1
|
Xie M, Luo H, Liu X, Yin C. Development and challenge of coal-based nanocarbon materials and their application in water treatment: a review. DISCOVER NANO 2024; 19:162. [PMID: 39356392 PMCID: PMC11447231 DOI: 10.1186/s11671-024-04115-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Under the dual pressures of environmental protection and energy security, the development and application of coal-based nanocarbon materials, supported by the technical concepts of molecular chemical engineering and nanomaterial science, is of significant importance for achieving the high-value clean utilization of coal. Furthermore, it serves as an effective means to assist in the realization of dual carbon goals. Coal, with its abundant reserves, high carbon content, and aromatic and hydrogenated aromatic groups, exhibits great advantages and potential in the synthesis of nanocarbon materials. In addition to its applications in traditional power and chemical industries, coal-based nanocarbon materials also demonstrate significant value in the field of environmental pollution control. This article succinctly summarizes the preparation methods and properties of coal-based carbon nanotubes, coal-based carbon quantum dots, and coal-based graphene, elucidates their current applications in water pollution control and governance, and anticipates their development trends in water pollution control, aiming to provide support for the clean and efficient utilization of coal and water pollution control.
Collapse
Affiliation(s)
- MingShuai Xie
- School of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - HongChao Luo
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, China.
| | - XinJuan Liu
- School of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - ChaoChuang Yin
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, 553004, China
| |
Collapse
|
2
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
3
|
Li J, Ding Y, Qin J, Zhu C, Gong L. Molecular Dynamics Simulation of Membrane Distillation for Different Salt Solutions in Nanopores. Molecules 2024; 29:4581. [PMID: 39407511 PMCID: PMC11477737 DOI: 10.3390/molecules29194581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Nanoporous membranes offer significant advantages in direct contact membrane distillation applications due to their high flux and strong resistance to wetting. This study employs molecular dynamics simulations to explore the performance of membrane distillation in a single nanopore, mainly focusing on wetting behavior, liquid entry pressure, and membrane flux variations across different concentrations and types of salt solutions. The findings indicate that increasing the NaCl concentration enhances the wetting of membrane pores, thereby decreasing the entry pressure of the solution. However, at the same salt concentration, the differences in wetting and liquid entry pressure among various salts, including CaCl2, KCl, NaCl, and LiCl, are minimal. The presence of hydrated ions significantly reduces membrane flux. As the concentration of NaCl solutions increases, the number of hydrated ions rises, thereby lowering the membrane flux of the salt solution. Furthermore, the type of salt has a pronounced effect on the structure of hydrated ions. Solutions with Ca2+ and Li+ exhibit the smallest first-layer radius of hydrated ions. Under the same salt concentration, KCl solutions demonstrate the highest membrane distillation flux, while CaCl2 solutions show the lowest flux.
Collapse
Affiliation(s)
| | | | | | - Chuanyong Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (J.L.); (Y.D.); (J.Q.)
| | - Liang Gong
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (J.L.); (Y.D.); (J.Q.)
| |
Collapse
|
4
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
5
|
Khan GR, Daschakraborty S. Enhanced fluidity of water in superhydrophobic nanotubes: estimating viscosity using jump-corrected confined Stokes-Einstein approach. Phys Chem Chem Phys 2024; 26:4492-4504. [PMID: 38240480 DOI: 10.1039/d3cp05906e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Accurately predicting the viscosity of water confined within nanotubes is vital for various technological applications. Traditional methods have failed in this regard, necessitating a novel approach. We introduced the jump-corrected confined Stokes-Einstein (JCSE) method and now employ the same to estimate the viscosity and diffusion in superhydrophobic nanotubes. Our study covers a temperature range of 230-300 K and considers three nanotube diameters. Results show that water inside superhydrophobic nanotubes exhibits a significantly lower viscosity and higher diffusion than those inside hydrophobic nanotubes. Narrower nanotubes and lower temperatures accentuate these effects. Furthermore, water inside superhydrophobic nanotubes display a lower viscosity than bulk water, with the difference increasing at lower temperatures. This reduction is attributed to weaker water-water interactions caused by a lower water density in the interfacial region. These findings highlight the importance of interfacial water density and its influence on nanotube viscosity, shedding light on nanoscale fluid dynamics and opening avenues for diverse applications.
Collapse
Affiliation(s)
- Golam Rosul Khan
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
6
|
Ma Z, Xu J, Wang C, Liu Z, Zhu G. Molecular dynamics simulation study on the binding mechanism between carbon nanotubes and RNA-dependent RNA polymerase. J Biomol Struct Dyn 2024:1-10. [PMID: 38263694 DOI: 10.1080/07391102.2024.2308781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Carbon nanotubes (CNTs) have potential prospects in disease treatment, so it is of great significance to study CNTs as the possible inhibitors of RNA-dependent RNA polymerase (RdRp). Through the way of using the RdRp of SARS-COV-2 as a model, five armchair single-walled carbon nanotubes (SWCNTs) (namely Dn, which stands for CNTs (n, m = n), n = 3-7) and RdRp have been selected to study the interactions by means of molecular docking and molecular dynamics simulation. After five SWCNT-RdRp complex systems have been subjected to the molecular dynamics simulations of 100 ns, and Molecular Mechanics Poisson - Boltzmann Surface Area (MMPBSA) has been used to calculate the binding free energy, it is found that the binding free energy of the D6 system (-189.541 kJ/mol) is significantly higher than that of the other four systems, and most of the amino acids with strong positive effects on binding are usually basic amino acids. What's more, in the further investigation of the specific interaction mechanism between CNT (6,6) and RdRp, it is revealed that the three amino acid residues LYS545, ARG553 and ARG555 located in the nucleoside triphosphate (NTP) entry channel all have strong effects. In addition, it is also observed that when ARG555 has been inserted into SWCNT, a stable structure will be formed, which will break the original NTP entry channel structure and inhibit virus replication. Therefore, it can be concluded that certain specific types of SWCNT, such as CNT (6,6), could be potential small molecule inhibitors in the treatment of coronavirus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhaopeng Ma
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Jianqiang Xu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Chenchen Wang
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Zhicong Liu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| | - Guanglai Zhu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, China
| |
Collapse
|
7
|
Chrystie RSM. A Review on 1-D Nanomaterials: Scaling-Up with Gas-Phase Synthesis. CHEM REC 2023; 23:e202300087. [PMID: 37309743 DOI: 10.1002/tcr.202300087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Indexed: 06/14/2023]
Abstract
Nanowire-like materials exhibit distinctive properties comprising optical polarisation, waveguiding, and hydrophobic channelling, amongst many other useful phenomena. Such 1-D derived anisotropy can be further enhanced by arranging many similar nanowires into a coherent matrix, known as an array superstructure. Manufacture of nanowire arrays can be scaled-up considerably through judicious use of gas-phase methods. Historically, the gas-phase approach however has been extensively used for the bulk and rapid synthesis of isotropic 0-D nanomaterials such as carbon black and silica. The primary goal of this review is to document recent developments, applications, and capabilities in gas-phase synthesis methods of nanowire arrays. Secondly, we elucidate the design and use of the gas-phase synthesis approach; and finally, remaining challenges and needs are addressed to advance this field.
Collapse
Affiliation(s)
- Robin S M Chrystie
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
- IRC for Membranes & Water Security, King Fahd University of Petroleum & Minerals, KFUPM Box 5051, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
8
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Tian Y, Hu C, An M, He X, Wang H, Yi C. Fabrication and Characterization of Carbon Nanotube Filled PDMS Hybrid Membranes for Enhanced Ethanol Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12294-12304. [PMID: 36890695 DOI: 10.1021/acsami.2c20553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ethanol separation via the pervaporation process has shown growing application potential in solvent recovery and the bioethanol industry. In the continuous pervaporation process, polymeric membranes such as hydrophobic polydimethylsiloxane (PDMS) have been developed to enrich/separate ethanol from dilute aqueous solutions. However, its practical application remains largely limited due to the relatively low separation efficiency, especially in selectivity. In view of this, hydrophobic carbon nanotube (CNT) filled PDMS mixed matrix membranes (MMMs) aimed at high-efficiency ethanol recovery were fabricated in this work. The filler K-MWCNTs was prepared by functionalizing MWCNT-NH2 with epoxy-containing silane coupling agent (KH560) to improve the affinity between fillers and PDMS matrix. With K-MWCNT loading increased from 1 wt % to 10 wt %, membranes showed higher surface roughness and water contact angle was improved from 115° to 130°. The swelling degree of K-MWCNT/PDMS MMMs (2 wt %) in water were also reduced from 10 wt % to 2.5 wt %. Pervaporation performance for K-MWCNT/PDMS MMMs under varied feed concentrations and temperatures were evaluated. The results supported that the K-MWCNT/PDMS MMMs at 2 wt % K-MWCNT loading showed the optimum separation performance (compared with pure PDMS membranes), with the separation factor improved from 9.1 to 10.4, and the permeate flux increased by 50% (40-60 °C, at 6 wt % feed ethanol concentration). This work provides a promising method for preparing a PDMS composite with both high permeate flux and selectivity, which showed great potential for bioethanol production and alcohol separation in industry.
Collapse
Affiliation(s)
- Yuhong Tian
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changfeng Hu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Xinping He
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Wang
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Chunhai Yi
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Lasisi KH, Abass OK, Zhang K, Ajibade TF, Ajibade FO, Ojediran JO, Okonofua ES, Adewumi JR, Ibikunle PD. Recent advances on graphyne and its family members as membrane materials for water purification and desalination. Front Chem 2023; 11:1125625. [PMID: 36742031 PMCID: PMC9895114 DOI: 10.3389/fchem.2023.1125625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Graphyne and its family members (GFMs) are allotropes of carbon (a class of 2D materials) having unique properties in form of structures, pores and atom hybridizations. Owing to their unique properties, GFMs have been widely utilized in various practical and theoretical applications. In the past decade, GFMs have received considerable attention in the area of water purification and desalination, especially in theoretical and computational aspects. More recently, GFMs have shown greater prospects in achieving optimal separation performance than the experimentally derived commercial polyamide membranes. In this review, recent theoretical and computational advances made in the GFMs research as it relates to water purification and desalination are summarized. Brief details on the properties of GFMs and the commonly used computational methods were described. More specifically, we systematically reviewed the various computational approaches employed with emphasis on the predicted permeability and selectivity of the GFM membranes. Finally, the current challenges limiting their large-scale practical applications coupled with the possible research directions for overcoming the challenges are proposed.
Collapse
Affiliation(s)
- Kayode Hassan Lasisi
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Olusegun K. Abass
- Department of Civil Engineering, and ReNEWACT Laboratory, Landmark University, Omu-Aran, Kwara State, Nigeria,*Correspondence: Olusegun K. Abass, ,
| | - Kaisong Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Temitope Fausat Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, Akure, Nigeria
| | | | - John O. Ojediran
- Department of Agricultural and Biosystems Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - James Rotimi Adewumi
- Department of Civil and Environmental Engineering, Federal University of Technology, Akure, Nigeria
| | - Peter D. Ibikunle
- Department of Civil Engineering, and ReNEWACT Laboratory, Landmark University, Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
11
|
Wu C, Dai X, Sun X, Zhang J. Preparation and characterization of fluoroalkyl activated carbons/PVDF composite membranes for water and resources recovery by membrane distillation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Aburabie J, Nassrullah H, Hashaikeh R. Fine-tuning of carbon nanostructures/alginate nanofiltration performance: Towards electrically-conductive and self-cleaning properties. CHEMOSPHERE 2023; 310:136907. [PMID: 36265705 DOI: 10.1016/j.chemosphere.2022.136907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Electrically-conductive membranes became the center of attention owing to their enhanced ion selectivity and self-cleaning properties. Carbon nanostructures (CNS) attain high electrical conductivity, and fast water transport. Herein, we adopt a water-based, simple method to entrap CNS within Alginate network to fabricate self-cleaning nanofiltration membranes. CNS are embedded into membranes to improve the swelling/shrinkage resistivity, and to achieve electrical-conductivity. The CaAlg PEG-formed pores are tuned by organic-inorganic network via silane crosslinking. Flux/rejection profiles of Na2SO4 are studied/optimized in reference to fabrication parameters. 90% Na2SO4 rejection (7 LMH) is achieved for silane-CaAlg200-10% CNS membranes. Membranes exhibit outstanding electrical conductivity (∼2858 S m-1), which is attractive for fouling control. CaAlg/CNS membranes are tested to treat dye/saline water via two-stage filtration, namely, dye/salt separation and desalination. A successful dye/salt separation is achieved at the first stage with a rejection of 100%-RB and only 3.1% Na2SO4, and 54% Na2SO4 rejection in the second stage.
Collapse
Affiliation(s)
- Jamaliah Aburabie
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Haya Nassrullah
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates; Chemical and Biomolecular Engineering Division, New York University, Tandon School of Engineering, NY, 11201, USA
| | - Raed Hashaikeh
- NYUAD Water Research Center, Engineering Division, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates.
| |
Collapse
|
13
|
Francis L, Hilal N. Electrosprayed CNTs on Electrospun PVDF-Co-HFP Membrane for Robust Membrane Distillation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4331. [PMID: 36500954 PMCID: PMC9740161 DOI: 10.3390/nano12234331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In this investigation, the electrospraying of CNTs on an electrospun PVDF-Co-HFP membrane was carried out to fabricate robust membranes for the membrane distillation (MD) process. A CNT-modified PVDF-Co-HFP membrane was heat pressed and characterized for water contact angle, liquid entry pressure (LEP), pore size distribution, tensile strength, and surface morphology. A higher water contact angle, higher liquid entry pressure (LEP), and higher tensile strength were observed in the electrosprayed CNT-coated PVDF-Co-HFP membrane than in the pristine membrane. The MD process test was conducted at varying feed temperatures using a 3.5 wt. % simulated seawater feed solution. The CNT-modified membrane showed an enhancement in the temperature polarization coefficient (TPC) and water permeation flux up to 16% and 24.6%, respectively. Field-effect scanning electron microscopy (FESEM) images of the PVDF-Co-HFP and CNT-modified membranes were observed before and after the MD process. Energy dispersive spectroscopy (EDS) confirmed the presence of inorganic salt ions deposited on the membrane surface after the DCMD process. Permeate water quality and rejection of inorganic salt ions were quantitatively analyzed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS). The water permeation flux during the 24-h continuous DCMD operation remained constant with a >99.8% inorganic salt rejection.
Collapse
|
14
|
Toh W, Ang EYM, Lin R, Liu Z, Ng TY. On the Performance of Vertically Aligned Graphene Array Membranes for Desalination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27405-27412. [PMID: 35666644 DOI: 10.1021/acsami.2c05425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we perform molecular dynamics simulations to investigate the performance of multilayer graphene slit membranes. Graphene slit membranes at a critical slit size have been found to be promising desalination membranes. In this contribution, it is shown that multilayer slit membranes have the potential to provide significantly better permeability while retaining outstanding salt rejection. Improved permeability of the membrane is achieved by using slits of widths larger than the critical slit size required to reject salt through size exclusion, and desalination of sea water is performed by increased resistance to salt passage through the multilayering. To facilitate the design process of future multilayer membranes, we analyze the flow resistance of the membrane as a combination of electrical resistors in series and show that this analogy works for membranes where the layers possess the same slit size, as well as membranes with layers of different slit sizes. Comparing with single layer graphene membranes, it was shown that it is possible to obtain 55% improvement in permeability without loss in salt rejection capabilities through multilayering. This opens up possibilities for membrane designers to be free from the restrictions of using a single layer graphene slit membrane with a fixed slit width.
Collapse
Affiliation(s)
- William Toh
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Elisa Yun Mei Ang
- Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, 138683, Singapore
| | - Rongming Lin
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Zishun Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Teng Yong Ng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
15
|
Tunable hydrophobicity and roughness on PVDF surface by grafting to mode – Approach to enhance membrane performance in membrane distillation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Song J, Deng Q, Huang M, Kong Z. Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology. ENVIRONMENTAL RESEARCH 2022; 204:111892. [PMID: 34464614 DOI: 10.1016/j.envres.2021.111892] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane distillation (MD) is considered as a promising and attractive technology due to its effective production of fresh water. However, the low permeability and easy wetting of MD membranes limit its practical applications. Herein carbon nanotubes (CNTs) and polyvinylidene fluoride-co-hexafluoropropylene (PcH) were used to fabricate nanofiber membranes by electrospinning. Effects of heat-press temperature and CNTs concentration on the morphology and performance of the as-fabricated membranes were systematically investigated. Dye rejections of CNTs/PcH membranes were also studied and role of CNTs played in the as-prepared MD membranes were analyzed. Results suggest that heat-press treatment effectively improved the mechanical strength as well as liquid entry pressure of membranes, and the optimal heat-press temperature was 150 °C. CNTs were proved to be successfully blended in nanofibers. Hydrophobicity and mechanical strength of membranes increased with CNTs incorporation. The 0.5 wt % CNTs loaded membrane heat-pressed at 150 °C exhibited the highest permeate flux (16.5-18.5 L m-2 h-1), which signified an increase of 42-50 % compared to the commercial MD membrane (11-13 L m-2 h-1) when 35 and 70 g L-1 NaCl solutions were used as feed solutions, respectively. It was noteworthy that salt rejection efficiencies of tested membranes achieved more than 99.99 %. When CNTs/PcH nanofiber membrane was applied to the treatment of dyeing wastewater, the removal rates of acid red and acid yellow reached 100 %. The removal rates of methylene blue and crystal violet were 99.41 % and 99.91 %, respectively. The present study suggested that the as-prepared membranes showed high potential towards MD application.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai, 201620, China; National University of Singapore, Department of Chemistry, 3 Science Drive 3, 117543, Singapore
| | - Qian Deng
- College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, PR China.
| | - Zhuang Kong
- College of Environmental Science and Engineering, Key Laboratory of Pollution Control and Emission Reduction Technology in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
17
|
Nabgan W, Jalil AA, Nabgan B, Ikram M, Ali MW, Lakshminarayana P. A state of the art overview of carbon-based composites applications for detecting and eliminating pharmaceuticals containing wastewater. CHEMOSPHERE 2022; 288:132535. [PMID: 34648794 DOI: 10.1016/j.chemosphere.2021.132535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The growing prevalence of new toxins in the environment continues to cause widespread concerns. Pharmaceuticals, organic pollutants, heavy metal ions, endocrine-disrupting substances, microorganisms, and others are examples of persistent organic chemicals whose effects are unknown because they have recently entered the environment and are displaying up in wastewater treatment facilities. Pharmaceutical pollutants in discharged wastewater have become a danger to animals, marine species, humans, and the environment. Although their presence in drinking water has generated significant concerns, little is known about their destiny and environmental effects. As a result, there is a rising need for selective, sensitive, quick, easy-to-handle, and low-cost early monitoring detection systems. This study aims to deliver an overview of a low-cost carbon-based composite to detect and remove pharmaceutical components from wastewater using the literature reviews and bibliometric analysis technique from 1970 to 2021 based on the web of science (WoS) database. Various pollutants in water and soil were reviewed, and different methods were introduced to detect pharmaceutical pollutants. The advantages and drawbacks of varying carbon-based materials for sensing and removing pharmaceutical wastes were also introduced. Finally, the available techniques for wastewater treatment, challenges and future perspectives on the recent progress were highlighted. The suggestions in this article will facilitate the development of novel on-site methods for removing emerging pollutants from pharmaceutical effluents and commercial enterprises.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Bahador Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - Mohamad Wijayanuddin Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | |
Collapse
|
18
|
Khan AA, Maitlo HA, Khan IA, Lim D, Zhang M, Kim KH, Lee J, Kim JO. Metal oxide and carbon nanomaterial based membranes for reverse osmosis and membrane distillation: A comparative review. ENVIRONMENTAL RESEARCH 2021; 202:111716. [PMID: 34293311 DOI: 10.1016/j.envres.2021.111716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 05/26/2023]
Abstract
Commercial membranes typically suffer from fouling and wetting during membrane distillation (MD). In contrast, reverse osmosis (RO) can be subject to the fouling issue if applied for highly saline feed solutions containing foulants (e.g., organics, oils, and surfactants). Among the diverse treatment options, the nanomaterial-based membranes have recently gained great interest due to their advantageous properties (e.g., enhanced flux and roughness, better pore size distribution, and higher conductivity). This review focuses on recent advances in the mechanical properties, anti-fouling capabilities, salt rejection, and economic viability of metal oxide (SiO2, TiO2, and ZnO) and carbon nanomaterial (graphene oxide/carbon nanotube)-based membranes. Current challenges in applying nanomaterial-based membranes are also discussed. The study further describes the preparation methods, mechanisms, commercial applications, and economical feasibility of metal oxide- and carbon nanomaterial-based membrane technologies.
Collapse
Affiliation(s)
- Aftab Ahmad Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Civil Engineering, COMSATS University Islamabad (CUI), Abbottabad Campus, Abbottabad, 22060, Pakistan.
| | - Hubdar Ali Maitlo
- Department of Energy & Environment Engineering, Dawood University of Engineering & Technology, M.A. Jinnah road, Karachi, 74800, Pakistan.
| | - Imtiaz Afzal Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Daehwan Lim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Jechan Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
19
|
Qin Q, Liu X, Wang H, Sun T, Chu F, Xie L, Brault P, Peng Q. Highly efficient desalination performance of carbon honeycomb based reverse osmosis membranes unveiled by molecular dynamics simulations. NANOTECHNOLOGY 2021; 32:375705. [PMID: 34020428 DOI: 10.1088/1361-6528/ac03d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Seawater desalination is vital to our modern civilization. Here, we report that the carbon honeycomb (CHC) has an outstanding water permeability and salt rejection in the seawater desalination, as revealed by molecular dynamics simulations. More than 92% of ions are rejected by CHC at applied pressures ranging from 50 to 250 MPa. CHC has a perfect salt rejection at pressures below 150 Mpa. On increasing the applied pressure up to 150 MPa, the salt rejection reduces only to 92%. Pressure, temperature and temperature gradient are noted to play a significant role in modulating the water flux. The water flux increases with pressure and temperature. With the introduction of a temperature gradient of 3.5 K nm-1, the seawater permeability increases by 33% as compared to room temperature. The water permeability of the CHC is greater than other carbon materials and osmosis membranes including graphene (8.7 times) and graphyne (2.1 times). It indicates the significant potential of the CHC for commercial application in water purification.
Collapse
Affiliation(s)
- Qin Qin
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xingyan Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Hanxiao Wang
- China Nuclear Power Technology Research Institute Co., Ltd, Reactor Engineering and Safety Research Center, Shenzhen 518031, People's Republic of China
| | - Tingwei Sun
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Lu Xie
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Pascal Brault
- GREMI UMR7344 CNRS, Université d'Orléans, BP6744, F-45067 Orleans Cedex 2, France
| | - Qing Peng
- Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center at Dhahran, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
20
|
Al-Gharabli S, Kujawa J. Molecular activation of fluoropolymer membranes via base piranha treatment to enhance transport and mitigate fouling – new materials for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Gupta I, Chakraborty J, Roy S, Farinas ET, Mitra S. Nanocarbon immobilized membranes for generating bacteria and endotoxin free water via membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Zhuang P, Li D, Xu N, Yu X, Zhou L. Stable Self-Floating Reduced Graphene Oxide Hydrogel Membrane for High Rate of Solar Vapor Evaporation under 1 sun. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000053. [PMID: 33437522 PMCID: PMC7788581 DOI: 10.1002/gch2.202000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
Highly efficient vapor generation with considerable stability under natural solar irradiance is a promising technology for seawater desalination and wastewater purification. Here a broadband solar absorber of reduced graphene oxide hydrogel membrane (rGOHM), synthesized via an environmentally friendly one-step hydrothermal reduction process, is demonstrated, which shows a high rate of solar vapor production and superior stability. The porous rGOHM containing more than 99.5% water within its small volume floats on the surface of water, exhibiting efficient solar absorption of ≈98% across 300-2500 nm, as well as sufficient water-pumping pathways. The evaporation rate can be tuned by changing the water volume. By controlling the water volume, the self-floating rGOHM can enable efficient interfacial solar vapor generation at a high rate of ≈2.33 kg m-2 h-1 under 1 sun, which is comparable to the rate generated by the evaporator with an extra insulator. In addition, the evaporation rate of rGOHM is only slightly affected at a high saltwater concentration (at least 15 wt%), and the rGOHM shows mechanical and physical stability. The superior evaporation performance combined with efficient eradication of wastewater contaminants, cost-effectiveness, and straightforward fabrication process, makes this rGOHMs ideal for advanced high-concentration seawater desalination and wastewater treatment technologies.
Collapse
Affiliation(s)
- Pengyu Zhuang
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesSchool of PhysicsKey Laboratory of Intelligent Optical Sensing and IntegrationMinistry of EducationNanjing UniversityNanjing210093P. R. China
- School of PhysicsSoutheast UniversityNanjing211189P. R. China
| | - Duo Li
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesSchool of PhysicsKey Laboratory of Intelligent Optical Sensing and IntegrationMinistry of EducationNanjing UniversityNanjing210093P. R. China
| | - Ning Xu
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesSchool of PhysicsKey Laboratory of Intelligent Optical Sensing and IntegrationMinistry of EducationNanjing UniversityNanjing210093P. R. China
| | - Xiaoqiang Yu
- School of PhysicsSoutheast UniversityNanjing211189P. R. China
- Nanjing Xiaozhuang UniversityNanjing211171P. R. China
| | - Lin Zhou
- National Laboratory of Solid State MicrostructuresCollege of Engineering and Applied SciencesSchool of PhysicsKey Laboratory of Intelligent Optical Sensing and IntegrationMinistry of EducationNanjing UniversityNanjing210093P. R. China
| |
Collapse
|
24
|
Cai J, Liu Z, Guo F. Transport Analysis of Anti-Wetting Composite Fibrous Membranes for Membrane Distillation. MEMBRANES 2020; 11:14. [PMID: 33374163 PMCID: PMC7823856 DOI: 10.3390/membranes11010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 01/26/2023]
Abstract
Composite electrospun fibrous membranes are widely studied for the application of membrane distillation. It is an effective approach to enhance the membrane distillation performance in terms of anti-wetting surface and permeate flux by fabricating composite fibrous membranes (CFMs) with a thin skin layer on a thick supporting layer. In this work, various membranes prepared with different pore sizes and porosities by polyacrylonitrile and polyvinylpyrrolidone were prepared. The membrane characteristics and membrane distillation performance were tested. The mass transfer across the membranes was analyzed experimentally and theoretically in detail. It is shown that the skin layer significantly increases liquid entry pressure of the CFM by 5 times. All the membranes have a similar permeate flux. The permeate flux of membranes is stable at 19.2 ± 1.2 kg/m2/h, and the salt rejection ratios remain above 99.98% at 78 ± 1 °C for 11 h. The pore size and porosity of membranes have an insignificant effect on the temperature distribution of membrane. The porosity and pore size of the skin layer have an insignificant effect on the mass transfer process of the CFM. The mass transfer process of the CFM is governed by the supporting layer.
Collapse
Affiliation(s)
| | | | - Fei Guo
- School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China; (J.C.); (Z.L.)
| |
Collapse
|
25
|
|
26
|
Yang G, Xie Z, Zhang S, Zheng H, Cai K, Cran M, Ng D, Wu C, Gray S. Functionalized Carbon Nanotube-Mediated Transport in Membranes Containing Fixed-Site Carriers for Fast Pervaporation Desalination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50918-50928. [PMID: 33108870 DOI: 10.1021/acsami.0c16934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Facilitated transport membranes (FTMs) comprising fixed carrier agents hold considerable potential for obtaining selective and fast separation of mixed molecules in either gas or liquid state. However, diffusion through the membrane is inevitably affected by the resistance from the polymer matrix, where the carrier is absent. Herein, a poly(vinyl alcohol) (PVA)-based separating layer combining the merits of fixed-site transport agents and inorganic nanofillers was developed to reduce the transport resistance. Carbon nanotubes (CNTs) with different degrees of oxidation were prepared and incorporated into the sulfonic acid (-SO3H)-modified PVA matrix. The resultant composite membrane consisting of a microporous polytetrafluoroethylene substrate and a thin PVA-based separating layer (∼700 nm thick) was subject to pervaporation desalination of sodium chloride solution (35,000 ppm) at 30 °C. The effect of -SO3H as a fixed transport agent in the PVA matrix was first investigated experimentally, showing an increase of water flux by 21.8% compared with a control membrane without the transport agent. Subsequently, the CNT-incorporated FTM exhibited good stability (50 h) and improvement in water transport, which was ∼161% of the control FTM (PVA with -SO3H) without loss of selectivity. Such high and stable performance achieved in the CNT-incorporated FTM originated from the construction of low-resistance transport pathways by CNTs between -SO3H groups as well as their uniform dispersion in the polymer matrix.
Collapse
Affiliation(s)
- Guang Yang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Shixin Zhang
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, P. R. China
| | - Kewei Cai
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Marlene Cran
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Chunrui Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Institute of Biological and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China
| | - Stephen Gray
- Institute for Sustainable Industries and Liveable Cities, Victoria University, P.O. Box 14428, Melbourne, Victoria 8001, Australia
| |
Collapse
|
27
|
Enhanced Performance of Carbon Nanotube Immobilized Membrane for the Treatment of High Salinity Produced Water via Direct Contact Membrane Distillation. MEMBRANES 2020; 10:membranes10110325. [PMID: 33142940 PMCID: PMC7693716 DOI: 10.3390/membranes10110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022]
Abstract
Membrane distillation (MD) is a promising desalination technology for the treatment of high salinity water. Here, we investigated the fouling characteristics of produced water obtained from hydraulic fracturing by implementing a carbon nanotube immobilized membrane (CNIM) via direct contact membrane distillation. The CNIM exhibited enhanced water vapor flux and antifouling characteristics compared to the pristine membrane. The normalized flux decline with the polytetrafluoroethylene (PTFE) membrane after 7 h of operation was found to be 18.2% more than the CNIM. The addition of 1-Hydroxy Ethylidene-1, 1-Diphosphonic acid (HEDP) antiscalant was found to be effective in reducing the membrane fouling. The salt deposition on the membrane surface was 77% less in the CNIM, which was further reduced with the addition of HEDP in the feed by up to 135.4% in comparison with the PTFE membrane. The presence of carbon nanotubes (CNTs) on the membrane surface also facilitated the regenerability of the membrane. The results indicated that the CNIM regained 90.9% of its initial water flux after washing, whereas the unmodified PTFE only regained 81.1% of its initial flux after five days of operation.
Collapse
|
28
|
Lee JH, Kim HS, Yun ET, Ham SY, Park JH, Ahn CH, Lee SH, Park HD. Vertically Aligned Carbon Nanotube Membranes: Water Purification and Beyond. MEMBRANES 2020; 10:membranes10100273. [PMID: 33023144 PMCID: PMC7601676 DOI: 10.3390/membranes10100273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/07/2022]
Abstract
Vertically aligned carbon nanotube (VACNT) membranes have attracted significant attention for water purification owing to their ultra-high water permeability and antibacterial properties. In this paper, we critically review the recent progresses in the synthesis of VACNT arrays and fabrication of VACNT membrane methods, with particular emphasis on improving water permeability and anti-biofouling properties. Furthermore, potential applications of VACNT membranes other than water purification (e.g., conductive membranes, electrodes in proton exchange membrane fuel cells, and solar electricity–water generators) have been introduced. Finally, future outlooks are provided to overcome the limitations of commercialization and desalination currently faced by VACNT membranes. This review will be useful to researchers in the broader scientific community as it discusses current and new trends regarding the development of VACNT membranes as well as their potential applications.
Collapse
Affiliation(s)
- Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Han-Shin Kim
- Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Gyeonggi-do, Korea;
| | - Eun-Tae Yun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - So-Young Ham
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Jeong-Hoon Park
- Clean Innovation Technology Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, Korea;
| | - Chang Hoon Ahn
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
| | - Sang Hyup Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea;
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02855, Korea; (J.H.L.); (E.-T.Y.); (S.-Y.H.); (C.H.A.)
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea;
- Correspondence: ; Tel.: +82-2-3290-4861; Fax: +82-2-3290-5999
| |
Collapse
|
29
|
Han M, Dong T, Hou D, Yao J, Han L. Carbon nanotube based Janus composite membrane of oil fouling resistance for direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118078] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Nagar A, Pradeep T. Clean Water through Nanotechnology: Needs, Gaps, and Fulfillment. ACS NANO 2020; 14:6420-6435. [PMID: 32433866 DOI: 10.1021/acsnano.9b01730] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sustainable nanotechnology has made substantial contributions in providing contaminant-free water to humanity. In this Review, we present the compelling need for providing access to clean water through nanotechnology-enabled solutions and the large disparities in ensuring their implementation. We also discuss the current nanotechnology frontiers in diverse areas of the clean water space with an emphasis on applications in the field and provide suggestions for future research. Extending the vision of sustainable and affordable clean water to environment in general, we note that cities can live and breathe well by adopting such technologies. By understanding the global environmental challenges and exploring remedies from emerging nanotechnologies, sustainability in clean water can be realized. We suggest specific pointers and quantify the impact of such technologies.
Collapse
Affiliation(s)
- Ankit Nagar
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
31
|
Membrane distillation: Progress in the improvement of dedicated membranes for enhanced hydrophobicity and desalination performance. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Murugesan V, Rana D, Matsuura T, Lan CQ. Optimization of nanocomposite membrane for vacuum membrane distillation (VMD) using static and continuous flow cells: Effect of nanoparticles and film thickness. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Tao J, Song X, Bao B, Zhao S, Liu H. The role of surface wettability on water transport through membranes. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Wang Y, Han M, Liu L, Yao J, Han L. Beneficial CNT Intermediate Layer for Membrane Fluorination toward Robust Superhydrophobicity and Wetting Resistance in Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20942-20954. [PMID: 32275384 DOI: 10.1021/acsami.0c03577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Robust membrane hydrophobicity is crucial in membrane distillation (MD) to produce clean water, yet challenged by wetting phenomenon. We herein proposed a robust superhydrophobization process, by making use of a carbon nanotube (CNT) intermediate layer over commercial hydrophobic membrane, indirectly grafting the low-surface-energy material 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FAS), with the achieved membrane denoted as PVDF-CNT-FAS, in systematic comparison with direct grafting FAS on alkalinized PVDF denoted as PVDF-OH-FAS. Superhydrophobicity with water contact angle of 180° was easily achieved from initial hydrophilic interface for both two resultant membranes. Interestingly, the existence of a CNT intermediate layer significantly maintained the stable hydrophobicity in various harsh conditions and improved mechanical properties, at an expense of ca. 20% smaller pore size and extended membrane thickness than PVDF-OH-FAS. In the MD experiment, the PVDF-CNT-FAS exhibited no vapor flux sacrifice, giving constant flux with the control and doubled that for PVDF-OH-FAS. A mass-heat transfer modeling suggested no significant heat loss but facilitated vapor flux with the CNT layer, unlike the impeded transfer for the counterpart membrane. A superior wetting resistance against 0.4 mM SDS further confirmed the benefit of constructing the CNT intermediate layer, presumably because of its excellent slippery property. This study demonstrates the important role of the CNT intermediate layer toward robust superhydrophobic membrane, suggesting the interest of applying the functional nanomaterial for controllable interface design.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Lang Liu
- Key Laboratory of low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400045, PR China
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, School of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
35
|
Yang G, Xie Z, Doherty CM, Cran M, Ng D, Gray S. Understanding the transport enhancement of poly (vinyl alcohol) based hybrid membranes with dispersed nanochannels for pervaporation application. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Intrchom W, Roy S, Mitra S. Removal and Recovery of Methyl Tertiary Butyl Ether (MTBE) from Water Using Carbon Nanotube and Graphene Oxide Immobilized Membranes. NANOMATERIALS 2020; 10:nano10030578. [PMID: 32235731 PMCID: PMC7153393 DOI: 10.3390/nano10030578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/07/2022]
Abstract
Methyl tert-butyl ether (MTBE) is a widely used gasoline additive that has high water solubility, and is difficult to separate from contaminated ground and surface waters. We present the development in functionalized carbon nanotube-immobilized membranes (CNIM-f) and graphene oxide-immobilized membranes (GOIM) for enhanced separation of MTBE via sweep gas membrane distillation (SGMD). Both types of modified membranes demonstrated high performance in MTBE removal from its aqueous mixture. Among the membranes studied, CNIM-f provided the best performance in terms of flux, removal efficiency, mass transfer coefficients and overall selectivity. The immobilization f-CNTs and GO altered the surface characteristics of the membrane and enhanced partition coefficients, and thus assisted MTBE transport across the membrane. The MTBE flux reached as high as 1.4 kg/m2 h with f-CNTs, which was 22% higher than that of the unmodified PTFE membrane. The maximum MTBE removal using CNIM-f reached 56% at 0.5 wt % of the MTBE in water, and at a temperature of 30 °C. With selectivity as high as 60, MTBE recovery from contaminated water is very viable using these nanocarbon-immobilized membranes.
Collapse
Affiliation(s)
| | | | - Somenath Mitra
- Correspondence: ; Tel.: +973-596-5611; Fax: 973-596-3586
| |
Collapse
|
38
|
Bio-mimetically inspired 3D-printed honeycombed support (spacer) for the reduction of reverse solute flux and fouling of osmotic energy driven membranes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Polyvinylidene fluoride phase design by two-dimensional boron nitride enables enhanced performance and stability for seawater desalination. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Functionalized carbon nanotube immobilized membrane for low temperature ammonia removal via membrane distillation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Triple-Layer Nanocomposite Membrane Prepared by Electrospinning Based on Modified PES with Carbon Nanotubes for Membrane Distillation Applications. MEMBRANES 2020; 10:membranes10010015. [PMID: 31963230 PMCID: PMC7022323 DOI: 10.3390/membranes10010015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
In this work, a novel triple-layer nanocomposite membrane prepared with polyethersulfone (PES)/carbon nanotubes (CNTs) as the primary bulk material and poly (vinylidene fluoride-co-hexafluoro propylene) (PcH)/CNTs as the outer and inner surfaces of the membrane by using electrospinning method is introduced. Modified PES with CNTs was chosen as the bulk material of the triple-layer membrane to obtain a high porosity membrane. Both the upper and lower surfaces of the triple-layer membrane were coated with PcH/CNTs using electrospinning to get a triple-layer membrane with high total porosity and noticeable surface hydrophobicity. Combining both characteristics, next to an acceptable bulk hydrophobicity, resulted in a compelling membrane for membrane distillation (MD) applications. The prepared membrane was utilized in a direct contact MD system, and its performance was evaluated in different salt solution concentrations, feed velocities and feed solution temperatures. The results of the prepared membrane in this study were compared to those reported in previously published papers. Based on the evaluated membrane performance, the triple-layer nanocomposite membrane can be considered as a potential alternative with reasonable cost, relative to other MD membranes.
Collapse
|
42
|
Cao M, Zhang Y, Zhang B, Liu Z, Ma X, Chen C. The preparation of a modified PVDF hollow fiber membrane by coating with multiwalled carbon nanotubes for high antifouling performance. RSC Adv 2020; 10:1848-1857. [PMID: 35494614 PMCID: PMC9048249 DOI: 10.1039/c9ra07542a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
In this study, an outer surface modified polyvinylidene fluoride (PVDF) hollow fiber membrane (HF-PVDF-CNT) was prepared by coating with dopamine (PD) and multiwalled carbon nanotubes (CNTs), to solve the problems of the instability of pure CNT mats fabricated by filter coating methods and membrane fouling in wastewater treatment. The modified membrane was assessed and characterized by various methods, including studies of its top surface and cross-sectional morphology, wettability, functional groups and electrical conductivity. The CNT material stability was evaluated during backwashing. The antifouling and filtering abilities of the unmodified and modified membranes were tested by monitoring the change in TMP and the rejection performance for different contaminants during filtration in bovine serum albumin solution (BSA), sodium alginate solution (SA) and humic acid solution (HA). Furthermore, HF-PVDF-CNT and electro-assisted HF-PVDF-CNT membranes were employed as the basic separation units in an anaerobic membrane bioreactor (AnMBR) system and an anaerobic electrochemical membrane bioreactor (AnEMBR) system, respectively. Characterization of the HF-PVDF-CNT membrane indicated that the CNT mats exhibited good stability, electrical conductivity and wettability. In filtration experiments using BSA, SA and HA solutions, the HF-PVDF-CNT membrane showed an obvious improvement compared with the HF-PVDF membrane in antifouling performance. During its application in the AnMBR and AnEMBR systems, the electro-assisted HF-PVDF-CNT membrane had greater effects than the HF-PVDF-CNT membrane on reducing fouling.
Collapse
Affiliation(s)
- MengJing Cao
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - Yan Zhang
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| | - BoKang Zhang
- Gao'antun Reclaimed Water Plant of Beijing Drainage Group Co.,Ltd. Beijing 100024 Bejing China
| | - ZiQi Liu
- Beijing General Municipal Engineering Design & Research Institude Co.,Ltd., Beijing 100082 Beijing China
| | - XiangShan Ma
- Beijing General Municipal Engineering Design & Research Institude Co.,Ltd., Beijing 100082 Beijing China
| | - ChangMing Chen
- Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
43
|
Das K, Sappati S, Hazra P. Peculiar hydrogen bonding behaviour of water molecules inside the aqueous nanochannels of lyotropic liquid crystals. Phys Chem Chem Phys 2020; 22:6210-6221. [DOI: 10.1039/c9cp06405b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The hydrogen bonding abilities of the LLC water molecules and their effects on intramolecular hydrogen bonds of the target probe molecules.
Collapse
Affiliation(s)
- Konoya Das
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
| | - Subrahmanyam Sappati
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
| | - Partha Hazra
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER)
- Pune
- India
- Centre for Energy Science
| |
Collapse
|
44
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
45
|
Scaling Reduction in Carbon Nanotube-Immobilized Membrane during Membrane Distillation. WATER 2019. [DOI: 10.3390/w11122588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Membrane distillation (MD) is fast evolving as a desalination technology for high-salinity waters where scaling remains a major challenge. This paper reports the scaling reduction in carbon nanotube-immobilized membranes (CNIMs) and by the use of the antiscalant polyacrylic acid. High concentrations of CaSO4, CaCO3, and BaSO4 were deliberately used to initiate scaling on the membranes. It was observed that after ten hours of operation in a highly scaling CaSO4 environment, the CNIM showed 127% higher flux than what was observed on a membrane without the CNTs. The trends were similar with CaCO3 and BaSO4, where the CNIM showed significantly improved antiscaling behavior. The normalized flux declination for CNIM was found to be 45%, 30%, and 53% lower compared to the pristine membrane with CaSO4, CaCO3, and BaSO4 solutions, respectively. The use of antiscalant in the feed solution was also found to be effective in improving antiscaling behavior, which reduced salt deposition up to 28%, and the water vapor flux was 100% and 18% higher for the pristine polypropylene and CNIM, respectively. Results also showed that the presence of CNTs facilitated the removal of deposited salts by washing, and the CNIM regained 97% of its initial water flux, whereas the polypropylene only regained 85% of the original value.
Collapse
|
46
|
Simulation and characterization of novel reverse osmosis membrane prepared by blending polypyrrole coated multiwalled carbon nanotubes for brackish water desalination and antifouling properties using artificial neural networks. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Zaragoza A, Gonzalez MA, Joly L, López-Montero I, Canales MA, Benavides AL, Valeriani C. Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Phys Chem Chem Phys 2019; 21:13653-13667. [PMID: 31190039 DOI: 10.1039/c9cp02485a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the past few decades great effort has been devoted to the study of water confined in hydrophobic geometries at the nanoscale (tubes and slit pores) due to the multiple technological applications of such systems, ranging from drug delivery to water desalination devices. To our knowledge, neither numerical/theoretical nor experimental approaches have so far reached a consensual understanding of structural and transport properties of water under these conditions. In this work, we present molecular dynamics simulations of TIP4P/2005 water under different nanoconfinements (slit pores or nanotubes, with two degrees of hydrophobicity) within a wide temperature range. It has been found that water is more structured near the less hydrophobic walls, independently of the confining geometries. Meanwhile, we observe an enhanced diffusion coefficient of water in both hydrophobic nanotubes. Finally, we propose a confined Stokes-Einstein relation to obtain the viscosity from diffusivity, whose result strongly differs from the Green-Kubo expression that has been used in previous works. While viscosity computed with the Green-Kubo formula (applied for anisotropic and confined systems) strongly differs from that of the bulk, viscosity computed with the confined Stokes-Einstein relation is not so much affected by the confinement, independently of its geometry. We discuss the shortcomings of both approaches, which could explain this discrepancy.
Collapse
Affiliation(s)
- A Zaragoza
- Departamento de Estructura de la Materia, Facultad de Ciencias Físicas, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain. and Depto. Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Mexico
| | - M A Gonzalez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - L Joly
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - I López-Montero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain and Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - M A Canales
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A L Benavides
- Depto. Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Mexico
| | - C Valeriani
- Departamento de Estructura de la Materia, Facultad de Ciencias Físicas, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
48
|
Yang G, Xie Z, Cran M, Ng D, Gray S. Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Zhou R, Rana D, Matsuura T, Lan CQ. Effects of multi-walled carbon nanotubes (MWCNTs) and integrated MWCNTs/SiO2 nano-additives on PVDF polymeric membranes for vacuum membrane distillation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Shi SJ, Pan YH, Wang SF, Dai ZW, Gu L, Wu QY. Aluminosilicate Nanotubes Embedded Polyamide Thin Film Nanocomposite Forward Osmosis Membranes with Simultaneous Enhancement of Water Permeability and Selectivity. Polymers (Basel) 2019; 11:E879. [PMID: 31091763 PMCID: PMC6572521 DOI: 10.3390/polym11050879] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 11/16/2022] Open
Abstract
Nanocomposite membranes are strongly desired to break a trade-off between permeability and selectivity. This work reports new thin film nanocomposite (TFN) forward osmosis (FO) membranes by embedding aluminosilicate nanotubes (ANTs) into a polyamide (PA) rejection layer. The surface morphology and structure of the TFN FO membranes were carefully characterized by FTIR, XPS, FESEM and AFM. The ANTs incorporated PA rejection layers exhibited many open and broad "leaf-like" folds with "ridge-and-valley" structures, high surface roughness and relatively low cross-linking degree. Compared with thin film composite (TFC) membrane without ANTs, the TFN membrane with only 0.2 w/v% ANTs loading presented significantly improved FO water permeability, selectivity and reduced structural parameters. This promising performance can be mainly contributed to the special ANTs embedded PA rejection layer, where water molecules preferentially transport through the nanochannels of ANTs. Molecular dynamic simulation further proved that water molecules have much larger flux through the nanotubes of ANTs than sodium and chloride ions, which are attributed to the intrinsic hydrophilicity of ANTs and low external force for water transport. This work shows that these TFN FO membranes with ANTs decorated PA layer are promising in desalination applications due to their simultaneously enhanced permeability and selectivity.
Collapse
Affiliation(s)
- She-Ji Shi
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Ye-Han Pan
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shao-Fei Wang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Zheng-Wei Dai
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences; Ningbo 315201; China.
| | - Qing-Yun Wu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|