optimization. BIORESOURCE TECHNOLOGY 2025; 428:132440. [PMID: 40158864 DOI: 10.1016/j.biortech.2025.132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Nepetalactone, a natural insect repellent comparable to N,N-diethyl-meta-toluamide (DEET), is challenging to produce through plant extraction or chemical synthesis. This study achieved the de novo synthesis of nepetalactone in Saccharomyces cerevisiae without expensive precursors or inducers. Initially, the metabolic pathway for nepetalactone synthesis was successfully established in Saccharomyces cerevisiae. A metabolic pathway was established using strategies such as iridoid synthase (ISY) source screening, enzyme fusion, and cofactor regeneration to optimize nepetalactone production. Bioprocess optimization through chromosomal integration and two-phase fermentation prevented its conversion to dihydronepetalactone, resulting in a high-yield strain, NTE21, with a titer of 2.5 g/L. A record titer of 4.5 g/L was achieved in 5.0 L fed-batch fermentation via continuous batch feeding. This study documents the potential of microbial platforms for the sustainable, cost-effective, and scalable production of nepetalactone, paving the way for its commercial application as a natural insect repellent.
Collapse
Affiliation(s)
- Herong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Qi Gao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Jia Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ruixuan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Sciences, Faculty of Medicine, Tianjin University, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
2
|
Zhang Y, Ma Z, Li W, Liu C, Gao H, Wang M, Li L, Zhang Q, Lv B, Qin L, Li C. Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory. BIORESOURCE TECHNOLOGY 2025; 419:132064. [PMID: 39809385 DOI: 10.1016/j.biortech.2025.132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/01/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.1-fold increase in α-pinene production compared to the control. By enhancing the mevalonate pathway and expanding the cytosolic acetyl-CoA pool, α-pinene production was further increased. Overexpression of the transporter Sge1 resulted in a redistribution of global gene transcription, leading to an increased flux of α-pinene synthesis. By optimizing the aeration flow rate in 3-L bioreactors, the α-pinene production reached 1.8 g/L, which is the highest reported α-pinene production in cell factories. Our research provides insights and fundamentals for the efficient synthesis of monoterpenoids in microbial cell factories.
Collapse
Affiliation(s)
- Yapeng Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhidong Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China
| | - Wenqiang Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Chenwen Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Huipeng Gao
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Meng Wang
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Lanpeng Li
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Quan Zhang
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
4
|
Ye C, Li M, Gao J, Zuo Y, Xiao F, Jiang X, Cheng J, Huang L, Xu Z, Lian J. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Metab Eng 2024; 84:83-94. [PMID: 38897449 DOI: 10.1016/j.ymben.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojing Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jintao Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
5
|
Zhao C, Wang X, Lu X, Zong H, Zhuge B. Spatiotemporal Regulation and Transport Engineering for Sustainable Production of Geraniol in Candida glycerinogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4825-4833. [PMID: 38408332 DOI: 10.1021/acs.jafc.3c09651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Geraniol is an attractive natural monoterpene with significant industrial and commercial value in the fields of pharmaceuticals, condiments, cosmetics, and bioenergy. The biosynthesis of monoterpenes suffers from the availability of key intermediates and enzyme-to-substrate accessibility. Here, we addressed these challenges in Candida glycerinogenes by a plasma membrane-anchoring strategy and achieved sustainable biosynthesis of geraniol using bagasse hydrolysate as substrate. On this basis, a remarkable 2.4-fold improvement in geraniol titer was achieved by combining spatial and temporal modulation strategies. In addition, enhanced geraniol transport and modulation of membrane lipid-associated metabolism effectively promoted the exocytosis of toxic monoterpenes, significantly improved the resistance of the engineered strain to monoterpenes and improved the growth of the strains, resulting in geraniol yield up to 1207.4 mg L-1 at shake flask level. Finally, 1835.2 mg L-1 geraniol was obtained in a 5 L bioreactor using undetoxified bagasse hydrolysate. Overall, our study has provided valuable insights into the plasma membrane engineering of C. glycerinogenes for the sustainable and green production of valuable compounds.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - XiHui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - XinYao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Liu H, Liang S, Zhu M, Shi W, Xu C, Wei W, Zhan R, Ma D. A fused hybrid enzyme of 8-hydroxygeraniol oxidoreductase (8HGO) from Gardenia jasminoides and iridoid synthase (ISY) from Catharanthus roseus significantly enhances nepetalactol and iridoid production. PLANTA 2024; 259:62. [PMID: 38319463 DOI: 10.1007/s00425-023-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 02/07/2024]
Abstract
MAIN CONCLUSION The operation of 8HGO-ISY fusion enzymes can increase nepetalactol flux to iridoid biosynthesis, and the Gj8HGO-CrISY expression in Gardenia jasminoides indicates that seco-iridoids and closed-ring iridoids share a nepetalactol pool. Nepetalactol is a common precursor of (seco)iridoids and their derivatives, which are a group of noncanonical monoterpenes. Functional characterization of an 8HGO (8-hydroxygeraniol oxidoreductase) from Catharanthus roseus, a seco-iridoids producing plant, has been reported; however, the 8HGO from G. jasminoides with plenty of closed-ring iridoids remains uninvestigated. In this work, a Gj8HGO was cloned and biochemically characterized. In addition, the relatively low production of nepetalactol in plants and engineered microbial host is likely to be attributed to the fact that Cr8HGO and CrISY (iridoid synthase) are substrate-promiscuous enzymes catalyzing unexpected substrates to the undesired products. Herein, a bifunctional enzyme consisting of an 8HGO fused to an ISY was designed for the proximity to the substrate and recycling of NADP+ and NADPH cofactor to reduce the undesired intermediate in the synthesis of nepetalactol. Of four fusion enzymes (i.e., Gj8HGO-GjISY, Gj8HGO-GjISY2, Gj8HGO-GjISY4, and Gj8HGO-CrISY), interestingly, only the last one can enable cascade reaction to form cis-trans-nepetalactol. Furthermore, we establish a reliable Agrobacterium-mediated transformation system. The expression of Gj8HGO-CrISY in G. jasminoides led to a significant enhancement of nepetalactol production, about 19-fold higher than that in wild-type plants, which further resulted in the twofold to fivefold increase of total iridoids and representative iridoid such as geniposide, indicating that seco-iridoids in C. roseus and closed-ring iridoids in G. jasminoides share a nepetalactol pool. All results suggest that 8HGO and ISY can be manipulated to maximize metabolic flux for nepetalactol and iridoid production.
Collapse
Affiliation(s)
- Hui Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shuangcheng Liang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meixian Zhu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenjing Shi
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chong Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wuke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Dror MJ, Misa J, Yee DA, Chu AM, Yu RK, Chan BB, Aoyama LS, Chaparala AP, O'Connor SE, Tang Y. Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuad047. [PMID: 38140980 PMCID: PMC10995622 DOI: 10.1093/jimb/kuad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30-40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation. ONE SENTENCE SUMMARY An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.
Collapse
Affiliation(s)
- Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angela M Chu
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA
| | - Rachel K Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bradley B Chan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lauren S Aoyama
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali P Chaparala
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Zhang Y, Yuan M, Wu X, Zhang Q, Wang Y, Zheng L, Chiu T, Zhang H, Lan L, Wang F, Liao Y, Gong X, Yan S, Wang Y, Shen Y, Fu X. The construction and optimization of engineered yeast chassis for efficient biosynthesis of 8-hydroxygeraniol. MLIFE 2023; 2:438-449. [PMID: 38818263 PMCID: PMC10989129 DOI: 10.1002/mlf2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 06/01/2024]
Abstract
Microbial production of monoterpenoid indole alkaloids (MIAs) provides a sustainable and eco-friendly means to obtain compounds with high pharmaceutical values. However, efficient biosynthesis of MIAs in heterologous microorganisms is hindered due to low supply of key precursors such as geraniol and its derivative 8-hydroxygeraniol catalyzed by geraniol 8-hydroxylase (G8H). In this study, we developed a facile evolution platform to screen strains with improved yield of geraniol by using the SCRaMbLE system embedded in the Sc2.0 synthetic yeast and confirmed the causal role of relevant genomic targets. Through genome mining, we identified several G8H enzymes that perform much better than the commonly used CrG8H for 8-hydroxygeraniol production in vivo. We further showed that the N-terminus of these G8H enzymes plays an important role in cellular activity by swapping experiments. Finally, the combination of the engineered chassis, optimized biosynthesis pathway, and utilization of G8H led to the final strain with more than 30-fold improvement in producing 8-hydroxygeraniol compared with the starting strain. Overall, this study will provide insights into the construction and optimization of yeast cells for efficient biosynthesis of 8-hydroxygeraniol and its derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- BGI ResearchShenzhenChina
- BGI ResearchHangzhouChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | | | | | | | | | | | | | | | | | | | | | - Xuemei Gong
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | - Shirui Yan
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yun Wang
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yue Shen
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Xian Fu
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| |
Collapse
|
9
|
Salim V, Jarecki SA, Vick M, Miller R. Advances in Metabolic Engineering of Plant Monoterpene Indole Alkaloids. BIOLOGY 2023; 12:1056. [PMID: 37626942 PMCID: PMC10452178 DOI: 10.3390/biology12081056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Monoterpene indole alkaloids (MIAs) encompass a diverse family of over 3000 plant natural products with a wide range of medical applications. Further utilizations of these compounds, however, are hampered due to low levels of abundance in their natural sources, causing difficult isolation and complex multi-steps in uneconomical chemical syntheses. Metabolic engineering of MIA biosynthesis in heterologous hosts is attractive, particularly for increasing the yield of natural products of interest and expanding their chemical diversity. Here, we review recent advances and strategies which have been adopted to engineer microbial and plant systems for the purpose of generating MIAs and discuss the current issues and future developments of manufacturing MIAs by synthetic biology approaches.
Collapse
Affiliation(s)
- Vonny Salim
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Sara-Alexis Jarecki
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Marshall Vick
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71115, USA; (S.-A.J.); (M.V.)
| | - Ryan Miller
- School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA 70112, USA;
| |
Collapse
|
10
|
Shahsavarani M, Utomo JC, Kumar R, Paz-Galeano M, Garza-García JJO, Mai Z, Ro DK, Qu Y. Improved protein glycosylation enabled heterologous biosynthesis of monoterpenoid indole alkaloids and their unnatural derivatives in yeast. Metab Eng Commun 2023; 16:e00215. [PMID: 36569379 PMCID: PMC9772838 DOI: 10.1016/j.mec.2022.e00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
With over 3000 reported structures, monoterpenoid indole alkaloids (MIAs) constitute one of the largest alkaloid groups in nature, including the clinically important anticancer drug vinblastine and its semi-synthetic derivatives from Catharanthus roseus (Madagascar's periwinkle). With the elucidation of the complete 28-step biosynthesis for anhydrovinblastine, it is possible to investigate the heterologous production of vinblastine and other medicinal MIAs. In this study, we successfully expressed the flavoenzyme O-acetylstemmadenine oxidase in Saccharomyces cerevisiae (baker's yeast) by signal peptide modification, which is a vinblastine biosynthetic gene that has not been functionally expressed in this system. We also reported the simultaneous integration of ∼18 kb MIA biosynthetic gene cassettes as single copies into four genomic loci of baker's yeast by CRISPR-Cas9, which enabled the biosynthesis of vinblastine precursors catharanthine and tabersonine from the feedstocks secologanin and tryptamine. We further demonstrated the biosynthesis of fluorinated and hydroxylated catharanthine and tabersonine derivatives using our yeasts, which showed that the MIA biosynthesis accommodates unnatural substrates, and the system can be further explored to produce other complex MIAs.
Collapse
Affiliation(s)
| | | | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, AB, T2N 1N4, Canada
| | - Melina Paz-Galeano
- Department of Chemistry, University of New Brunswick, NB, E3B 5A3, Canada
| | | | - Zhan Mai
- Department of Chemistry, University of New Brunswick, NB, E3B 5A3, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, AB, T2N 1N4, Canada
| | - Yang Qu
- Department of Chemical Engineering, University of New Brunswick, NB, E3B 5A3, Canada
- Department of Chemistry, University of New Brunswick, NB, E3B 5A3, Canada
| |
Collapse
|
11
|
Ozber N, Yu L, Hagel JM, Facchini PJ. Strong Feedback Inhibition of Key Enzymes in the Morphine Biosynthetic Pathway from Opium Poppy Detectable in Engineered Yeast. ACS Chem Biol 2023; 18:419-430. [PMID: 36735832 DOI: 10.1021/acschembio.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Systematic screening of morphine pathway intermediates in engineered yeast revealed key biosynthetic enzymes displaying potent feedback inhibition: 3'-hydroxy-N-methylcoclaurine 4'-methyltransferase (4'OMT), which yields (S)-reticuline, and the coupled salutaridinol-7-O-acetyltransferase (SalAT) and thebaine synthase (THS2) enzyme system that produces thebaine. The addition of deuterated reticuline-d1 to a yeast strain able to convert (S)-norcoclaurine to (S)-reticuline showed reduced product accumulation in response to the feeding of all four successive pathway intermediates. Similarly, the addition of deuterated thebaine-d3 to a yeast strain able to convert salutaridine to thebaine showed reduced product accumulation from exogenous salutaridine or salutaridinol. In vitro analysis showed that reticuline is a noncompetitive inhibitor of 4'OMT, whereas thebaine exerts mixed inhibition on SalAT/THS2. In a yeast strain capable of de novo morphine biosynthesis, the addition of reticuline and thebaine resulted in the accumulation of several pathway intermediates. In contrast, morphine had no effect, suggesting that circumventing the interaction of reticuline and thebaine with 4'OMT and SalAT/THS2, respectively, could substantially increase opiate alkaloid titers in engineered yeast.
Collapse
Affiliation(s)
- Natali Ozber
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lisa Yu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
12
|
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab Eng 2022; 74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
13
|
Zhang Y, Cao X, Wang J, Tang F. Enhancement of linalool production in Saccharomyces cerevisiae by utilizing isopentenol utilization pathway. Microb Cell Fact 2022; 21:212. [PMID: 36243714 PMCID: PMC9571491 DOI: 10.1186/s12934-022-01934-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linalool is a monoterpenoid, also a vital silvichemical with commercial applications in cosmetics, flavoring ingredients, and medicines. Regulation of mevalonate (MVA) pathway metabolic flux is a common strategy to engineer Saccharomyces cerevisiae for efficient linalool production. However, metabolic regulation of the MVA pathway is complex and involves competition for central carbon metabolism, resulting in limited contents of target metabolites. RESULTS In this study, first, a truncated linalool synthase (t26AaLS1) from Actinidia arguta was selected for the production of linalool in S. cerevisiae. To simplify the complexity of the metabolic regulation of the MVA pathway and increase the flux of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), we introduced the two-step isopentenyl utilization pathway (IUP) into S. cerevisiae, which could produce large amounts of IPP/DMAPP. Further, the S. cerevisiae IDI1 (ecoding isopentenyl diphosphate delta-isomerase) and ERG20F96W-N127W (encoding farnesyl diphosphate synthase) genes were integrated into the yeast genome, combined with the strategies of copy number variation of the t26AaLS1 and ERG20F96W-N127W genes to increase the metabolic flux of the downstream IPP, as well as optimization of isoprenol and prenol concentrations, resulting in a 4.8-fold increase in the linalool titer. Eventually, under the optimization of carbon sources and Mg2+ addition, a maximum linalool titer of 142.88 mg/L was obtained in the two-phase extractive shake flask fermentation. CONCLUSIONS The results show that the efficient synthesis of linalool in S. cerevisiae could be achieved through a two-step pathway, gene expression adjustment, and optimization of culture conditions. The study may provide a valuable reference for the other monoterpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Yaoyao Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Xianshuang Cao
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Jin Wang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, International Centre for Bamboo and Rattan, No. 8 Futong Dongdajie, Wangjing, Beijing, 100102, Chaoyang District, China.
| |
Collapse
|
14
|
Abstract
Thousands of natural products are derived from the fused cyclopentane-pyran molecular scaffold nepetalactol. These natural products are used in an enormous range of applications that span the agricultural and medical industries. For example, nepetalactone, the oxidized derivative of nepetalactol, is known for its cat attractant properties as well as potential as an insect repellent. Most of these naturally occurring nepetalactol-derived compounds arise from only two out of the eight possible stereoisomers, 7S-cis-trans and 7R-cis-cis nepetalactols. Here we use a combination of naturally occurring and engineered enzymes to produce seven of the eight possible nepetalactol or nepetalactone stereoisomers. These enzymes open the possibilities for biocatalytic production of a broader range of iridoids, providing a versatile system for the diversification of this important natural product scaffold. Iridoid compounds are an important class of natural products. Here, the authors report on the discovery and engineering of nepetalactol-related short chain reductases and their application for the biosynthesis of nepetalactol or nepetalactone stereoisomers, as a versatile system for the production of the iridoid natural product scaffold.
Collapse
|
15
|
Davies ME, Tsyplenkov D, Martin VJJ. Engineering Yeast for De Novo Synthesis of the Insect Repellent Nepetalactone. ACS Synth Biol 2021; 10:2896-2903. [PMID: 34748704 DOI: 10.1021/acssynbio.1c00420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While nepetalactone, the active ingredient in catnip, is a potent insect repellent, its low in planta accumulation limits its commercial viability as an alternative repellent. Here we describe for the first time de novo nepetalactone synthesis in Saccharomyces cerevisiae, enabling sustainable and scalable production. Nepetalactone production required introducing eight exogenous genes including the cytochrome P450 geraniol-8-hydroxylase, the bottleneck of the heterologous pathway. Combinatorial assessment of geraniol-8-hydroxylase and cytochrome P450 reductase variants, and copy-number variations were used to overcome this bottleneck. We found that several reductases improved hydroxylation activity and increasing geraniol-8-hydroxylase gene copy number improved 8-hydroxygeraniol titers. The accumulation of an unwanted metabolite implied inefficient channeling of carbon through the pathway. With the native yeast old yellow enzymes previously shown to use monoterpene intermediates as substrates, both homologues were deleted. These deletions increased 8-hydroxygeraniol yield, resulting in 3.10 mg/L/OD600 of nepetalactone from simple sugar in microtiter plates. This optimized pathway will benefit the development of high yielding strains for the scale up production of nepetalactone.
Collapse
Affiliation(s)
- Meghan E. Davies
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Daniel Tsyplenkov
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Vincent J. J. Martin
- Department of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
16
|
Strictosidine synthase, an indispensable enzyme involved in the biosynthesis of terpenoid indole and β-carboline alkaloids. Chin J Nat Med 2021; 19:591-607. [PMID: 34419259 DOI: 10.1016/s1875-5364(21)60059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/21/2022]
Abstract
Terpenoid indole (TIAs) and β-carboline alkaloids (BCAs), such as suppressant reserpine, vasodilatory yohimbine, and antimalarial quinine, are natural compounds derived from strictosidine. These compounds can exert powerful pharmacological effects but be obtained from limited source in nature. the whole biosynthetic pathway of TIAs and BCAs, The Pictet-Spengler reaction catalyzed by strictosidine synthase (STR; EC: 4.3.3.2) is the rate-limiting step. Therefore, it is necessary to investigate their biosynthesis pathways, especially the role of STR, and related findings will support the biosynthetic generation of natural and unnatural compounds. This review summarizes the latest studies concerning the function of STR in TIA and BCA biosynthesis, and illustrates the compounds derived from strictosidine. The substrate specificity of STR based on its structure is also summarized. Proteins that contain six-bladed four-stranded β-propeller folds in many organisms, other than plants, are listed. The presence of these folds may lead to similar functions among organisms. The expression of STR gene can greatly influence the production of many compounds. STR is mainly applied to product various valuable drugs in plant cell suspension culture and biosynthesis in other carriers.
Collapse
|
17
|
Bat-Erdene U, Billingsley JM, Turner WC, Lichman BR, Ippoliti FM, Garg NK, O'Connor SE, Tang Y. Cell-Free Total Biosynthesis of Plant Terpene Natural Products using an Orthogonal Cofactor Regeneration System. ACS Catal 2021; 11:9898-9903. [PMID: 35355836 DOI: 10.1021/acscatal.1c02267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report the one-pot, cell-free enzymatic synthesis of the plant monoterpene nepetalactol starting from the readily available geraniol. A pair of orthogonal cofactor regeneration systems permitted NAD+-dependent geraniol oxidation followed by NADPH-dependent reductive cyclization without isolation of intermediates. The orthogonal cofactor regeneration system maintained a high ratio of NAD+ to NADH and a low ratio of NADP+ to NADPH. The overall reaction contains four biosynthetic enzymes, including a soluble P450; and five accessory and cofactor regeneration enzymes. Furthermore, addition of a NAD+-dependent dehydrogenase to the one-pot mixture led to ~1 g/L of nepetalactone, the active cat- attractant in catnip.
Collapse
Affiliation(s)
- Undramaa Bat-Erdene
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - William C Turner
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Lichman
- Centre for Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Francesca M Ippoliti
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Jiang G, Yao M, Wang Y, Xiao W, Yuan Y. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae. Metab Eng 2021; 66:51-59. [PMID: 33857581 DOI: 10.1016/j.ymben.2021.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/09/2023]
Abstract
Microbial production of monoterpenes has attracted increasing attention in recent years. Up to date, there are only few reports on the biosynthesis of the monoterpene alcohol citronellol that is widely used as fragrant and pharmaceutical intermediates. Here, we engineered Saccharomyces cerevisiae by employing a "push-pull-restrain" strategy to improve citronellol production based on the reduction of geraniol. Starting from a engineered geraniol-producing strain, different reductases were investigated and the best performing iridoid synthase from Catharanthus roseus (CrIS) resulted in 285.89 mg/L enantiomerically pure S-citronellol in shake flasks. Geranyl diphosphate (GPP), the most important precursor for monoterpenes, was enhanced by replacing the wild farnesyl diphosphate synthase (Erg20) with the mutant Erg20F96W, increasing the citronellol titer to 406.01 mg/L without negative influence on cell growth. Moreover, we employed synthetic protein scaffolds and protein fusion to colocalize four sequential enzymes to achieve better substrate channeling along with the deletion of an intermediate degradation pathway gene ATF1, which elevated the citronellol titer to 972.02 mg/L with the proportion of 97.8% of total monoterpenes in YPD medium. Finally, the engineered strain with complemented auxotrophic markers produced 8.30 g/L of citronellol by fed-batch fermentation, which was the highest citronellol titer reported to date. The multi-level engineering strategies developed here demonstrate the potential of monoterpenes overproduction in yeast, which can serve as a generally applicable platform for overproduction of other monoterpenes.
Collapse
Affiliation(s)
- Guozhen Jiang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Duan Y, Liu J, Du Y, Pei X, Li M. Aspergillus oryzae Biosynthetic Platform for de Novo Iridoid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2501-2511. [PMID: 33599481 DOI: 10.1021/acs.jafc.0c06563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The iridoids and their derivatives monoterpene indole alkaloids (MIAs) are two broad classes of plant-derived natural products with valuable pharmaceutical properties. However, the poor source limited their application. Nepetalactol, a common iridoid scaffold of MIAs, was heterologously produced in Saccharomyces cerevisiae. Although the optimization of nepetalactol production in S. cerevisiae was achieved by metabolic engineering, the inherent metabolic constraints impose a restriction on the production. Herein, we developed a high nepetalactol-producing Aspergillus oryzae platform strain. First, the co-expression of 5 nepetalactol biosynthetic genes, in a high isopentenyl pyrophosphate (IPP)-producing strain A. oryzae AK2, succeeded in the biosynthesis of nepetalactol. Second, the improvement of the IPP supply and the suppression of the byproduct citronellol formation were simultaneously achieved. Finally, the highest titer of nepetalactol of 7.2 mg/L was obtained with the engineered strain, after the optimization of the carbon source. To the best of our knowledge, this is the highest reported titer of nepetalactol in microbial cells. The developed A. oryzae strain represents an attractive biosynthetic platform host for the de novo production of iridoids and MIAs.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiawei Liu
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yun Du
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
Back to the plant: overcoming roadblocks to the microbial production of pharmaceutically important plant natural products. J Ind Microbiol Biotechnol 2020; 47:815-828. [PMID: 32772209 DOI: 10.1007/s10295-020-02300-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/30/2020] [Indexed: 01/26/2023]
Abstract
Microbial fermentation platforms offer a cost-effective and sustainable alternative to plant cultivation and chemical synthesis for the production of many plant-derived pharmaceuticals. Plant alkaloids, particularly benzylisoquinoline alkaloids and monoterpene indole alkaloids, and recently cannabinoids have become attractive targets for microbial biosynthesis owing to their medicinal importance. Recent advances in the discovery of pathway components, together with the application of synthetic biology tools, have facilitated the assembly of plant alkaloid and cannabinoid pathways in the microbial hosts Escherichia coli and Saccharomyces cerevisiae. This review highlights key aspects of these pathways in the framework of overcoming bottlenecks in microbial production to further improve end-product titers. We discuss the opportunities that emerge from a better understanding of the pathway components by further study of the plant, and strategies for generation of new and advanced medicinal compounds.
Collapse
|
21
|
Awadasseid A, Li W, Liu Z, Qiao C, Pang J, Zhang G, Luo Y. Characterization of Camptotheca acuminata 10-hydroxygeraniol oxidoreductase and iridoid synthase and their application in biological preparation of nepetalactol in Escherichia coli featuring NADP + - NADPH cofactors recycling. Int J Biol Macromol 2020; 162:1076-1085. [PMID: 32599240 DOI: 10.1016/j.ijbiomac.2020.06.223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
Nepetalactol, an iridoid with four chiral carbons, is a crucial component of aphid sex pheromones that have been employed with great success to control the insect-related diseases. Despite of agricultural usage as end products, iridoids are fundamental biosynthetic intermediates for pharmaceutically important monoterpenoid indole alkaloids such as camptothecin (CAM) and vinca alkaloids. Herein we characterized 10-hydroxygeraniol oxidoreductase (10HGO) and iridoid synthase (IS) from Camptotheca acuminata, a CAM-producing plant, and reported their application in biological preparation of nepetalactol. Ca10HGO and CaIS were respectively cloned from C. acuminata, overexpressed in Escherichia coli, and purified to homogeneity. Ca10HGO catalyzes the oxidation of 10-hydroxygeraniol into 10-oxogeranial, in which NADP+ was reduced to NADPH. CaIS catalyzes nepetalactol formation from 10-oxogeranial using NADPH cofactor. The net outcome of the two reactions generate nepetalactol from 10-hydroxygeraniol efficiently, indicating NADP+ - NADPH recycling. Ca10HGO and CaIS were co-overexpressed in E. coli under optimized fermentation conditions to prepare cell-based catalysts that catalyze the conversion of 10-hydroxygeraniol into nepetalactol. The present work shows the enzymatic conversion of 10-hydroxygeraniol into nepetalactol involved in CAM biosynthesis. Co-overexpression of Ca10HGO and CaIS in E. coli is an alternative valuable cell-based biotransformation process with regenerating recycling of NADP+ - NADPH cofactors for nepetalactol preparation.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Wei Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China
| | - Zhan Liu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Chong Qiao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Jing Pang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China
| | - Yinggang Luo
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, 9 Section 4, Renmin Road South, Chengdu 610041, People's Republic of China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.
| |
Collapse
|
22
|
Fabris M, George J, Kuzhiumparambil U, Lawson CA, Jaramillo-Madrid AC, Abbriano RM, Vickers CE, Ralph P. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synth Biol 2020; 9:598-612. [PMID: 32032487 DOI: 10.1021/acssynbio.9b00455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom Phaeodactylum tricornutum, for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that P. tricornutum, unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered P. tricornutum through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, P. tricornutum reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of P. tricornutum endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of P. tricornutum as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
23
|
Fu N, Yang ZL, Pauchet Y, Paetz C, Brandt W, Boland W, Burse A. A cytochrome P450 from the mustard leaf beetles hydroxylates geraniol, a key step in iridoid biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103212. [PMID: 31425853 DOI: 10.1016/j.ibmb.2019.103212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Larvae of the leaf beetle Phaedon cochleariae synthesize the iridoid chysomelidial via the mevalonate pathway to repel predators. The normal terpenoid biosynthesis is integrated into the dedicated defensive pathway by the ω-hydroxylation of geraniol to (2E,6E)-2,6-dimethylocta-2,6-diene-1,8-diol (ω-OH-geraniol). Here we identify and characterize the P450 monooxygenase CYP6BH5 as the geraniol hydroxylase using integrated transcriptomics, proteomics and RNA interference (RNAi). In the fat body, 73 cytochrome P450s were identified, and CYP6BH5 was among those that were expressed specifically in fat body. Double stranded RNA mediated knockdown of CYP6BH5 led to a significant reduction of ω-hydroxygeraniol glucoside in the hemolymph and, later, of the chrysomelidial in the defensive secretion. Heterologously expressed CYP6BH5 converted geraniol to ω-OH-geraniol. In addition to geraniol, CYP6BH5 also catalyzes hydroxylation of other monoterpenols, such as nerol and citronellol to the corresponding α,ω-dihydroxy compounds.
Collapse
Affiliation(s)
- Nanxia Fu
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany
| | - Zhi-Ling Yang
- Research Group Sequestration and Detoxification in Insects, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany
| | - Yannick Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany.
| | - Antje Burse
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, 07745, Jena, Germany; Department of Medical Technology and Biotechnology, Ernst Abbe Hochschule Jena, Carl Zeiss Promenade 2, 07745, Jena, Germany.
| |
Collapse
|
24
|
Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, Tang Y. Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng 2019; 55:76-84. [PMID: 31226348 PMCID: PMC6717016 DOI: 10.1016/j.ymben.2019.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
Monoterpene indole alkaloids (MIAs) from plants encompass a broad class of structurally complex and medicinally valuable natural products. MIAs are biologically derived from the universal precursor strictosidine. Although the strictosidine biosynthetic pathway has been identified and reconstituted, extensive work is required to optimize production of strictosidine and its precursors in yeast. In this study, we engineered a fully integrated and plasmid-free yeast strain with enhanced production of the monoterpene precursor geraniol. The geraniol biosynthetic pathway was targeted to the mitochondria to protect the GPP pool from consumption by the cytosolic ergosterol pathway. The mitochondrial geraniol producer showed a 6-fold increase in geraniol production compared to cytosolic producing strains. We further engineered the monoterpene-producing strain to synthesize the next intermediates in the strictosidine pathway: 8-hydroxygeraniol and nepetalactol. Integration of geraniol hydroxylase (G8H) from Catharanthus roseus led to essentially quantitative conversion of geraniol to 8-hydroxygeraniol at a titer of 227 mg/L in a fed-batch fermentation. Further introduction of geraniol oxidoreductase (GOR) and iridoid synthase (ISY) from C. roseus and tuning of the relative expression levels resulted in the first de novo nepetalactol production. The strategies developed in this work can facilitate future strain engineering for yeast production of later intermediates in the strictosidine biosynthetic pathway.
Collapse
Affiliation(s)
- Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Jenette G Creso
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Vidya Subrahmanyam
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
25
|
Moazami E, Perry JM, Soffer G, Husser MC, Shih SCC. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays. Anal Chem 2019; 91:5159-5168. [DOI: 10.1021/acs.analchem.8b05754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ehsan Moazami
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - James M. Perry
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Guy Soffer
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Mathieu C. Husser
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Montréal, Québec H3G1M8, Canada
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B1R6, Canada
- Department of Biology, Concordia University, Montréal, Québec H4B1R6, Canada
| |
Collapse
|
26
|
Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat Chem Biol 2018; 15:71-79. [PMID: 30531909 DOI: 10.1038/s41589-018-0185-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023]
Abstract
Terpene synthases typically form complex molecular scaffolds by concerted activation and cyclization of linear starting materials in a single enzyme active site. Here we show that iridoid synthase, an atypical reductive terpene synthase, catalyzes the activation of its substrate 8-oxogeranial into a reactive enol intermediate, but does not catalyze the subsequent cyclization into nepetalactol. This discovery led us to identify a class of nepetalactol-related short-chain dehydrogenase enzymes (NEPS) from catmint (Nepeta mussinii) that capture this reactive intermediate and catalyze the stereoselective cyclisation into distinct nepetalactol stereoisomers. Subsequent oxidation of nepetalactols by NEPS1 provides nepetalactones, metabolites that are well known for both insect-repellent activity and euphoric effects in cats. Structural characterization of the NEPS3 cyclase reveals that it binds to NAD+ yet does not utilize it chemically for a non-oxidoreductive formal [4 + 2] cyclization. These discoveries will complement metabolic reconstructions of iridoid and monoterpene indole alkaloid biosynthesis.
Collapse
|
27
|
Abstract
An operationally simple protocol for the conversion of geranyl acetate to 8-hydroxygeraniol is reported. The convenient two-step procedure relies on an efficient, chemo- and regioselective SeO2-promoted oxidation, followed by straightforward deacetylation. This facile means to prepare 8-hydroxygeraniol is expected to enable biosynthetic studies pertaining to thousands of monoterpene indole alkaloids.
Collapse
Affiliation(s)
- Francesca M Ippoliti
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Joyann S Barber
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Yi Tang
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
28
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
29
|
Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, Chu A, Garg NK, Tang Y. Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab Eng 2017; 44:117-125. [PMID: 28939278 DOI: 10.1016/j.ymben.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Monoterpene indole alkaloids (MIAs) represent a structurally diverse, medicinally essential class of plant derived natural products. The universal MIA building block strictosidine was recently produced in the yeast Saccharomyces cerevisiae, setting the stage for optimization of microbial production. However, the irreversible reduction of pathway intermediates by yeast enzymes results in a non-recoverable loss of carbon, which has a strong negative impact on metabolic flux. In this study, we identified and engineered the determinants of biocatalytic selectivity which control flux towards the iridoid scaffold from which all MIAs are derived. Development of a bioconversion based production platform enabled analysis of the metabolic flux and interference around two critical steps in generating the iridoid scaffold: oxidation of 8-hydroxygeraniol to the dialdehyde 8-oxogeranial followed by reductive cyclization to form nepetalactol. In vitro reconstitution of previously uncharacterized shunt pathways enabled the identification of two distinct routes to a reduced shunt product including endogenous 'ene'-reduction and non-productive reduction by iridoid synthase when interfaced with endogenous alcohol dehydrogenases. Deletion of five genes involved in α,β-unsaturated carbonyl metabolism resulted in a 5.2-fold increase in biocatalytic selectivity of the desired iridoid over reduced shunt product. We anticipate that our engineering strategies will play an important role in the development of S. cerevisiae for sustainable production of iridoids and MIAs.
Collapse
Affiliation(s)
- John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joyann S Barber
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| | - Joe Horecka
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Angela Chu
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, United States; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States; Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
30
|
Ehrenworth AM, Peralta-Yahya P. Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat Chem Biol 2017; 13:249-258. [DOI: 10.1038/nchembio.2308] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
|
31
|
Narcross L, Bourgeois L, Fossati E, Burton E, Martin VJJ. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast. ACS Synth Biol 2016; 5:1505-1518. [PMID: 27442619 DOI: 10.1021/acssynbio.6b00119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.
Collapse
Affiliation(s)
- Lauren Narcross
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Leanne Bourgeois
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | | | - Euan Burton
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Vincent J. J. Martin
- Department
of Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre
for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
32
|
Nakabayashi R, Saito K. Ultrahigh resolution metabolomics for S-containing metabolites. Curr Opin Biotechnol 2016; 43:8-16. [PMID: 27459328 DOI: 10.1016/j.copbio.2016.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/09/2023]
Abstract
The advent of the genome-editing era greatly increases the opportunities for synthetic biology research that aims to enhance production of potentially useful bioactive metabolites in heterologous hosts. A wide variety of sulfur (S)-containing metabolites (S-metabolites) are known to possess bioactivities and health-promoting properties, but finding them and their chemical assignment using mass spectrometry-based metabolomics has been difficult. In this review, we highlight recent advances on the targeted metabolomic analysis of S-metabolites (S-omics) in plants using ultrahigh resolution mass spectrometry. The use of exact mass and signal intensity differences between 32S-containing monoisotopic ions and counterpart 34S isotopic ions exploits an entirely new method to characterize S-metabolites. Finally, we discuss the availability of S-omics for synthetic biology.
Collapse
Affiliation(s)
- Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|