1
|
Sampath G, Chen YY, Rameshkumar N, Krishnan M, Nagarajan K, Shyu DJH. Biologically Synthesized Silver Nanoparticles and Their Diverse Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3126. [PMID: 36144915 PMCID: PMC9500900 DOI: 10.3390/nano12183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.
Collapse
Affiliation(s)
- Gattu Sampath
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
| | | | | | - Kayalvizhi Nagarajan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
2
|
Bapat G, Mulla J, Labade C, Ghuge O, Tamhane V, Zinjarde S. Assessment of recombinant glutathione-S-transferase (HaGST-8) silica nano-conjugates for effective removal of pesticides. ENVIRONMENTAL RESEARCH 2022; 204:112052. [PMID: 34597663 DOI: 10.1016/j.envres.2021.112052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Diverse glutathione-S-transferases (GSTs) are produced by insect pests including Helicoverpa armigera (HaGSTs) for detoxification of insecticides or xenobiotic compounds that they encounter. In an earlier study, the HaGST-8 gene was isolated from H. armigera larvae exposed to pesticide mixtures and the recombinant protein was expressed in the yeast Pichia pastoris. In this investigation, HaGST-8 was successfully immobilized on glutaraldehyde-activated APTES functionalized silica nanoparticles to obtain SiAPT-HaGST-8 nano-conjugates. Although enzyme activity associated with these conjugates was comparable to that of free HaGST-8, the specific activity of the former was found to be 1.25 times higher than the latter. In comparison with the free enzyme (that demonstrated a pH optimum of 9.0), for the nano-conjugates, the pH range was extended between pH 8.0 to 9.0. The optimum temperature for activity of both forms of the enzyme was found to be 30 °C. Stability of the enzyme was improved from 20 d for free HaGST-8 to 30 d for SiAPT-HaGST-8 nano-conjugates. Some loss in GST activity was detected after every reuse cycle of nano-conjugates and in all, 63% reduction was observed after three cycles. When 3 kinds of pesticides (namely, chlorpyrifos, dichlorvos and cypermethrin) were reacted with SiAPT-HaGST-8, more than 80% reduction in levels were observed. On the basis of the results obtained, the use of such silica nanoparticle-based systems for stable enzyme conjugation followed by effective removal of pesticides from aqueous media is envisaged.
Collapse
Affiliation(s)
- Gandhali Bapat
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Javed Mulla
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Chaitali Labade
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Onkar Ghuge
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India
| | - Vaijayanti Tamhane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007, Maharashtra, India.
| |
Collapse
|
3
|
Aghamolaei M, Landarani-Isfahani A, Bahadori M, Nori ZZ, Rezaei S, Moghadam M, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Preparation and characterization of stable core/shell Fe 3O 4@Au decorated with an amine group for immobilization of lipase by covalent attachment. RSC Adv 2022; 12:5971-5977. [PMID: 35424559 PMCID: PMC8982027 DOI: 10.1039/d1ra08147k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/08/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly approach was used for amine decoration of core/shell Fe3O4@Au with 4-aminothiophenol. This structure was used for covalent immobilization of lipase using a Ugi 4-component reaction. The amine group on the structure and carboxylic group from lipase can react in the Ugi reaction and a firm and stable covalent bond is created between enzyme and support. The synthesized structure was fully characterized and its activity was explored in different situations. The results showed the pH and temperature stability of immobilized lipase compared to free lipase in a wide range of pH and temperature. Also after 60 days, it showed excellent activity while residual activity for the free enzyme was only 10%. The synthesized structure was conveniently separated using an external magnetic field and reused 6 times without losing the activity of the immobilized enzyme. The self-assembly approach was used for amine decoration of core/shell Fe3O4@Au with 4-aminothiophenol.![]()
Collapse
Affiliation(s)
- Marziyeh Aghamolaei
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | | | - Mehrnaz Bahadori
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Zahra Zamani Nori
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Saghar Rezaei
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Majid Moghadam
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | | | - Valiollah Mirkhani
- Catalysis Division, Department of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | | |
Collapse
|
4
|
Bapat G, Zinjarde S, Tamhane V. Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids Surf B Biointerfaces 2020; 193:111079. [PMID: 32361552 DOI: 10.1016/j.colsurfb.2020.111079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/29/2023]
Abstract
The inert and surface tunable nature of silica nanoparticles (SiNPs) makes them suitable for different applications. We have evaluated the potential of SiNPs for delivering proteins in tomato (Lycopersicon esculentum) plants. SiNPs of 20 and 100 nm (Si20 and Si100) were functionalized with (3-aminopropyl) triethoxysilane (APTES) to obtain Si20APT and Si100APT, respectively, that were non-toxic toward plants. The functionalized nanoparticles were taken up by plants through roots as well as leaf surfaces. They were seen to be localized near the vasculature, particularly around the xylem. Si20APT and Si100APT nanoparticles were conjugated with soybean trypsin inhibitor (STI) to yield Si20APT-STI and Si100APT-STI, respectively. Based on the trypsin inhibitory activity of loaded nanoparticles, optimum loading was obtained for 0.4 mg of STI per 0.8 mg of NPs. Si20APT nanoparticles retained higher contents of STI than Si100APT. Exposure of STI-conjugated nanoparticles to 25°C or pH 8.0 aided release of the inhibitor. The particle bound STI inhibited bovine trypsin by 80% and Helicoverpa armigera gut proteinase (HGP) activity by 50%. Second instar H. armigera larvae ingesting STI-loaded particles (incorporated in artificial diet or leaves) showed significant retardation in growth. In choice assays, Si20APT-STI applied leaf discs were strikingly avoided by insect larvae. On the basis of the results obtained in this investigation, we recommend the use of Si20 nanoparticles for developing plant delivery vehicles in the future.
Collapse
Affiliation(s)
- Gandhali Bapat
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Vaijayanti Tamhane
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
5
|
Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 2019; 128:9-21. [DOI: 10.1016/j.enzmictec.2019.05.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
|
6
|
Gannavarapu KP, Ganesh V, Thakkar M, Mitra S, Dandamudi RB. Nanostructured Diatom-ZrO 2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 288:611-617. [PMID: 31772421 PMCID: PMC6879064 DOI: 10.1016/j.snb.2019.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the current work we report a simple and scalable technique for synthesis of ordered nanoporous Si-ZrO2 composite derived from the diatom Phaeodactylum tricornutum. The composite was well characterized using SEM, TEM-EDX, FTIR, TGA, BET and DLS. The diatom-ZrO2 was found to have a specific surface area of 140 m2/g, Si:Zr ratio of 1:4 and a particle size of 80 ± 2 nm. This composite was evaluated as an enzyme free electrochemical sensor towards the detection of methyl parathion (MP) and showed excellent sensing ability at extremely low detection limits of 54.3 pM and a linear concentration range of 3.4 nM to 64 μM. The diatom-ZrO2 composite was also found to be highly selective towards MP as shown by its response even in the presence of high concentrations of other interfering molecules and ions.
Collapse
Affiliation(s)
- Krishna Prasad Gannavarapu
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam Campus, Puttaparthi, Anantapur Dist, Andhra Pradesh, India
| | - V. Ganesh
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
| | - Megha Thakkar
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 151 Tiernan Hall, Newark, NJ, 07102, United States
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 151 Tiernan Hall, Newark, NJ, 07102, United States
| | - Rajesh Babu Dandamudi
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam Campus, Puttaparthi, Anantapur Dist, Andhra Pradesh, India
- Corresponding author at: Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prashanthi Nilayam, 515134, India. (R.B. Dandamudi)
| |
Collapse
|
7
|
Zhang X, Liang X, Ma X, Hou R, Li X, Wang F. Highly stable near-infrared dye conjugated cerasomes for fluorescence imaging-guided synergistic chemo-photothermal therapy of colorectal cancer. Biomater Sci 2019; 7:2873-2888. [DOI: 10.1039/c9bm00458k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dye-conjugated cerasome loaded with DOX exhibited high stability and controllable drug release, holding great promise in colorectal cancer photothermal chemotherapy.
Collapse
Affiliation(s)
- Xu Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaolong Liang
- Department of Ultrasound
- Peking University Third Hospital
- Beijing
- China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals
- CAS Center for Excellence in Biomacromolecules
- Institute of Biophysics
- Chinese Academy of Sciences
- Beijing
| | - Rui Hou
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine
- School of Basic Medical Sciences
- Peking University Health Science Center
- Beijing
- China
| |
Collapse
|
8
|
Electrically nanowired-enzymes for probe modification and sensor fabrication. Biosens Bioelectron 2018; 121:223-235. [DOI: 10.1016/j.bios.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
|
9
|
Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assembly. J Colloid Interface Sci 2018; 531:555-563. [DOI: 10.1016/j.jcis.2018.07.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
|
10
|
Wu L, Qiu J, Wu S, Liu X, Liu C, Xu Z, Li S, Xu H. Bioinspired Production of Antibacterial Sucrose Isomerase-Sponge for the Synthesis of Isomaltulose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Juanjuan Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiaoliu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
11
|
Bapat G, Labade C, Chaudhari A, Zinjarde S. Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interface Sci 2016; 237:1-14. [PMID: 27780560 DOI: 10.1016/j.cis.2016.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/07/2022]
Abstract
Silica nanoparticles (SiNPs) find applications in the fields of drug delivery, catalysis, immobilization and sensing. Their synthesis can be mediated in a facile manner and they display broad range compatibility and stability. Their existence in the form of spheres, wires and sheets renders them suitable for varied purposes. This review summarizes the use of silica nanostructures in developing techniques for extraction, detection and degradation of pesticides. Silica nanostructures on account of their sorbent properties, porous nature and increased surface area allow effective extraction of pesticides. They can be modified (with ionic liquids, silanes or amines), coated with molecularly imprinted polymers or magnetized to improve the extraction of pesticides. Moreover, they can be altered to increase their sensitivity and stability. In addition to the analysis of pesticides by sophisticated techniques such as High Performance Liquid Chromatography or Gas chromatography, silica nanoparticles related simple detection methods are also proving to be effective. Electrochemical and optical detection based on enzymes (acetylcholinesterase and organophosphate hydrolase) or antibodies have been developed. Pesticide sensors dependent on fluorescence, chemiluminescence or Surface Enhanced Raman Spectroscopic responses are also SiNP based. Moreover, degradative enzymes (organophosphate hydrolases, carboxyesterases and laccases) and bacterial cells that produce recombinant enzymes have been immobilized on SiNPs for mediating pesticide degradation. After immobilization, these systems show increased stability and improved degradation. SiNP are significant in developing systems for effective extraction, detection and degradation of pesticides. SiNPs on account of their chemically inert nature and amenability to surface modifications makes them popular tools for fabricating devices for 'on-site' applications.
Collapse
|
12
|
Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 2016; 80:59-66. [DOI: 10.1016/j.bios.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
13
|
Kolíbal M, Novák L, Shanley T, Toth M, Šikola T. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy. NANOSCALE 2016; 8:266-275. [PMID: 26608729 DOI: 10.1039/c5nr05152e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Growth of one-dimensional materials is possible through numerous mechanisms that affect the nanowire structure and morphology. Here, we explain why a wide range of morphologies is observed when silicon oxide nanowires are grown on silicon substrates using liquid gallium catalyst droplets. We show that a gallium oxide overlayer is needed for nanowire nucleation at typical growth temperatures, and that it can decompose during growth and, hence, dramatically alter the nanowire morphology. Gallium oxide decomposition is attributed to etching caused by hydrogen that can be supplied by thermal dissociation of H2O (a common impurity). We show that H2O dissociation is catalyzed by silicon substrates at temperatures as low as 320 °C, identify the material supply pathways and processes that rate-limit nanowire growth under dry and wet atmospheres, and present a detailed growth model that explains contradictory results reported in prior studies. We also show that under wet atmospheres the Ga droplets can be mobile and promote nanowire growth as they traverse the silicon substrate.
Collapse
Affiliation(s)
- Miroslav Kolíbal
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic and CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno, Czech Republic
| | - Libor Novák
- FEI Company, Vlastimila Pecha 1282/12, 627 00 Brno, Czech Republic.
| | - Toby Shanley
- School of Mathematical and Physical Sciences, University of Technology, Sydney, Ultimo 2007, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology, Sydney, Ultimo 2007, Australia
| | - Tomáš Šikola
- Institute of Physical Engineering, Brno University of Technology, Technická 2, 616 69 Brno, Czech Republic and CEITEC BUT, Brno University of Technology, Technická 10, 61669 Brno, Czech Republic
| |
Collapse
|
14
|
Li X, Ouyang J, Zhou Y, Yang H. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies. Sci Rep 2015; 5:13763. [PMID: 26333629 PMCID: PMC4558717 DOI: 10.1038/srep13763] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/09/2022] Open
Abstract
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
Collapse
Affiliation(s)
- Xiaoyu Li
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Jing Ouyang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yonghua Zhou
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Centre for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
15
|
Sekova VY, Isakova EP, Deryabina YI. Biotechnological applications of the extremophilic yeast Yarrowia lipolytica (review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815030151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Wu L, Liu Y, Chi B, Xu Z, Feng X, Li S, Xu H. An innovative method for immobilizing sucrose isomerase on ε-poly-L-lysine modified mesoporous TiO2. Food Chem 2015; 187:182-8. [PMID: 25977014 DOI: 10.1016/j.foodchem.2015.04.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/11/2015] [Accepted: 04/17/2015] [Indexed: 11/28/2022]
Abstract
Sucrose isomerase (SIase) is the key enzyme in the enzymatic synthesis of isomaltulose. Mesoporous titanium dioxide (M-TiO2) and ε-poly-L-lysine-functionalized M-TiO2 (EPL-M-TiO2) were prepared as carriers for immobilizing SIase. SIase was effectively immobilized on EPL-M-TiO2 (SI-EPL-M-TiO2) with an enzyme activity of 39.41 U/g, and the enzymatic activity recovery rate up to 93.26%. The optimal pH and temperature of immobilized SIase were 6.0 and 30° C, respectively. SI-EPL-M-TiO2 was more stable in pH and thermal tests than SIase immobilized on M-TiO2 and free SIase. K(m) of SI-EPL-M-TiO2 was 204.92 mmol/L, and vmax was 45.7 μmol/L/s. Batch catalysis reaction of sucrose by SI-EPL-M-TiO2 was performed under the optimal conditions. The half-life period of SI-EPL-M-TiO2 under continuous reaction was 114 h, and the conversion rate of sucrose after 16 batches consistently remained at around 95%, which indicates that SI-EPL-M-TiO2 has good operational stability. Thus, SI-EPL-M-TiO2 can be used as a biocatalyst in food industries.
Collapse
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Yi Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
17
|
Zhang H, Sheng Y, Zhou X, Chen J, Shi Z, Xu X, Zou H. Synthesis, Structure, and Optical Properties of SiO
2
:Eu
3+
Nanowires. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201403204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China, http://chem.jlu.edu.cn/chemistry/teacher.php?tid=302&&id=6
| | - Ye Sheng
- College of Chemistry, Jilin University, Changchun 130012, PR China, http://chem.jlu.edu.cn/chemistry/teacher.php?tid=302&&id=6
| | - Xiuqing Zhou
- College of Chemistry, Jilin University, Changchun 130012, PR China, http://chem.jlu.edu.cn/chemistry/teacher.php?tid=302&&id=6
| | - Jie Chen
- College of Chemistry, Jilin University, Changchun 130012, PR China, http://chem.jlu.edu.cn/chemistry/teacher.php?tid=302&&id=6
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xuechun Xu
- College of Earth Sciences, Jilin University, Changchun 130026, PR China
| | - Haifeng Zou
- College of Chemistry, Jilin University, Changchun 130012, PR China, http://chem.jlu.edu.cn/chemistry/teacher.php?tid=302&&id=6
| |
Collapse
|
18
|
Kaushik A, Kumar R, Huey E, Bhansali S, Nair N, Nanir M. Silica Nanowires: Growth, Integration, and Sensing Applications. Mikrochim Acta 2014; 181:1759-1780. [PMID: 25382871 DOI: 10.1007/s00604-014-1255-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This review (with 129 refs.) gives an overview on how the integration of silica nanowires (NWs) into micro-scale devices has resulted, in recent years, in simple yet robust nano-instrumentation with improved performance in targeted application areas such as sensing. This has been achieved by the use of appropriate techniques such as di-electrophoresis and direct vapor-liquid-growth phenomena, to restrict the growth of NWs to site-specific locations. This also has eliminated the need for post-growth processing and enables nanostructures to be placed on pre-patterned substrates. Various kinds of NWs have been investigated to determine how their physical and chemical properties can be tuned for integration into sensing structures. NWs integrated onto interdigitated micro-electrodes have been applied to the determination of gases and biomarkers. The technique of directly growing NWs eliminates the need for their physical transfer and thus preserves their structure and performance, and further reduces the costs of fabrication. The biocompatibility of NWs also has been studied with respect to possible biological applications. This review addresses the challenges in growth and integration of NWs to understand related mechanism on biological contact or gas exposure and sensing performance for personalized health and environmental monitoring.
Collapse
Affiliation(s)
- Ajeet Kaushik
- Department of Immunology, College of medicine, Florida International University, Miami, FL-33199 USA
| | - Rajesh Kumar
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL-33174, USA ; Department of Physics, Panjab University, Chandigarh-160014, India
| | - Eric Huey
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL-33174, USA
| | - Shekhar Bhansali
- Bio-MEMS and Microsystems Laboratory, Department of Electrical and Computer Engineering, Florida International University, Miami, FL-33174, USA
| | - Narayana Nair
- Department of Immunology, College of medicine, Florida International University, Miami, FL-33199 USA ; Department of Surgery, Cleveland Clinic, Weston, FL-33331, USA
| | - Madhavan Nanir
- Department of Immunology, College of medicine, Florida International University, Miami, FL-33199 USA
| |
Collapse
|
19
|
Batista KA, Purcena LL, Alves GL, Fernandes KF. A pectin–lipase derivative as alternative copolymer for lipase assay. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Abel B, Aslan K. Immobilization of enzymes to silver island films for enhanced enzymatic activity. J Colloid Interface Sci 2014; 415:133-42. [PMID: 24267340 PMCID: PMC3863589 DOI: 10.1016/j.jcis.2013.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/10/2013] [Accepted: 10/13/2013] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS The performance of the enzyme-based biosensors depends on the enzymatic activity and the use of an appropriate technique for immobilization of enzymes. The incorporation of silver island films (SIFs) into the enzyme-based biosensors is expected to enhance the enzymatic activity and to increase the detectability of analytes of interest. EXPERIMENTS Two enzymes, β-galactosidase (β-Gal) and alkaline phosphatase (AP) were immobilized onto SIFs using the interactions of avidin-modified enzymes with (i) a monolayer of biotinylated bovine serum albumin (b-BSA) and/or (ii) a monolayer of biotinylated poly(ethylene-glycol)-amine (BEA molecular weight: 550-10,000Da). To confirm the effect of SIFs on enzymatic activity, two control surfaces (no silver) were also employed. FINDINGS No enhancement in enzymatic activity for β-Gal on all SIFs was observed, which was attributed to the inhibition of β-Gal activity due to direct interactions of β-Gal with SIFs. The AP activity on SIFs with BEA was significantly larger than that observed on SIFs with b-BSA, where a 300% increase in AP activity was observed as compared to control surfaces. These observations suggest that SIFs can significantly enhance AP activity, which could help improve the detection limits of ELISAs and immunoassays that employ AP.
Collapse
Affiliation(s)
- Biebele Abel
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 USA
| | - Kadir Aslan
- Morgan State University, Department of Chemistry, 1700 East Cold Spring Lane, Baltimore, MD 21251 USA
| |
Collapse
|
21
|
Rao A, Bankar A, Kumar AR, Gosavi S, Zinjarde S. Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 146:63-73. [PMID: 23422514 DOI: 10.1016/j.jconhyd.2012.12.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/30/2012] [Accepted: 12/16/2012] [Indexed: 05/21/2023]
Abstract
The removal of hexavalent chromium [Cr (VI)], an important ground water pollutant by phyto-inspired Fe(0)/Fe(3)O(4) nanocomposite-modified cells of Yarrowia lipolytica (NCIM 3589 and NCIM 3590), was investigated. Electron microscopy and magnetometer studies indicated an effective modification of yeast cell surfaces by the nanocomposites. The effect of pH, temperature, agitation speed, contact time and initial metal ion concentration on the removal of Cr (VI) was determined. The specific uptake values at pH 2.0 were 186.32±3.17 and 137.31±4.53 mg g(-1) for NCIM 3589 and NCIM 3590, respectively, when 1000 mg L(-1) of metal ion concentrations were used. The equilibrium data fitted to Scatchard, Langmuir and linearized Freundlich models suggesting that adsorption played a role in the removal of Cr (VI) ions. The surface modified yeast cells displayed higher values of Langmuir and Scatchard coefficients than the unmodified cells indicating that the former were more efficient in Cr (VI) removal. The enhanced detoxification of Cr (VI) ions by this composite material could be attributed to the reductive power of the Fe(0)/Fe(3)O(4) nanocomposites as well the yeast cell surface functional groups.
Collapse
Affiliation(s)
- Ashit Rao
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | | | | | | | | |
Collapse
|
22
|
Terentyeva TG, Matras A, Van Rossom W, Hill JP, Ji Q, Ariga K. Bioactive flake–shell capsules: soft silica nanoparticles for efficient enzyme immobilization. J Mater Chem B 2013; 1:3248-3256. [DOI: 10.1039/c3tb20461h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
New tools for exploring "old friends-microbial lipases". Appl Biochem Biotechnol 2012; 168:1163-96. [PMID: 22956276 DOI: 10.1007/s12010-012-9849-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.
Collapse
|