1
|
Marillonnet S, Werner S. Golden Gate Cloning of Multigene Constructs Using the Modular Cloning System MoClo. Methods Mol Biol 2025; 2850:21-39. [PMID: 39363064 DOI: 10.1007/978-1-0716-4220-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for construct engineering for biological research and synthetic biology. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the modular cloning system MoClo. Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Collapse
Affiliation(s)
- Sylvestre Marillonnet
- Leibniz-Institut für Pflanzenbiochemie, Department of Cell and Metabolic Biology, Halle, Germany.
| | | |
Collapse
|
2
|
Valero AM, Prins RC, de Vroet T, Billerbeck S. Combining Oligo Pools and Golden Gate Cloning to Create Protein Variant Libraries or Guide RNA Libraries for CRISPR Applications. Methods Mol Biol 2025; 2850:265-295. [PMID: 39363077 DOI: 10.1007/978-1-0716-4220-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Oligo pools are array-synthesized, user-defined mixtures of single-stranded oligonucleotides that can be used as a source of synthetic DNA for library cloning. While currently offering the most affordable source of synthetic DNA, oligo pools also come with limitations such as a maximum synthesis length (approximately 350 bases), a higher error rate compared to alternative synthesis methods, and the presence of truncated molecules in the pool due to incomplete synthesis. Here, we provide users with a comprehensive protocol that details how oligo pools can be used in combination with Golden Gate cloning to create user-defined protein mutant libraries, as well as single-guide RNA libraries for CRISPR applications. Our methods are optimized to work within the Yeast Toolkit Golden Gate scheme, but are in principle compatible with any other Golden Gate-based modular cloning toolkit and extendable to other restriction enzyme-based cloning methods beyond Golden Gate. Our methods yield high-quality, affordable, in-house variant libraries.
Collapse
Affiliation(s)
- Alicia Maciá Valero
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Rianne C Prins
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Thijs de Vroet
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
3
|
Grützner R, Marillonnet S. Golden Gate Cloning of MoClo Standard Parts. Methods Mol Biol 2025; 2850:1-19. [PMID: 39363063 DOI: 10.1007/978-1-0716-4220-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Efficient DNA assembly methods are an essential prerequisite in the field of synthetic biology. Modular cloning systems, which rely on Golden Gate cloning for DNA assembly, are designed to facilitate assembly of multigene constructs from libraries of standard parts through a series of streamlined one-pot assembly reactions. Standard parts consist of the DNA sequence of a genetic element of interest such as a promoter, coding sequence, or terminator, cloned in a plasmid vector. Standard parts for the modular cloning system MoClo, also called level 0 modules, must be flanked by two BsaI restriction sites in opposite orientations and should not contain internal sequences for two type IIS restriction sites, BsaI and BpiI, and optionally for a third type IIS enzyme, BsmBI. We provide here a detailed protocol for cloning of level 0 modules. This protocol requires the following steps: (1) defining the type of part that needs to be cloned, (2) designing primers for amplification, (3) performing polymerase chain reaction (PCR) amplification, (4) cloning of the fragments using Golden Gate cloning, and finally (5) sequencing of the part. For large standard parts, it is preferable to first clone sub-parts as intermediate level -1 constructs. These sub-parts are sequenced individually and are then further assembled to make the final level 0 module.
Collapse
Affiliation(s)
- Ramona Grützner
- Leibniz Institut of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany
| | - Sylvestre Marillonnet
- Leibniz Institut of Plant Biochemistry, Department of Cell and Metabolic Biology, Halle, Germany.
| |
Collapse
|
4
|
Bryant JA, Wright RC. Biofoundry-Assisted Golden Gate Cloning with AssemblyTron. Methods Mol Biol 2025; 2850:133-147. [PMID: 39363070 DOI: 10.1007/978-1-0716-4220-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Golden Gate assembly is a requisite method in synthetic biology that facilitates critical conventions such as genetic part abstraction and rapid prototyping. However, compared to robotic implementation, manual Golden Gate implementation is cumbersome, error-prone, and inconsistent for complex assembly designs. AssemblyTron is an open-source python package that provides an affordable automation solution using open-source OpenTrons OT-2 lab robots. Automating Golden Gate assembly with AssemblyTron can reduce failure-rate, resource consumption, and training requirements for building complex DNA constructs, as well as indexed and combinatorial libraries. Here, we dissect a panel of upgrades to AssemblyTron's Golden Gate assembly capabilities, which include Golden Gate assembly into modular cloning part vectors, error-prone polymerase chain reaction (PCR) combinatorial mutant library assembly, and modular cloning indexed plasmid library assembly. These upgrades enable a broad pool of users with varying levels of experience to readily implement advanced Golden Gate applications using low-cost, open-source lab robotics.
Collapse
Affiliation(s)
- John A Bryant
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Scoville S, Chiasson DM. Assembling DNA Plasmids with the Multi-Kingdom (MK) Cloning System. Methods Mol Biol 2025; 2850:467-479. [PMID: 39363088 DOI: 10.1007/978-1-0716-4220-7_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The Golden Gate cloning technique is used to assemble DNA parts into higher-order assemblies. Individual parts containing compatible overhangs generated by type IIS restriction enzymes are joined together using DNA ligase. The technique enables users to assemble custom transcription units (TUs) for a wide array of experimental assays. Several Golden Gate cloning systems have been developed; however, they are typically used with a narrow range of organisms. Here we describe the Multi-Kingdom (MK) cloning system that allows users to generate DNA plasmids for use in a broad range of organisms.
Collapse
Affiliation(s)
- Sarina Scoville
- Department of Biology, Saint Mary's University, Halifax, Canada
| | - David M Chiasson
- Department of Biology, Saint Mary's University, Halifax, Canada.
| |
Collapse
|
6
|
Lehr FX, Gaizauskaite A, Lipińska KE, Gilles S, Sahoo A, Inckemann R, Niederholtmeyer H. Modular Golden Gate Assembly of Linear DNA Templates for Cell-Free Prototyping. Methods Mol Biol 2025; 2850:197-217. [PMID: 39363073 DOI: 10.1007/978-1-0716-4220-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cell-free transcription and translation (TXTL) systems have emerged as a powerful tool for testing genetic regulatory elements and circuits. Cell-free prototyping can dramatically accelerate the design-build-test-learn cycle of new functions in synthetic biology, in particular when quick-to-assemble linear DNA templates are used. Here, we describe a Golden-Gate-assisted, cloning-free workflow to rapidly produce linear DNA templates for TXTL reactions by assembling transcription units from basic genetic parts of a modular cloning toolbox. Functional DNA templates composed of multiple parts such as promoter, ribosomal binding site (RBS), coding sequence, and terminator are produced in vitro in a one-pot Golden Gate assembly reaction followed by polymerase chain reaction (PCR) amplification. We demonstrate assembly, cell-free testing of promoter and RBS combinations, as well as characterization of a repressor-promoter pair. By eliminating time-consuming transformation and cloning steps in cells and by taking advantage of modular cloning toolboxes, our cell-free prototyping workflow can produce data for large numbers of new assembled constructs within a single day.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Aukse Gaizauskaite
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Katarzyna Elżbieta Lipińska
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Sara Gilles
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Arpita Sahoo
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - René Inckemann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrike Niederholtmeyer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
7
|
Laborda-Mansilla J, García-Ruiz E. Advancements in Golden Gate Cloning: A Comprehensive Review. Methods Mol Biol 2025; 2850:481-500. [PMID: 39363089 DOI: 10.1007/978-1-0716-4220-7_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Researchers have dedicated efforts to refining genetic part assembly techniques, responding to the demand for complex DNA constructs. The optimization efforts, targeting enhanced efficiency, fidelity, and modularity, have yielded streamlined protocols. Among these, Golden Gate cloning has gained prominence, offering a modular and hierarchical approach for constructing complex DNA fragments. This method is instrumental in establishing a repository of reusable parts, effectively reducing the costs and proving highly valuable for high-throughput DNA assembly projects. In this review, we delve into the main protocol of Golden Gate cloning, providing refined insights to enhance protocols and address potential challenges. Additionally, we perform a thorough evaluation of the primary modular cloning toolkits adopted by the scientific community. The discussion includes an exploration of recent advances and challenges in the field, providing a comprehensive overview of the current state of Golden Gate cloning.
Collapse
Affiliation(s)
- Jesús Laborda-Mansilla
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain
| | - Eva García-Ruiz
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, ICP-CSIC, Madrid, Spain.
| |
Collapse
|
8
|
Lai HE, Kennedy A, Tanner L, Bartram EA, Mei Chee S, Freemont PS, Moore SJ. Biosynthesis of Arcyriaflavin F from Streptomyces venezuelae ATCC 10712. Chembiochem 2024; 25:e202400357. [PMID: 39036938 DOI: 10.1002/cbic.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Indolocarbazoles are natural products with a broad spectrum of bioactivity. A distinct feature of indolocarbazole biosynthesis is the modification of the indole and maleimide rings by regioselective tailoring enzymes. Here, we study a new indolocarbazole variant, which is encoded by the acfXODCP genes from Streptomyces venezuelae ATCC 10712. We characterise the pathway by expressing the acfXODCP genes in Streptomyces coelicolor, which led to the production of a C-5/C-5'-dihydroxylated indolocarbazole, which we assign as arcyriaflavin F. We also show that a flavin-dependent monooxygenase AcfX catalyses the C-5/C-5' dihydroxylation of the unsubstituted arcyriaflavin A into arcyriaflavin F. Interestingly, AcfX shares homology to EspX from erdasporine A biosynthesis, which instead catalyses a single C-6 indolocarbazole hydroxylation. In summary, we report a new indolocarbazole biosynthetic pathway and a regioselective C-5 indole ring tailoring enzyme AcfX.
Collapse
Affiliation(s)
- Hung-En Lai
- Section of Structural and Synthetic Biology, Centre for Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Agata Kennedy
- School of Biosciences, University of Kent, Canterbury, CT7 2NJ, UK
| | - Lewis Tanner
- School of Biological and Behavioural Science, Queen Mary University of London, London, E1 4NS, UK
| | - Emma A Bartram
- School of Biological and Behavioural Science, Queen Mary University of London, London, E1 4NS, UK
| | - Soo Mei Chee
- Section of Structural and Synthetic Biology, Centre for Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Centre for Synthetic Biology, Department of Infectious Disease, Imperial College London, London, SW7 2AZ, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
- UK Innovation and Knowledge Centre for Synthetic Biology (SynbiCITE) and the London Biofoundry, Imperial College Translation & Innovation Hub, Imperial College London, White City Campus 80 Wood Lane, London, W12 0BZ, UK
| | - Simon J Moore
- School of Biological and Behavioural Science, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
9
|
Roehner N, Roberts J, Lapets A, Gould D, Akavoor V, Qin L, Gordon DB, Voigt C, Densmore D. GOLDBAR: A Framework for Combinatorial Biological Design. ACS Synth Biol 2024; 13:2899-2911. [PMID: 39162314 DOI: 10.1021/acssynbio.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
With the rise of new DNA part libraries and technologies for assembling DNA, synthetic biologists are increasingly constructing and screening combinatorial libraries to optimize their biological designs. As combinatorial libraries are used to generate data on design performance, new rules for composing biological designs will emerge. Most formal frameworks for combinatorial design, however, do not yet support formal comparison of design composition, which is needed to facilitate automated analysis and machine learning in massive biological design spaces. To address this need, we introduce a combinatorial design framework called GOLDBAR. Compared with existing frameworks, GOLDBAR enables synthetic biologists to intersect and merge the rules for entire classes of biological designs to extract common design motifs and infer new ones. Here, we demonstrate the application of GOLDBAR to refine/validate design spaces for TetR-homologue transcriptional logic circuits, verify the assembly of a partial nif gene cluster, and infer novel gene clusters for the biosynthesis of rebeccamycin. We also discuss how GOLDBAR could be used to facilitate grammar-based machine learning in synthetic biology.
Collapse
Affiliation(s)
- Nicholas Roehner
- RTX BBN Technologies, Cambridge, Massachusetts 02138, United States
| | - James Roberts
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | | | - Dany Gould
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Vidya Akavoor
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - Lucy Qin
- Hariri Institute for Computing, Boston University, Boston, Massachusetts 02215, United States
| | - D Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Douglas Densmore
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Li X, Schönberg PY, Wucherpfennig T, Hinze C, Sulaj F, Henle T, Mascher T. Development of a Golden Gate Assembly-Based Genetic Toolbox for Lactiplantibacillus plantarum and Its Application for Engineering Monoterpenoid Biosynthesis. ACS Synth Biol 2024; 13:2764-2779. [PMID: 39254046 DOI: 10.1021/acssynbio.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Lactiplantibacillus plantarum is a food-grade lactic acid bacterium widely used in the food and beverage industry. Recently, this probiotic organism has been applied as a biofactory for the production of pharmaceutical and food-related compounds, but existing promoters and expression vectors for the genetic engineering of L. plantarum rely on inefficient cloning strategies and are usually not well-characterized. We therefore developed a modular and standardized Golden Gate Assembly-based toolbox for the de novo assembly of shuttle vectors from Escherichia coli to L. plantarum. A collection of the most relevant genetic parts, e.g., different origins of replication and promoters, was incorporated in our toolbox and thoroughly characterized by flow cytometry and the fluorescence assay. Standardized fusion sites allow combining the genetic part freely into a plasmid in one step. This approach allows for the high-throughput assembly of numerous constructs in a standardized genetic context, thus improving the efficiency and predictability of metabolic engineering in L. plantarum. Using our toolbox, we were able to produce the aroma compounds linalool and geraniol in L. plantarum by extending its native mevalonate pathway with plant-derived monoterpenoid synthases.
Collapse
Affiliation(s)
- Xiangang Li
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Pascal Y Schönberg
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Tabea Wucherpfennig
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Christoph Hinze
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Flavia Sulaj
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| | - Thomas Henle
- Department of Food Chemistry, Technische Universität Dresden, Dresden 01069, Germany
| | - Thorsten Mascher
- Chair of General Microbiology, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
11
|
Masson FM, Káradóttir S, van der Lans SPA, Doorduijn DJ, de Haas CJC, Rooijakkers SHM, Bardoel BW. Klebsiella LPS O1-antigen prevents complement-mediated killing by inhibiting C9 polymerization. Sci Rep 2024; 14:20701. [PMID: 39237647 PMCID: PMC11377433 DOI: 10.1038/s41598-024-71487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
The Gram-negative bacterium Klebsiella pneumoniae is an important human pathogen. Its treatment has been complicated by the emergence of multi-drug resistant strains. The human complement system is an important part of our innate immune response that can directly kill Gram-negative bacteria by assembling membrane attack complex (MAC) pores into the bacterial outer membrane. To resist this attack, Gram-negative bacteria can modify their lipopolysaccharide (LPS). Especially the decoration of the LPS outer core with the O-antigen polysaccharide has been linked to increased bacterial survival in serum, but not studied in detail. In this study, we characterized various clinical Klebsiella pneumoniae isolates and show that expression of the LPS O1-antigen correlates with resistance to complement-mediated killing. Mechanistic data reveal that the O1-antigen does not inhibit C3b deposition and C5 conversion. In contrast, we see more efficient formation of C5a, and deposition of C6 and C9 when an O-antigen is present. Further downstream analyses revealed that the O1-antigen prevents correct insertion and polymerization of the final MAC component C9 into the bacterial membrane. Altogether, we show that the LPS O1-antigen is a key determining factor for complement resistance by K. pneumoniae and provide insights into the molecular basis of O1-mediated MAC evasion.
Collapse
Affiliation(s)
- Frerich M Masson
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Salvör Káradóttir
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Dennis J Doorduijn
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Chen HH, Zheng QX, Yu F, Xie SR, Jiang JG. Development of a chloroplast expression system for Dunaliella salina. Enzyme Microb Technol 2024; 179:110464. [PMID: 38850682 DOI: 10.1016/j.enzmictec.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Dunaliella salina is an innovative expression system due to its distinct advantages such as high salt tolerance, low susceptibility to contamination, and the absence of the cell wall. While nuclear transformation has been extensively studied, research on D. salina chloroplast transformation remains in the preliminary stages. In this study, we established an efficient chloroplast expression system for D. salina using Golden Gate assembly. We developed a D. salina toolkit comprising essential components such as chloroplast-specific promoters, terminators, homologous fragments, and various vectors. We confirmed its functionality by expressing the EGFP protein. Moreover, we detailed the methodology of the entire construction process. This expression system enables the specific targeting of foreign genes through simple homologous recombination, resulting in stable expression in chloroplasts. The toolkit achieved a relatively high transformation efficiency within a shorter experimental cycle. Consequently, the construction and utilization of this toolkit have the potential to enhance the efficiency of transgenic engineering in D. salina and advance the development of microalgal biofactories.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Fan Yu
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Shan-Rong Xie
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
Hurt R, Jin Z, Soufi M, Wong KK, Sawyer DP, Shen HK, Dutka P, Deshpande R, Zhang R, Mittelstein DR, Shapiro MG. Directed Evolution of Acoustic Reporter Genes Using High-Throughput Acoustic Screening. ACS Synth Biol 2024; 13:2215-2226. [PMID: 38981096 PMCID: PMC11264329 DOI: 10.1021/acssynbio.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024]
Abstract
A major challenge in the fields of biological imaging and synthetic biology is noninvasively visualizing the functions of natural and engineered cells inside opaque samples such as living animals. One promising technology that addresses this limitation is ultrasound (US), with its penetration depth of several cm and spatial resolution on the order of 100 μm. Within the past decade, reporter genes for US have been introduced and engineered to link cellular functions to US signals via heterologous expression in commensal bacteria and mammalian cells. These acoustic reporter genes (ARGs) represent a novel class of genetically encoded US contrast agent, and are based on air-filled protein nanostructures called gas vesicles (GVs). Just as the discovery of fluorescent proteins was followed by the improvement and diversification of their optical properties through directed evolution, here we describe the evolution of GVs as acoustic reporters. To accomplish this task, we establish high-throughput, semiautomated acoustic screening of ARGs in bacterial cultures and use it to screen mutant libraries for variants with increased nonlinear US scattering. Starting with scanning site saturation libraries for two homologues of the primary GV structural protein, GvpA/B, two rounds of evolution resulted in GV variants with 5- and 14-fold stronger acoustic signals than the parent proteins. We anticipate that this and similar approaches will help high-throughput protein engineering play as large a role in the development of acoustic biomolecules as it has for their fluorescent counterparts.
Collapse
Affiliation(s)
- Robert
C. Hurt
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Zhiyang Jin
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Mohamed Soufi
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Katie K. Wong
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel P. Sawyer
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Hao K. Shen
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Przemysław Dutka
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Ramya Deshpande
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Ruby Zhang
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - David R. Mittelstein
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Mikhail G. Shapiro
- Division
of Biology and Biological Engineering, Andrew and Peggy Cherng Department
of Medical Engineering, Division of Chemistry and Chemical Engineering, Howard Hughes Medical
Institute, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
14
|
Brychcy M, Nguyen B, Tierney GA, Casula P, Kokodynski A, Godoy VG. The metabolite vanillic acid regulates Acinetobacter baumannii surface attachment. Mol Microbiol 2024; 121:833-849. [PMID: 38308563 DOI: 10.1111/mmi.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/05/2024]
Abstract
The nosocomial bacterium Acinetobacter baumannii is protected from antibiotic treatment by acquiring antibiotic resistances and by forming biofilms. Cell attachment, one of the first steps in biofilm formation, is normally induced by environmental metabolites. We hypothesized that vanillic acid (VA), the oxidized form of vanillin and a widely available metabolite, may play a role in A. baumannii cell attachment. We first discovered that A. baumannii actively breaks down VA through the evolutionarily conserved vanABKP genes. These genes are under the control of the repressor VanR, which we show binds directly to VanR binding sites within the vanABKP genes bidirectional promoter. VA in turn counteracts VanR inhibition. We identified a VanR binding site and searched for it throughout the genome, especially in pili encoding promoter genes. We found a VanR binding site in the pilus encoding csu operon promoter and showed that VanR binds specifically to it. As expected, a strain lacking VanR overproduces Csu pili and makes robust biofilms. Our study uncovers the role that VA plays in facilitating the attachment of A. baumannii cells to surfaces, a crucial step in biofilm formation. These findings provide valuable insights into a previously obscure catabolic pathway with significant clinical implications.
Collapse
Affiliation(s)
- Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Pranav Casula
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Alexis Kokodynski
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hurt RC, Jin Z, Soufi M, Wong KK, Sawyer DP, Shen HK, Dutka P, Deshpande R, Zhang R, Mittelstein DR, Shapiro MG. Directed Evolution of Acoustic Reporter Genes Using High-Throughput Acoustic Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.30.587094. [PMID: 38617214 PMCID: PMC11014471 DOI: 10.1101/2024.03.30.587094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A major challenge in the fields of biological imaging and synthetic biology is noninvasively visualizing the functions of natural and engineered cells inside opaque samples such as living animals. One promising technology that addresses this limitation is ultrasound (US), with its penetration depth of several cm and spatial resolution on the order of 100 µm. 1 Within the past decade, reporter genes for US have been introduced 2,3 and engineered 4,5 to link cellular functions to US signals via heterologous expression in commensal bacteria and mammalian cells. These acoustic reporter genes (ARGs) represent a novel class of genetically encoded US contrast agent, and are based on air-filled protein nanostructures called gas vesicles (GVs). 6 Just as the discovery of fluorescent proteins was followed by the improvement and diversification of their optical properties through directed evolution, here we describe the evolution of GVs as acoustic reporters. To accomplish this task, we establish high-throughput, semi-automated acoustic screening of ARGs in bacterial cultures and use it to screen mutant libraries for variants with increased nonlinear US scattering. Starting with scanning site saturation libraries for two homologs of the primary GV structural protein, GvpA/B, two rounds of evolution resulted in GV variants with 5- and 14-fold stronger acoustic signals than the parent proteins. We anticipate that this and similar approaches will help high-throughput protein engineering play as large a role in the development of acoustic biomolecules as it has for their fluorescent counterparts.
Collapse
|
16
|
Buson F, Gao Y, Wang B. Genetic Parts and Enabling Tools for Biocircuit Design. ACS Synth Biol 2024; 13:697-713. [PMID: 38427821 DOI: 10.1021/acssynbio.3c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Synthetic biology aims to engineer biological systems for customized tasks through the bottom-up assembly of fundamental building blocks, which requires high-quality libraries of reliable, modular, and standardized genetic parts. To establish sets of parts that work well together, synthetic biologists created standardized part libraries in which every component is analyzed in the same metrics and context. Here we present a state-of-the-art review of the currently available part libraries for designing biocircuits and their gene expression regulation paradigms at transcriptional, translational, and post-translational levels in Escherichia coli. We discuss the necessary facets to integrate these parts into complex devices and systems along with the current efforts to catalogue and standardize measurement data. To better display the range of available parts and to facilitate part selection in synthetic biology workflows, we established biopartsDB, a curated database of well-characterized and useful genetic part and device libraries with detailed quantitative data validated by the published literature.
Collapse
Affiliation(s)
- Felipe Buson
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, U.K
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Sechkar K, Steel H, Perrino G, Stan GB. A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits. Nat Commun 2024; 15:1981. [PMID: 38438391 PMCID: PMC10912777 DOI: 10.1038/s41467-024-46410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
Within a cell, synthetic and native genes compete for expression machinery, influencing cellular process dynamics through resource couplings. Models that simplify competitive resource binding kinetics can guide the design of strategies for countering these couplings. However, in bacteria resource availability and cell growth rate are interlinked, which complicates resource-aware biocircuit design. Capturing this interdependence requires coarse-grained bacterial cell models that balance accurate representation of metabolic regulation against simplicity and interpretability. We propose a coarse-grained E. coli cell model that combines the ease of simplified resource coupling analysis with appreciation of bacterial growth regulation mechanisms and the processes relevant for biocircuit design. Reliably capturing known growth phenomena, it provides a unifying explanation to disparate empirical relations between growth and synthetic gene expression. Considering a biomolecular controller that makes cell-wide ribosome availability robust to perturbations, we showcase our model's usefulness in numerically prototyping biocircuits and deriving analytical relations for design guidance.
Collapse
Affiliation(s)
- Kirill Sechkar
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Harrison Steel
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Giansimone Perrino
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
- Imperial College Centre of Excellence in Synthetic Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Claes K, Van Herpe D, Vanluchene R, Roels C, Van Moer B, Wyseure E, Vandewalle K, Eeckhaut H, Yilmaz S, Vanmarcke S, Çıtak E, Fijalkowska D, Grootaert H, Lonigro C, Meuris L, Michielsen G, Naessens J, van Schie L, De Rycke R, De Bruyne M, Borghgraef P, Callewaert N. OPENPichia: licence-free Komagataella phaffii chassis strains and toolkit for protein expression. Nat Microbiol 2024; 9:864-876. [PMID: 38443579 PMCID: PMC10914597 DOI: 10.1038/s41564-023-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 12/01/2023] [Indexed: 03/07/2024]
Abstract
The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.
Collapse
Affiliation(s)
- Katrien Claes
- Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| | - Dries Van Herpe
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Inbiose NV, Ghent, Belgium
| | - Robin Vanluchene
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Charlotte Roels
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Berre Van Moer
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Elise Wyseure
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kristof Vandewalle
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hannah Eeckhaut
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Semiramis Yilmaz
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sandrine Vanmarcke
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Erhan Çıtak
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Daria Fijalkowska
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hendrik Grootaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Chiara Lonigro
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Leander Meuris
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Gitte Michielsen
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Justine Naessens
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Loes van Schie
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- BioImaging Core, VIB, Ghent, Belgium
| | | | - Nico Callewaert
- Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
19
|
Ching C, Brychcy M, Nguyen B, Muller P, Pearson AR, Downs M, Regan S, Isley B, Fowle W, Chai Y, Godoy VG. RecA levels modulate biofilm development in Acinetobacter baumannii. Mol Microbiol 2024; 121:196-212. [PMID: 37918886 DOI: 10.1111/mmi.15188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Infections caused by Acinetobacter baumannii, a Gram-negative opportunistic pathogen, are difficult to eradicate due to the bacterium's propensity to quickly gain antibiotic resistances and form biofilms, a protective bacterial multicellular community. The A. baumannii DNA damage response (DDR) mediates the antibiotic resistance acquisition and regulates RecA in an atypical fashion; both RecALow and RecAHigh cell types are formed in response to DNA damage. The findings of this study demonstrate that the levels of RecA can influence formation and dispersal of biofilms. RecA loss results in surface attachment and prominent biofilms, while elevated RecA leads to diminished attachment and dispersal. These findings suggest that the challenge to treat A. baumannii infections may be explained by the induction of the DDR, common during infection, as well as the delicate balance between maintaining biofilms in low RecA cells and promoting mutagenesis and dispersal in high RecA cells. This study underscores the importance of understanding the fundamental biology of bacteria to develop more effective treatments for infections.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Merlin Brychcy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Brian Nguyen
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Paul Muller
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | | | - Margaret Downs
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samuel Regan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Breanna Isley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - William Fowle
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Rondthaler S, Sarker B, Howitz N, Shah I, Andrews LB. Toolbox of Characterized Genetic Parts for Staphylococcus aureus. ACS Synth Biol 2024; 13:103-118. [PMID: 38064657 PMCID: PMC10805105 DOI: 10.1021/acssynbio.3c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 01/23/2024]
Abstract
Staphylococcus aureus is an important clinical bacterium prevalent in human-associated microbiomes and the cause of many diseases. However, S. aureus has been intractable to synthetic biology approaches due to limited characterized genetic parts for this nonmodel Gram-positive bacterium. Moreover, genetic manipulation of S. aureus has relied on cumbersome and inefficient cloning strategies. Here, we report the first standardized genetic parts toolbox for S. aureus, which includes characterized promoters, ribosome binding sites, terminators, and plasmid replicons from a variety of bacteria for precise control of gene expression. We established a standard relative expression unit (REU) for S. aureus using a plasmid reference and characterized genetic parts in standardized REUs using S. aureus ATCC 12600. We constructed promoter and terminator part plasmids that are compatible with an efficient Type IIS DNA assembly strategy to effectively build multipart DNA constructs. A library of 24 constitutive promoters was built and characterized in S. aureus, which showed a 380-fold activity range. This promoter library was also assayed in Bacillus subtilis (122-fold activity range) to demonstrate the transferability of the constitutive promoters between these Gram-positive bacteria. By applying an iterative design-build-test-learn cycle, we demonstrated the use of our toolbox for the rational design and engineering of a tetracycline sensor in S. aureus using the PXyl-TetO aTc-inducible promoter that achieved 25.8-fold induction. This toolbox greatly expands the growing number of genetic parts for Gram-positive bacteria and will allow researchers to leverage synthetic biology approaches to study and engineer cellular processes in S. aureus.
Collapse
Affiliation(s)
- Stephen
N. Rondthaler
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
21
|
Kwon HJ, Lee J, Kwon SJ, Lee HS. Development of a genetic engineering toolbox for syngas-utilizing acetogen Clostridium sp. AWRP. Microb Cell Fact 2024; 23:6. [PMID: 38172811 PMCID: PMC10763472 DOI: 10.1186/s12934-023-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Clostridium sp. AWRP (AWRP) is a novel acetogenic bacterium isolated under high partial pressure of carbon monoxide (CO) and can be one of promising candidates for alcohol production from carbon oxides. Compared to model strains such as C. ljungdahlii and C. autoethanogenum, however, genetic manipulation of AWRP has not been established, preventing studies on its physiological characteristics and metabolic engineering. RESULTS We were able to demonstrate the genetic domestication of AWRP, including transformation of shuttle plasmids, promoter characterization, and genome editing. From the conjugation experiment with E. coli S17-1, among the four replicons tested (pCB102, pAMβ1, pIP404, and pIM13), three replicated in AWRP but pCB102 was the only one that could be transferred by electroporation. DNA methylation in E. coli significantly influenced transformation efficiencies in AWRP: the highest transformation efficiencies (102-103 CFU/µg) were achieved with unmethylated plasmid DNA. Determination of strengths of several clostridial promoters enabled the establishment of a CRISPR/Cas12a genome editing system based on Acidaminococcus sp. BV3L6 cas12a gene; interestingly, the commonly used CRISPR/Cas9 system did not work in AWRP, although it expressed the weakest promoter (C. acetobutylicum Pptb) tested. This system was successfully employed for the single gene deletion (xylB and pyrE) and double deletion of two prophage gene clusters. CONCLUSIONS The presented genome editing system allowed us to achieve several genome manipulations, including double deletion of two large prophage groups. The genetic toolbox developed in this study will offer a chance for deeper studies on Clostridium sp. AWRP for syngas fermentation and carbon dioxide (CO2) sequestration.
Collapse
Affiliation(s)
- Hae Jun Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
| | - Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Busan, Republic of Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
- KIOST School, University of Science and Technology, Busan, Republic of Korea.
| |
Collapse
|
22
|
Weber E. Setup and Applications of Modular Protein Expression Toolboxes (MoPET) for Mammalian Systems. Methods Mol Biol 2024; 2774:15-29. [PMID: 38441755 DOI: 10.1007/978-1-0716-3718-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The design and generation of an optimal protein expression construct is the first and essential step in the characterization of any protein of interest. However, the exchange and modification of the coding and/or noncoding elements to analyze their effect on protein function or generating the optimal result can be a tedious and time-consuming process using standard molecular biology cloning methods. To streamline the process to generate defined expression constructs or libraries of otherwise difficult to express proteins, the Modular Protein Expression Toolbox (MoPET) has been developed (Weber E, PloS One 12(5):e0176314, 2017). The system applies Golden Gate cloning as an assembly method and follows the standardized modular cloning (MoClo) principle (Weber E, PloS One 6(2):e16765, 2011). This cloning platform allows highly efficient DNA assembly of pre-defined, standardized functional DNA modules effecting protein expression with a focus on minimizing the cloning burden in coding regions. The original MoPET system consists of 53 defined DNA modules divided into eight functional main classes and can be flexibly expanded dependent on the need of the experimenter and expression host. However, already with a limited set of only 53 modules, 792,000 different constructs can be rationally designed or used to generate combinatorial expression optimization libraries. We provide here a detailed protocol for the (1) design and generation of level 0 basic parts, (2) generation of defined expressions constructs, and (3) generation of combinatorial expression libraries.
Collapse
Affiliation(s)
- Ernst Weber
- Molecular Design & Engineering, Biologics Research, Bayer AG, Wuppertal, Germany.
| |
Collapse
|
23
|
Hanke P, Parrello B, Vasieva O, Akins C, Chlenski P, Babnigg G, Henry C, Foflonker F, Brettin T, Antonopoulos D, Stevens R, Fonstein M. Engineering of increased L-Threonine production in bacteria by combinatorial cloning and machine learning. Metab Eng Commun 2023; 17:e00225. [PMID: 37435441 PMCID: PMC10331477 DOI: 10.1016/j.mec.2023.e00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
The goal of this study is to develop a general strategy for bacterial engineering using an integrated synthetic biology and machine learning (ML) approach. This strategy was developed in the context of increasing L-threonine production in Escherichia coli ATCC 21277. A set of 16 genes was initially selected based on metabolic pathway relevance to threonine biosynthesis and used for combinatorial cloning to construct a set of 385 strains to generate training data (i.e., a range of L-threonine titers linked to each of the specific gene combinations). Hybrid (regression/classification) deep learning (DL) models were developed and used to predict additional gene combinations in subsequent rounds of combinatorial cloning for increased L-threonine production based on the training data. As a result, E. coli strains built after just three rounds of iterative combinatorial cloning and model prediction generated higher L-threonine titers (from 2.7 g/L to 8.4 g/L) than those of patented L-threonine strains being used as controls (4-5 g/L). Interesting combinations of genes in L-threonine production included deletions of the tdh, metL, dapA, and dhaM genes as well as overexpression of the pntAB, ppc, and aspC genes. Mechanistic analysis of the metabolic system constraints for the best performing constructs offers ways to improve the models by adjusting weights for specific gene combinations. Graph theory analysis of pairwise gene modifications and corresponding levels of L-threonine production also suggests additional rules that can be incorporated into future ML models.
Collapse
Affiliation(s)
- Paul Hanke
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Bruce Parrello
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Olga Vasieva
- BSMI, 1818 Skokie Blvd., #201, Northbrook, IL, 60062, USA
| | - Chase Akins
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Philippe Chlenski
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | - Gyorgy Babnigg
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Chris Henry
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Fatima Foflonker
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Thomas Brettin
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | | | - Rick Stevens
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
- University of Chicago, 5801 S. Ellis Ave, Chicago, IL, 60637, USA
| | - Michael Fonstein
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| |
Collapse
|
24
|
Blázquez B, León DS, Torres-Bacete J, Gómez-Luengo Á, Kniewel R, Martínez I, Sordon S, Wilczak A, Salgado S, Huszcza E, Popłoński J, Prieto A, Nogales J. Golden Standard: a complete standard, portable, and interoperative MoClo tool for model and non-model proteobacteria. Nucleic Acids Res 2023; 51:e98. [PMID: 37718823 PMCID: PMC10602866 DOI: 10.1093/nar/gkad758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Modular cloning has become a benchmark technology in synthetic biology. However, a notable disparity exists between its remarkable development and the need for standardization to facilitate seamless interoperability among systems. The field is thus impeded by an overwhelming proliferation of organism-specific systems that frequently lack compatibility. To overcome these issues, we present Golden Standard (GS), a Type IIS assembly method underpinned by the Standard European Vector Architecture. GS unlocks modular cloning applications for most bacteria, and delivers combinatorial multi-part assembly to create genetic circuits of up to twenty transcription units (TUs). Reliance on MoClo syntax renders GS fully compatible with many existing tools and it sets the path towards efficient reusability of available part libraries and assembled TUs. GS was validated in terms of DNA assembly, portability, interoperability and phenotype engineering in α-, β-, γ- and δ-proteobacteria. Furthermore, we provide a computational pipeline for parts characterization that was used to assess the performance of GS parts. To promote community-driven development of GS, we provide a dedicated web-portal including a repository of parts, vectors, and Wizard and Setup tools that guide users in designing constructs. Overall, GS establishes an open, standardized framework propelling the progress of synthetic biology as a whole.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Jesús Torres-Bacete
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Álvaro Gómez-Luengo
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Ryan Kniewel
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Igor Martínez
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Sandra Sordon
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Aleksandra Wilczak
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Sergio Salgado
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Ewa Huszcza
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Jarosław Popłoński
- Wrocław University of Environmental and Life Sciences, Department of Food Chemistry and Biocatalysis, Norwida 25, 50-375, Wrocław, Poland
| | - Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| |
Collapse
|
25
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
Liu JQ, Min D, He RL, Cheng ZH, Wu J, Liu DF. Efficient and precise control of gene expression in Geobacter sulfurreducens through new genetic elements and tools for pollutant conversion. Biotechnol Bioeng 2023; 120:3001-3012. [PMID: 37209207 DOI: 10.1002/bit.28433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.
Collapse
Affiliation(s)
- Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Ru-Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
27
|
Brychcy M, Kokodynski A, Lloyd D, Godoy VG. AspFlex: Molecular Tools to Study Gene Expression and Regulation in Acinetobacter baumannii. ACS Synth Biol 2023; 12:2773-2777. [PMID: 37587063 PMCID: PMC10621034 DOI: 10.1021/acssynbio.3c00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 08/18/2023]
Abstract
Acinetobacter baumannii is a Gram-negative nosocomial opportunistic pathogen frequently found in hospital settings, causing high incidence of in-hospital infections. It belongs to the ESKAPE group of pathogens (the "A" stands for A. baumannii), which are known to easily develop antibiotic resistances. It is crucial to create a molecular toolkit to investigate its basic biology, such as gene regulation. Despite A. baumannii having been a threat for almost two decades, an efficient and high-throughput plasmid system that can replicate in A. baumannii has not yet been developed. This study adapts an existing toolkit for Escherichia coli to meet A. baumannii's unique requirements and expands it by constructing a plasmid-based CRISPR interference (CRISPRi) system to generate gene knockdowns in A. baumannii.
Collapse
Affiliation(s)
- Merlin Brychcy
- Biology Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexis Kokodynski
- Biology Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Devin Lloyd
- Biology Department, Northeastern University, Boston, Massachusetts 02115, United States
| | - Veronica G. Godoy
- Biology Department, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Liu W, Zuo S, Shao Y, Bi K, Zhao J, Huang L, Xu Z, Lian J. Retron-mediated multiplex genome editing and continuous evolution in Escherichia coli. Nucleic Acids Res 2023; 51:8293-8307. [PMID: 37471041 PMCID: PMC10450171 DOI: 10.1093/nar/gkad607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
While there are several genome editing techniques available, few are suitable for dynamic and simultaneous mutagenesis of arbitrary targeted sequences in prokaryotes. Here, to address these limitations, we present a versatile and multiplex retron-mediated genome editing system (REGES). First, through systematic optimization of REGES, we achieve efficiency of ∼100%, 85 ± 3%, 69 ± 14% and 25 ± 14% for single-, double-, triple- and quadruple-locus genome editing, respectively. In addition, we employ REGES to generate pooled and barcoded variant libraries with degenerate RBS sequences to fine-tune the expression level of endogenous and exogenous genes, such as transcriptional factors to improve ethanol tolerance and biotin biosynthesis. Finally, we demonstrate REGES-mediated continuous in vivo protein evolution, by combining retron, polymerase-mediated base editing and error-prone transcription. By these case studies, we demonstrate REGES as a powerful multiplex genome editing and continuous evolution tool with broad applications in synthetic biology and metabolic engineering.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Siqi Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youran Shao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke Bi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiarun Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
29
|
Perozeni F, Baier T. Current Nuclear Engineering Strategies in the Green Microalga Chlamydomonas reinhardtii. Life (Basel) 2023; 13:1566. [PMID: 37511941 PMCID: PMC10381326 DOI: 10.3390/life13071566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The green model microalga Chlamydomonas reinhardtii recently emerged as a sustainable production chassis for the efficient biosynthesis of recombinant proteins and high-value metabolites. Its capacity for scalable, rapid and light-driven growth in minimal salt solutions, its simplicity for genetic manipulation and its "Generally Recognized As Safe" (GRAS) status are key features for its application in industrial biotechnology. Although nuclear transformation has typically resulted in limited transgene expression levels, recent developments now allow the design of powerful and innovative bioproduction concepts. In this review, we summarize the main obstacles to genetic engineering in C. reinhardtii and describe all essential aspects in sequence adaption and vector design to enable sufficient transgene expression from the nuclear genome. Several biotechnological examples of successful engineering serve as blueprints for the future establishment of C. reinhardtii as a green cell factory.
Collapse
Affiliation(s)
- Federico Perozeni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
30
|
Peng H, Chen R, Shaw WM, Hapeta P, Jiang W, Bell DJ, Ellis T, Ledesma-Amaro R. Modular Metabolic Engineering and Synthetic Coculture Strategies for the Production of Aromatic Compounds in Yeast. ACS Synth Biol 2023; 12:1739-1749. [PMID: 37218844 PMCID: PMC10278174 DOI: 10.1021/acssynbio.3c00047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Indexed: 05/24/2023]
Abstract
Microbial-derived aromatics provide a sustainable and renewable alternative to petroleum-derived chemicals. In this study, we used the model yeast Saccharomyces cerevisiae to produce aromatic molecules by exploiting the concept of modularity in synthetic biology. Three different modular approaches were investigated for the production of the valuable fragrance raspberry ketone (RK), found in raspberry fruits and mostly produced from petrochemicals. The first strategy used was modular cloning, which enabled the generation of combinatorial libraries of promoters to optimize the expression level of the genes involved in the synthesis pathway of RK. The second strategy was modular pathway engineering and involved the creation of four modules, one for product formation: RK synthesis module (Mod. RK); and three for precursor synthesis: aromatic amino acid synthesis module (Mod. Aro), p-coumaric acid synthesis module (Mod. p-CA), and malonyl-CoA synthesis module (Mod. M-CoA). The production of RK by combinations of the expression of these modules was studied, and the best engineered strain produced 63.5 mg/L RK from glucose, which is the highest production described in yeast, and 2.1 mg RK/g glucose, which is the highest yield reported in any organism without p-coumaric acid supplementation. The third strategy was the use of modular cocultures to explore the effects of division of labor on RK production. Two two-member communities and one three-member community were created, and their production capacity was highly dependent on the structure of the synthetic community, the inoculation ratio, and the culture media. In certain conditions, the cocultures outperformed their monoculture controls for RK production, although this was not the norm. Interestingly, the cocultures showed up to 7.5-fold increase and 308.4 mg/L of 4-hydroxy benzalacetone, the direct precursor of RK, which can be used for the semi-synthesis of RK. This study illustrates the utility of modularity in synthetic biology tools and their applications to the synthesis of products of industrial interest.
Collapse
Affiliation(s)
- Huadong Peng
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Ruiqi Chen
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
- College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - William M. Shaw
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Piotr Hapeta
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Wei Jiang
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - David J. Bell
- SynbiCITE
Innovation and Knowledge Centre, Imperial
College London, London SW7 2AZ, U.K.
| | - Tom Ellis
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| | - Rodrigo Ledesma-Amaro
- Department
of Bioengineering, Imperial College London, London SW7 2AZ, U.K.
- Centre
for Synthetic Biology, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
31
|
Billerbeck S, Prins RC, Marquardt M. A Modular Cloning Toolkit Including CRISPRi for the Engineering of the Human Fungal Pathogen and Biotechnology Host Candida glabrata. ACS Synth Biol 2023; 12:1358-1363. [PMID: 37043632 PMCID: PMC10127446 DOI: 10.1021/acssynbio.2c00560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The yeast Candida glabrata is an emerging, often drug-resistant opportunistic human pathogen that can cause severe systemic infections in immunocompromised individuals. At the same time, it is a valuable biotechnology host that naturally accumulates high levels of pyruvate─a valuable chemical precursor. Tools for the facile engineering of this yeast could greatly accelerate studies on its pathogenicity and its optimization for biotechnology. While a few tools for plasmid-based expression and genome engineering have been developed, there is no well-characterized cloning toolkit that would allow the modular assembly of pathways or genetic circuits. Here, by characterizing the Saccharomyces cerevisiae-based yeast molecular cloning toolkit (YTK) in C. glabrata and by adding missing components, we build a well-characterized CgTK (C. glabrata toolkit). We used the CgTK to build a CRISPR interference system for C. glabrata that can be used to generate selectable phenotypes via single-gRNA targeting such as is required for genome-wide library screens.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Department for Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Rianne C Prins
- Department for Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Malte Marquardt
- Department for Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
32
|
Qin Y, You SH, Zhang Y, Venu A, Hong Y, Min JJ. Genetic Programming by Nitric Oxide-Sensing Gene Switch System in Tumor-Targeting Bacteria. BIOSENSORS 2023; 13:266. [PMID: 36832032 PMCID: PMC9954711 DOI: 10.3390/bios13020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Recent progress in synthetic biology has enabled bacteria to respond to specific disease signals to perform diagnostic and/or therapeutic tasks. Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) colonization of tumors results in increases in nitric oxide (NO) levels, suggesting that NO may act as a candidate inducer of tumor-specific gene expression. The present study describes a NO-sensing gene switch system for triggering tumor-specific gene expression in an attenuated strain of S. Typhimurium. The genetic circuit was designed to sense NO via NorR, thus initiating the expression of FimE DNA recombinase. This was found to lead sequentially to the unidirectional inversion of a promoter region (fimS), which induced the expression of target genes. Target gene expression in bacteria transformed with the NO-sensing switch system was triggered in the presence of a chemical source of NO, diethylenetriamine/nitric oxide (DETA/NO) in vitro. In vivo results revealed that the gene expression is tumor-targeted, and specific to NO generated by inducible nitric oxide synthase (iNOS) after S. Typhimurium colonization. These results showed that NO was a promising inducer to finely tune the expression of target genes carried by tumor-targeting bacteria.
Collapse
Affiliation(s)
- Yeshan Qin
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Ying Zhang
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Akhil Venu
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju 61469, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| |
Collapse
|
33
|
Buck S, Rhodes T, Gionfriddo M, Skinner T, Yuan D, Birch R, Kapralov MV, Whitney SM. Escherichia coli expressing chloroplast chaperones as a proxy to test heterologous Rubisco production in leaves. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:664-676. [PMID: 36322613 DOI: 10.1093/jxb/erac435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Rubisco is a fundamental enzyme in photosynthesis and therefore for life. Efforts to improve plant Rubisco performance have been hindered by the enzymes' complex chloroplast biogenesis requirements. New Synbio approaches, however, now allow the production of some plant Rubisco isoforms in Escherichia coli. While this enhances opportunities for catalytic improvement, there remain limitations in the utility of the expression system. Here we generate, optimize, and test a robust Golden Gate cloning E. coli expression system incorporating the protein folding machinery of tobacco chloroplasts. By comparing the expression of different plant Rubiscos in both E. coli and plastome-transformed tobacco, we show that the E. coli expression system can accurately predict high level Rubisco production in chloroplasts but poorly forecasts the biogenesis potential of isoforms with impaired production in planta. We reveal that heterologous Rubisco production in E. coli and tobacco plastids poorly correlates with Rubisco large subunit phylogeny. Our findings highlight the need to fully understand the factors governing Rubisco biogenesis if we are to deliver an efficient, low-cost screening tool that can accurately emulate chloroplast expression.
Collapse
Affiliation(s)
- Sally Buck
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tim Rhodes
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Matteo Gionfriddo
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Tanya Skinner
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Ding Yuan
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Rosemary Birch
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| | - Maxim V Kapralov
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Spencer M Whitney
- ARC Centre of Excellence in Translational Photosynthesis, Australian National University, Canberra 2000, Australia
| |
Collapse
|
34
|
Behrendt G, Frohwitter J, Vlachonikolou M, Klamt S, Bettenbrock K. Zymo-Parts: A Golden Gate Modular Cloning Toolbox for Heterologous Gene Expression in Zymomonas mobilis. ACS Synth Biol 2022; 11:3855-3864. [PMID: 36346889 PMCID: PMC9680023 DOI: 10.1021/acssynbio.2c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zymomonas mobilis is a microorganism with extremely high sugar consumption and ethanol production rates and is generally considered to hold great potential for biotechnological applications. However, its genetic engineering is still difficult, hampering the efficient construction of genetically modified strains. In this work, we present Zymo-Parts, a modular toolbox based on Golden-Gate cloning offering a collection of promoters (including native, inducible, and synthetic constitutive promoters of varying strength), an array of terminators and several synthetic ribosomal binding sites and reporter genes. All these parts can be combined in an efficient and flexible way to achieve a desired level of gene expression, either from plasmids or via genome integration. Use of the GoldenBraid-based system also enables an assembly of operons consisting of up to five genes. We present the basic structure of the Zymo-Parts cloning system, characterize several constitutive and inducible promoters, and exemplify the construction of an operon and of chromosomal integration of a reporter gene. Finally, we demonstrate the power and utility of the Zymo-Parts toolbox for metabolic engineering applications by overexpressing a heterologous gene encoding for the lactate dehydrogenase of Escherichia coli to achieve different levels of lactate production in Z. mobilis.
Collapse
|
35
|
Bird J, Marles-Wright J, Giachino A. A User's Guide to Golden Gate Cloning Methods and Standards. ACS Synth Biol 2022; 11:3551-3563. [PMID: 36322003 PMCID: PMC9680027 DOI: 10.1021/acssynbio.2c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/06/2022]
Abstract
The continual demand for specialized molecular cloning techniques that suit a broad range of applications has driven the development of many different cloning strategies. One method that has gained significant traction is Golden Gate assembly, which achieves hierarchical assembly of DNA parts by utilizing Type IIS restriction enzymes to produce user-specified sticky ends on cut DNA fragments. This technique has been modularized and standardized, and includes different subfamilies of methods, the most widely adopted of which are the MoClo and Golden Braid standards. Moreover, specialized toolboxes tailored to specific applications or organisms are also available. Still, the quantity and range of assembly methods can constitute a barrier to adoption for new users, and even experienced scientists might find it difficult to discern which tools are best suited toward their goals. In this review, we provide a beginner-friendly guide to Golden Gate assembly, compare the different available standards, and detail the specific features and quirks of commonly used toolboxes. We also provide an update on the state-of-the-art in Golden Gate technology, discussing recent advances and challenges to inform existing users and promote standard practices.
Collapse
Affiliation(s)
- Jasmine
E. Bird
- School
of Computing, Faculty of Science Agriculture and Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jon Marles-Wright
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
| | - Andrea Giachino
- Biosciences
Institute, Faculty of Medical Sciences, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United
Kingdom
- School
of Science, Engineering & Environment, University of Salford, Salford, M5 4NT, United Kingdom
| |
Collapse
|
36
|
Crone MA, MacDonald JT, Freemont PS, Siciliano V. gDesigner: computational design of synthetic gRNAs for Cas12a-based transcriptional repression in mammalian cells. NPJ Syst Biol Appl 2022; 8:34. [PMID: 36114193 PMCID: PMC9481559 DOI: 10.1038/s41540-022-00241-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Synthetic networks require complex intertwined genetic regulation often relying on transcriptional activation or repression of target genes. CRISPRi-based transcription factors facilitate the programmable modulation of endogenous or synthetic promoter activity and the process can be optimised by using software to select appropriate gRNAs and limit non-specific gene modulation. Here, we develop a computational software pipeline, gDesigner, that enables the automated selection of orthogonal gRNAs with minimized off-target effects and promoter crosstalk. We next engineered a Lachnospiraceae bacterium Cas12a (dLbCas12a)-based repression system that downregulates target gene expression by means of steric hindrance of the cognate promoter. Finally, we generated a library of orthogonal synthetic dCas12a-repressed promoters and experimentally demonstrated it in HEK293FT, U2OS and H1299 cells lines. Our system expands the toolkit of mammalian synthetic promoters with a new complementary and orthogonal CRISPRi-based system, ultimately enabling the design of synthetic promoter libraries for multiplex gene perturbation that facilitate the understanding of complex cellular phenotypes.
Collapse
Affiliation(s)
- Michael A Crone
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom
| | - James T MacDonald
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
| | - Paul S Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- UK Dementia Research Institute Centre for Care Research and Technology, Imperial College London, London, United Kingdom.
- London Biofoundry, Imperial College Translation and Innovation Hub, White City Campus, 84 Wood Lane, London, United Kingdom.
| | - Velia Siciliano
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom.
- Istituto Italiano di Tecnologia IIT, Department of Synthetic and Systems Biology for Biomedicine, Genoa, Italy.
| |
Collapse
|
37
|
Mózsik L, Iacovelli R, Bovenberg RAL, Driessen AJM. Transcriptional Activation of Biosynthetic Gene Clusters in Filamentous Fungi. Front Bioeng Biotechnol 2022; 10:901037. [PMID: 35910033 PMCID: PMC9335490 DOI: 10.3389/fbioe.2022.901037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Filamentous fungi are highly productive cell factories, many of which are industrial producers of enzymes, organic acids, and secondary metabolites. The increasing number of sequenced fungal genomes revealed a vast and unexplored biosynthetic potential in the form of transcriptionally silent secondary metabolite biosynthetic gene clusters (BGCs). Various strategies have been carried out to explore and mine this untapped source of bioactive molecules, and with the advent of synthetic biology, novel applications, and tools have been developed for filamentous fungi. Here we summarize approaches aiming for the expression of endogenous or exogenous natural product BGCs, including synthetic transcription factors, assembly of artificial transcription units, gene cluster refactoring, fungal shuttle vectors, and platform strains.
Collapse
Affiliation(s)
- László Mózsik
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Roel A. L. Bovenberg
- DSM Biotechnology Center, Delft, Netherlands
- Department of Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Öling D, Lan-Chow-Wing O, Martella A, Gilberto S, Chi J, Cooper E, Edström T, Peng B, Sumner D, Karlsson F, Volkov P, Webster CI, Roth R. FRAGLER: A Fragment Recycler Application Enabling Rapid and Scalable Modular DNA Assembly. ACS Synth Biol 2022; 11:2229-2237. [PMID: 35797032 DOI: 10.1021/acssynbio.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapid and flexible plasmid construct generation at scale is one of the most limiting first steps in drug discovery projects. These hurdles can partly be overcome by adopting modular DNA design principles, automated sequence fragmentation, and plasmid assembly. To this end we have designed a robust, multimodule golden gate based cloning platform for construct generation with a wide range of applications. The assembly efficiency of the system was validated by splitting sfGFP and sfCherry3C cassettes and expressing them in E. coli followed by fluorometric assessment. To minimize timelines and cost for complex constructs, we developed a software tool named FRAGLER (FRAGment recycLER) that performs codon optimization, multiple sequence alignment, and automated generation of fragments for recycling. To highlight the flexibility and robustness of the platform, we (i) generated plasmids for SarsCoV2 protein reagents, (ii) automated and parallelized assemblies, and (iii) built modular libraries of chimeric antigen receptors (CARs) variants. Applying the new assembly framework, we have greatly streamlined plasmid construction and increased our capacity for rapid generation of complex plasmids.
Collapse
Affiliation(s)
- David Öling
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | | | - Andrea Martella
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Samuel Gilberto
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Jordi Chi
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Emily Cooper
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Tora Edström
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Bo Peng
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Dean Sumner
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Fredrik Karlsson
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Petr Volkov
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Carl I Webster
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, CB2 0AA Cambridge, U.K
| | - Robert Roth
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 43183 Gothenburg, Sweden
| |
Collapse
|
39
|
De Saeger J, Vermeersch M, Gaillochet C, Jacobs TB. Simple and Efficient Modification of Golden Gate Design Standards and Parts Using Oligo Stitching. ACS Synth Biol 2022; 11:2214-2220. [PMID: 35675166 DOI: 10.1021/acssynbio.2c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The assembly of DNA parts is a critical aspect of contemporary biological research. Gibson assembly and Golden Gate cloning are two popular options. Here, we explore the use of single stranded DNA oligos with Gibson assembly to augment Golden Gate cloning workflows in a process called "oligo stitching". Our results show that oligo stitching can efficiently convert Golden Gate parts between different assembly standards and directly assemble incompatible Golden Gate parts without PCR amplification. Building on previous reports, we show that it can also be used to assemble de novo sequences. As a final application, we show that restriction enzyme recognition sites can be removed from plasmids and utilize the same concept to perform saturation mutagenesis. Given oligo stitching's versatility and high efficiency, we expect that it will be a useful addition to the molecular biologist's toolbox.
Collapse
Affiliation(s)
- Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium.,VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
40
|
Kennedy A, Griffin G, Freemont PS, Polizzi KM, Moore SJ. A curcumin direct protein biosensor for cell-free prototyping. ENGINEERING BIOLOGY 2022; 6:62-68. [PMID: 36969103 PMCID: PMC9996706 DOI: 10.1049/enb2.12024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
In synthetic biology, biosensors are routinely coupled with a gene expression system for detecting small molecules and physical signals. We reveal a fluorescent complex, based on the interaction of an Escherichia coli double bond reductase (EcCurA), as a detection unit with its substrate curcumin-we call this a direct protein (DiPro) biosensor. Using a cell-free synthetic biology approach, we use the EcCurA DiPro biosensor to fine tune 10 reaction parameters (cofactor, substrate, and enzyme levels) for cell-free curcumin biosynthesis, assisted through acoustic liquid handling robotics. Overall, we increase EcCurA-curcumin DiPro fluorescence within cell-free reactions by 78-fold. This finding adds to the growing family of protein-ligand complexes that are naturally fluorescent and potentially exploitable for a range of applications, including medical imaging to engineering high-value chemicals.
Collapse
Affiliation(s)
| | - Guy Griffin
- School of BiosciencesUniversity of KentCanterburyUK
| | - Paul S. Freemont
- Centre for Synthetic Biology and InnovationSouth Kensington CampusLondonUK
- Department of MedicineSouth Kensington CampusLondonUK
- Department of Infectious DiseaseSection of Structural and Synthetic BiologyImperial College LondonLondonUK
- Sir Alexander Fleming BuildingSouth Kensington CampusLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College LondonHammersmith CampusLondonUK
- UK Innovation and Knowledge Centre for Synthetic Biology (SynbiCITE) and the London BiofoundryImperial College Translation & Innovation HubLondonUK
| | - Karen M. Polizzi
- Centre for Synthetic Biology and InnovationSouth Kensington CampusLondonUK
- Department of Life SciencesImperial College LondonSouth Kensington CampusLondonUK
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusLondonUK
| | | |
Collapse
|
41
|
Nguyen MTA, Pothoulakis G, Andersen ES. Synthetic Translational Regulation by Protein-Binding RNA Origami Scaffolds. ACS Synth Biol 2022; 11:1710-1718. [PMID: 35438978 PMCID: PMC9127956 DOI: 10.1021/acssynbio.1c00608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational design approaches for the regulation of gene expression are expanding the synthetic biology toolbox. However, only a few tools for regulating gene expression at the translational level have been developed. Here, we devise an approach for translational regulation using the MS2 and PP7 aptamer and coat-protein pairs in Escherichia coli. The aptamers are used as operators in transcription units that encode proteins fused to their cognate coat proteins, which leads to self-repression. RNA origami scaffolds that contain up to four aptamers serve as an alternate binder to activate translation. With this system, we demonstrate that the increase in expression of a reporter protein is dependent on both the concentration and number of aptamers on RNA origami scaffolds. We also demonstrate regulation of multiple proteins using a single MS2 coat protein fusion and apply this method to regulate the relative expression of enzymes of the branched pathway for deoxyviolacein biosynthesis.
Collapse
Affiliation(s)
| | | | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
42
|
Reyes-González D, De Luna-Valenciano H, Utrilla J, Sieber M, Peña-Miller R, Fuentes-Hernández A. Dynamic proteome allocation regulates the profile of interaction of auxotrophic bacterial consortia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212008. [PMID: 35592760 PMCID: PMC9066302 DOI: 10.1098/rsos.212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Microbial ecosystems are composed of multiple species in constant metabolic exchange. A pervasive interaction in microbial communities is metabolic cross-feeding and occurs when the metabolic burden of producing costly metabolites is distributed between community members, in some cases for the benefit of all interacting partners. In particular, amino acid auxotrophies generate obligate metabolic inter-dependencies in mixed populations and have been shown to produce a dynamic profile of interaction that depends upon nutrient availability. However, identifying the key components that determine the pair-wise interaction profile remains a challenging problem, partly because metabolic exchange has consequences on multiple levels, from allocating proteomic resources at a cellular level to modulating the structure, function and stability of microbial communities. To evaluate how ppGpp-mediated resource allocation drives the population-level profile of interaction, here we postulate a multi-scale mathematical model that incorporates dynamics of proteome partition into a population dynamics model. We compare our computational results with experimental data obtained from co-cultures of auxotrophic Escherichia coli K12 strains under a range of amino acid concentrations and population structures. We conclude by arguing that the stringent response promotes cooperation by inhibiting the growth of fast-growing strains and promoting the synthesis of metabolites essential for other community members.
Collapse
Affiliation(s)
- D. Reyes-González
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - H. De Luna-Valenciano
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - J. Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - M. Sieber
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - R. Peña-Miller
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - A. Fuentes-Hernández
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| |
Collapse
|
43
|
Kang DH, Ko SC, Heo YB, Lee HJ, Woo HM. RoboMoClo: A Robotics-Assisted Modular Cloning Framework for Multiple Gene Assembly in Biofoundry. ACS Synth Biol 2022; 11:1336-1348. [PMID: 35167276 DOI: 10.1021/acssynbio.1c00628] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient and versatile DNA assembly frameworks have had an impact on promoting synthetic biology to build complex biological systems. To accelerate system development, laboratory automation (or biofoundry) provides an opportunity to construct organisms and DNA assemblies via computer-aided design. However, a modular cloning (MoClo) system for multiple DNA assemblies limits the biofoundry workflow in terms of simplicity and feasibility by preparing the number of cloning materials such as destination vectors prior to the automation process. Herein, we propose robot-assisted MoClo (RoboMoClo) to accelerate a synthetic biology project with multiple gene expressions at the biofoundry. The architecture of the RoboMoClo framework provides a hybrid strategy of hierarchical gene assembly and iterative gene assembly, and fewer destination vectors compared with other MoClo systems. An industrial bacterium, Corynebacterium glutamicum, was used as a model host for RoboMoClo. After building a biopart library (promoter and terminator; level 0) and evaluating its features (level 1), various transcriptional directions in multiple gene assemblies (level 2) were studied using the RoboMoClo vectors. Among the constructs, the convergent construct exhibited potential transcriptional interference through the collision of RNA polymerases. To study design of experiment-guided lycopene biosynthesis in C. glutamicum (levels 1, 2, and 3), the biofoundry-assisted multiple gene assembly was demonstrated as a proof-of-concept by constructing various sub-pathway units (level 2) and pathway units (level 3) for C. glutamicum. The RoboMoClo framework provides an improved MoClo toolkit for laboratory automation in a synthetic biology application.
Collapse
Affiliation(s)
- Dong Hun Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sung Cheon Ko
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yu Been Heo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
44
|
Yu DS, Outram MA, Crean E, Smith A, Sung YC, Darma R, Sun X, Ma L, Jones DA, Solomon PS, Williams SJ. Optimized Production of Disulfide-Bonded Fungal Effectors in Escherichia coli Using CyDisCo and FunCyDisCo Coexpression Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:109-118. [PMID: 34672679 DOI: 10.1094/mpmi-08-21-0218-ta] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effectors are a key part of the arsenal of plant-pathogenic fungi and promote pathogen virulence and disease. Effectors typically lack sequence similarity to proteins with known functional domains and motifs, limiting our ability to predict their functions and understand how they are recognized by plant hosts. As a result, cross-disciplinary approaches involving structural biology and protein biochemistry are often required to decipher and better characterize effector function. These approaches are reliant on high yields of relatively pure protein, which often requires protein production using a heterologous expression system. For some effectors, establishing an efficient production system can be difficult, particularly those that require multiple disulfide bonds to achieve their naturally folded structure. Here, we describe the use of a coexpression system within the heterologous host Escherichia coli, termed CyDisCo (cytoplasmic disulfide bond formation in E. coli) to produce disulfide bonded fungal effectors. We demonstrate that CyDisCo and a naturalized coexpression approach termed FunCyDisCo (Fungi CyDisCo) can significantly improve the production yields of numerous disulfide-bonded effectors from diverse fungal pathogens. The ability to produce large quantities of functional recombinant protein has facilitated functional studies and crystallization of several of these reported fungal effectors. We suggest this approach could be broadly useful in the investigation of the function and recognition of a broad range of disulfide bond-containing effectors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Daniel S Yu
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Emma Crean
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Ashley Smith
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Reynaldi Darma
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Xizhe Sun
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agriculture University, Baoding, China
| | - Lisong Ma
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - David A Jones
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
45
|
Shelake RM, Pramanik D, Kim JY. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. Int J Mol Sci 2022; 23:ijms23031145. [PMID: 35163069 PMCID: PMC8834901 DOI: 10.3390/ijms23031145] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Rapid assessment of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-based genome editing (GE) tools and their components is a critical aspect for successful GE applications in different organisms. In many bacteria, double-strand breaks (DSBs) generated by CRISPR/Cas tool generally cause cell death due to the lack of an efficient nonhomologous end-joining pathway and restricts its use. CRISPR-based DSB-free base editors (BEs) have been applied for precise nucleotide (nt) editing in bacteria, which does not need to make DSBs. However, optimization of newer BE tools in bacteria is challenging owing to the toxic effects of BE reagents expressed using strong promoters. Improved variants of two main BEs, cytidine base editor (CBE) and adenine base editor (ABE), capable of converting C to T and A to G, respectively, have been recently developed but yet to be tested for editing characteristics in bacteria. Here, we report a platform for in vivo rapid investigation of CRISPR-BE components in Escherichia coli (IRI-CCE) comprising a combination of promoters and terminators enabling the expression of nCas9-based BE and sgRNA to nontoxic levels, eventually leading to successful base editing. We demonstrate the use of IRI-CCE to characterize different variants of CBEs (PmCDA1, evoCDA1, APOBEC3A) and ABEs (ABE8e, ABE9e) for bacteria, exhibiting that each independent BE has its specific editing pattern for a given target site depending on protospacer length. In summary, CRISPR-BE components expressed without lethal effects on cell survival in the IRI-CCE allow an analysis of various BE tools, including cloned biopart modules and sgRNAs.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Correspondence: (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (R.M.S.); (J.-Y.K.)
| |
Collapse
|
46
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
47
|
Otto M, Skrekas C, Gossing M, Gustafsson J, Siewers V, David F. Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synth Biol 2021; 10:3461-3474. [PMID: 34860007 PMCID: PMC8689691 DOI: 10.1021/acssynbio.1c00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Standardisation of genetic parts has become a topic of increasing interest over the last decades. The promise of simplifying molecular cloning procedures, while at the same time making them more predictable and reproducible has led to the design of several biological standards, one of which is modular cloning (MoClo). The Yeast MoClo toolkit provides a large library of characterised genetic parts combined with a comprehensive and flexible assembly strategy. Here we aimed to (1) simplify the adoption of the standard by providing a simple design tool for including new parts in the MoClo library, (2) characterise the toolkit further by demonstrating the impact of a BglII site in promoter parts on protein expression, and (3) expand the toolkit to enable efficient construction of gRNA arrays, marker-less integration cassettes and combinatorial libraries. These additions make the toolkit more applicable for common engineering tasks and will further promote its adoption in the yeast biological engineering community.
Collapse
Affiliation(s)
- Maximilian Otto
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Christos Skrekas
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Michael Gossing
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg SE-43150, Sweden
| | - Johan Gustafsson
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
48
|
Goosens VJ, Walker KT, Aragon SM, Singh A, Senthivel VR, Dekker L, Caro-Astorga J, Buat MLA, Song W, Lee KY, Ellis T. Komagataeibacter Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria. ACS Synth Biol 2021; 10:3422-3434. [PMID: 34767345 DOI: 10.1021/acssynbio.1c00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria proficient at producing cellulose are an attractive synthetic biology host for the emerging field of Engineered Living Materials (ELMs). Species from the Komagataeibacter genus produce high yields of pure cellulose materials in a short time with minimal resources, and pioneering work has shown that genetic engineering in these strains is possible and can be used to modify the material and its production. To accelerate synthetic biology progress in these bacteria, we introduce here the Komagataeibacter tool kit (KTK), a standardized modular cloning system based on Golden Gate DNA assembly that allows DNA parts to be combined to build complex multigene constructs expressed in bacteria from plasmids. Working in Komagataeibacter rhaeticus, we describe basic parts for this system, including promoters, fusion tags, and reporter proteins, before showcasing how the assembly system enables more complex designs. Specifically, we use KTK cloning to reformat the Escherichia coli curli amyloid fiber system for functional expression in K. rhaeticus, and go on to modify it as a system for programming protein secretion from the cellulose producing bacteria. With this toolkit, we aim to accelerate modular synthetic biology in these bacteria, and enable more rapid progress in the emerging ELMs community.
Collapse
Affiliation(s)
- Vivianne J. Goosens
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Kenneth T. Walker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Silvia M. Aragon
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Amritpal Singh
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Vivek R. Senthivel
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | - Linda Dekker
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Joaquin Caro-Astorga
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| | | | - Wenzhe Song
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
49
|
Banks AM, Whitfield CJ, Brown SR, Fulton DA, Goodchild SA, Grant C, Love J, Lendrem DW, Fieldsend JE, Howard TP. Key reaction components affect the kinetics and performance robustness of cell-free protein synthesis reactions. Comput Struct Biotechnol J 2021; 20:218-229. [PMID: 35024094 PMCID: PMC8718664 DOI: 10.1016/j.csbj.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.
Collapse
Key Words
- 3-PGA, 3-phosphoglyceric acid
- ATP, adenosine triphosphate
- Automation
- CFE, cell-free extract
- CFPS, cell-free protein synthesis
- CTP, cytidine triphosphate
- Cell-free protein synthesis (CFPS)
- CoA, coenzyme A
- DSD, Definitive Screening Design
- DTT, dithiothreitol
- Design of Experiments (DoE)
- DoE, Design of Experiments
- FEU, fluorescein equivalent units
- G-6-P, glucose-6-phosphate
- GTP, guanosine triphosphate
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- K-glutamate, potassium glutamate
- LB, lysogeny broth
- Mg, magnesium glutamate
- NAD, nicotinamide adenine dinucleotide
- NTP, nucleoside triphosphate
- OFAT, one-factor-at-a-time
- PEG-8000, polyethylene glycol 8000
- PEP, phosphoenolpyruvate
- RFU, relative fluorescence units
- RSM, Response Surface Model
- Robustness
- Statistical engineering
- UTP, uridine triphosphate
- X-gal, 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
- cAMP, cyclic adenosine monophosphate
- eGFP, enhanced green fluorescent protein
- tRNA, transfer ribonucleic acid
Collapse
Affiliation(s)
- Alice M. Banks
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Colette J. Whitfield
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - David A. Fulton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Sarah A. Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, United Kingdom
| | | | - John Love
- Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Dennis W. Lendrem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | - Thomas P. Howard
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
50
|
Gerhardt KP, Rao SD, Olson EJ, Igoshin OA, Tabor JJ. Independent control of mean and noise by convolution of gene expression distributions. Nat Commun 2021; 12:6957. [PMID: 34845228 PMCID: PMC8630168 DOI: 10.1038/s41467-021-27070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/03/2021] [Indexed: 11/28/2022] Open
Abstract
Gene expression noise can reduce cellular fitness or facilitate processes such as alternative metabolism, antibiotic resistance, and differentiation. Unfortunately, efforts to study the impacts of noise have been hampered by a scaling relationship between noise and expression level from individual promoters. Here, we use theory to demonstrate that mean and noise can be controlled independently by expressing two copies of a gene from separate inducible promoters in the same cell. We engineer low and high noise inducible promoters to validate this result in Escherichia coli, and develop a model that predicts the experimental distributions. Finally, we use our method to reveal that the response of a promoter to a repressor is less sensitive with higher repressor noise and explain this result using a law from probability theory. Our approach can be applied to investigate the effects of noise on diverse biological pathways or program cellular heterogeneity for synthetic biology applications.
Collapse
Affiliation(s)
- Karl P Gerhardt
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Satyajit D Rao
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Evan J Olson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Center for Theoretical Biophysics, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
| |
Collapse
|