1
|
Wachendörfer M, Buhl EM, Messaoud GB, Richtering W, Fischer H. pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Open-Porous Fibrin-Collagen Hydrogel Blends without Chemical Cross-Linker. Adv Healthc Mater 2023; 12:e2203302. [PMID: 36546310 PMCID: PMC11468609 DOI: 10.1002/adhm.202203302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| | - Ghazi Ben Messaoud
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Walter Richtering
- Institute of Physical ChemistryRWTH Aachen UniversityLandoltweg 252074AachenGermany
- Physical ChemistryDWI–Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052074AachenGermany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials ResearchRWTH Aachen University HospitalPauwelsstrasse 3052074AachenGermany
| |
Collapse
|
2
|
Zhang F, Tao H, Gluck JM, Wang L, Daneshmand MA, King MW. A textile-reinforced composite vascular graft that modulates macrophage polarization and enhances endothelial cell migration, adhesion and proliferation in vitro. SOFT MATTER 2023; 19:1624-1641. [PMID: 36752696 DOI: 10.1039/d2sm01190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
At the present time, there is no successful off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. In this study, we engineer a textile-reinforced hydrogel vascular graft. The textile fibers are circularly knitted into a flexible yet robust conduit to serve as the backbone of the composite vascular graft and provide the primary mechanical support. It is embedded in the hydrogel matrix which seals the open structure of the knitted reinforcement and mediates cellular response toward a faster reendothelialization. The mechanical properties of the composite vascular graft, including bursting strength, suture retention strength and radial compliance, significantly surpass the requirement for the vascular graft application and can be adjusted by altering the structure of the textile reinforcement. The addition of hydrogel matrix, on the other hand, improves the survival, adhesion and proliferation of endothelial cells in vitro. The composite vascular graft also enhances macrophage activation and upregulates M1 and M2 related gene expression, which further improves the endothelial cell migration that might favor the reendothelialization of the vascular graft. Taken together, the textile-reinforced hydrogel shows it potential to be a promising scaffold material to fabricate a tissue engineered vascular graft.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Hui Tao
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Lu Wang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mani A Daneshmand
- Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
- College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Wachendörfer M, Schräder P, Buhl EM, Palkowitz AL, Ben Messaoud G, Richtering W, Fischer H. A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin-gelatin hydrogel blends. Biomater Sci 2022; 10:5552-5565. [PMID: 35969162 DOI: 10.1039/d2bm00214k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibrin-gelatin hydrogel blends exhibit high potential for tissue engineering in vitro applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability. We investigated these hydrogel blends' compressive strength, in vitro degradation stability, and microstructure in order to test this hypothesis. In addition, we examined the gel's ability to support endothelial cell proliferation and stretching of encapsulated smooth muscle cells. This research showed that a controlled heat pretreatment of the gelatin component strongly influenced the stiffness, swelling, shrinking, and microstructural architecture of the final blends regardless of identical gelatin mass fractions. All blends offered high long-term hydrolytic stability. In conclusion, the results of this study open the possibility to use this technique in order to tune low-concentrated, open-porous fibrin-based hydrogels, even in long-term tissue engineering in vitro experiments.
Collapse
Affiliation(s)
- Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Philipp Schräder
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Alena L Palkowitz
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Zhang F, King MW. Immunomodulation Strategies for the Successful Regeneration of a Tissue-Engineered Vascular Graft. Adv Healthc Mater 2022; 11:e2200045. [PMID: 35286778 PMCID: PMC11468936 DOI: 10.1002/adhm.202200045] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease leads to the highest morbidity worldwide. There is an urgent need to solve the lack of a viable arterial graft for patients requiring coronary artery bypass surgery. The current gold standard is to use the patient's own blood vessel, such as a saphenous vein graft. However, some patients do not have appropriate vessels to use because of systemic disease or secondary surgery. On the other hand, there is no commercially available synthetic vascular graft available on the market for small diameter (<6 mm) blood vessels like coronary, carotid, and peripheral popliteal arteries. Tissue-engineered vascular grafts (TEVGs) are studied in recent decades as a promising alternative to synthetic arterial prostheses. Yet only a few studies have proceeded to a clinical trial. Recent studies have uncovered that the host immune response can be directed toward increasing the success of a TEVG by shedding light on ways to modulate the macrophage response and improve the tissue regeneration outcome. In this review, the basic concepts of vascular tissue engineering and immunoengineering are considered. The state-of-art of TEVGs is summarized and the role of macrophages in TEVG regeneration is analyzed. Current immunomodulatory strategies based on biomaterials are also discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State UniversityRaleighNC27606USA
| |
Collapse
|
5
|
Mohabatpour F, Chen X, Papagerakis S, Papagerakis P. Novel trends, challenges and new perspectives for enamel repair and regeneration to treat dental defects. Biomater Sci 2022; 10:3062-3087. [PMID: 35543379 DOI: 10.1039/d2bm00072e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dental enamel is the hardest tissue in the human body, providing external protection for the tooth against masticatory forces, temperature changes and chemical stimuli. Once enamel is damaged/altered by genetic defects, dental caries, trauma, and/or dental wear, it cannot repair itself due to the loss of enamel producing cells following the tooth eruption. The current restorative dental materials are unable to replicate physico-mechanical, esthetic features and crystal structures of the native enamel. Thus, development of alternative approaches to repair and regenerate enamel defects is much needed but remains challenging due to the structural and functional complexities involved. This review paper summarizes the clinical aspects to be taken into consideration for the development of optimal therapeutic approaches to tackle dental enamel defects. It also provides a comprehensive overview of the emerging acellular and cellular approaches proposed for enamel remineralization and regeneration. Acellular approaches aim to artificially synthesize or re-mineralize enamel, whereas cell-based strategies aim to mimic the natural process of enamel development given that epithelial cells can be stimulated to produce enamel postnatally during the adult life. The key issues and current challenges are also discussed here, along with new perspectives for future research to advance the field of regenerative dentistry.
Collapse
Affiliation(s)
- Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, S7N 5A9, SK, Canada
| | - Silvana Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,Department of Surgery, College of Medicine, University of Saskatchewan, 107 Wiggins Rd B419, S7N 0 W8, SK, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr., S7N 5A9, SK, Canada. .,College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, S7N 5E4, SK, Canada
| |
Collapse
|
6
|
Mayoral I, Bevilacqua E, Gómez G, Hmadcha A, González-Loscertales I, Reina E, Sotelo J, Domínguez A, Pérez-Alcántara P, Smani Y, González-Puertas P, Mendez A, Uribe S, Smani T, Ordoñez A, Valverde I. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Mater Today Bio 2022; 14:100252. [PMID: 35509864 PMCID: PMC9059085 DOI: 10.1016/j.mtbio.2022.100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ± 15 mmHg) and a porosity gradient ranging from 80 to 10 μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
Collapse
Key Words
- 3D printing
- Electrospinning
- Endothelin Receptor A, ETA
- Endothelin Receptor B, ETB
- Mesenchymal stem cells
- Reverse Transcription, Rt
- Three-dimensional, 3D
- Tissue engineering
- Vascular graft
- anti-alpha-smooth muscle actin, α-SMA
- anti-cluster of differentiation 31, CD31
- anti-fibroblast specific protein 1, FSP1
- anti-smooth muscle protein 22, SM-22
- bone morphogenetic protein, BMP4
- computation fluid dynamic, CFD
- computed tomography, CT
- derived VSMC, dVSMC
- endothelin-1, ET-1
- extracellular matrix, ECM
- fused deposition modelling, FDM
- mesenchymal stem cells, MSC
- platelet-derived growth factor composed by two beta chains, PDGF-BB
- room temperature, RT
- tissue engineering vascular grafts, TEVG
- transforming growth factor beta 1, TGFβ-1
- vascular smooth muscle cells, VSMC
- wall shear stress, WSS
- western blotting, WB
Collapse
Affiliation(s)
- Isabel Mayoral
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Elisa Bevilacqua
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Gorka Gómez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Advanced Therapies and Regenerative Medicine Research Group.General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio González-Loscertales
- Department Mechanical, Thermal and Fluids Engineering, School of Engineering, University of Málaga, Málaga, Spain
| | - Esther Reina
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Pérez-Alcántara
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Younes Smani
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| | | | - Ana Mendez
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
| | - Sergio Uribe
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tarik Smani
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Ordoñez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Israel Valverde
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Pharmacology, Pediatric and Radiology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Meng Q, Li X, Zhao M, Lin S, Yu X, Dong G. Study on the Mechanism of Platelet-Released Clusterins Inducing Restenosis after Carotid Endarterectomy by Activating TLR3/NF- κb p65 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7631126. [PMID: 35047156 PMCID: PMC8763522 DOI: 10.1155/2022/7631126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group (p=0.003) 6 months after operation (p=0.047) and 12 months after operation (p=0.011). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.
Collapse
Affiliation(s)
- Qingyu Meng
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xichun Li
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Mingyu Zhao
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shusen Lin
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xiangwen Yu
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Guanglong Dong
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
8
|
Kohlhaas J, Jäger MA, Lust L, De La Torre C, Hecker M, Korff T. Endothelial cells control vascular smooth muscle cell cholesterol levels by regulating 24-dehydrocholesterol reductase expression. Exp Cell Res 2021; 399:112446. [PMID: 33422461 DOI: 10.1016/j.yexcr.2020.112446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Communication of vascular cells is essential for the control of organotypic functions of blood vessels. In this context, vascular endothelial cells (EC) act as potent regulators of vascular smooth muscle cell (VSMC) functions such as contraction and relaxation. However, the impact of ECs on the gene expression pattern of VSMCs is largely unknown. Here, we investigated changes of the VSMC transcriptome by utilizing 3D human vascular organoids organized as a core of VSMCs enclosed by a monolayer of ECs. Microarray-based analyses indicated that interaction with ECs for 48 h down-regulates expression of genes in VSMCs controlling rate-limiting steps of the cholesterol biosynthesis such as HMGCR, HMGCS1, DHCR24 and DHCR7. Protein analyses revealed a decrease in the abundance of DHCR24 (24-dehydrocholesterol reductase) and lower cholesterol levels in VSMCs co-cultured with ECs. On the functional level, the blockade of the DHCR24 activity impaired adhesion, migration and proliferation of VSMCs. Collectively, these findings indicate that ECs have the capacity to instruct VSMCs to shut down the expression of DHCR24 thereby limiting their cholesterol biosynthesis, which may support their functional steady state.
Collapse
Affiliation(s)
- Johanna Kohlhaas
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Marius Andreas Jäger
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Leandra Lust
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
9
|
Duong VT, Dang TT, Hwang CH, Back SH, Koo KI. Coaxial printing of double-layered and free-standing blood vessel analogues without ultraviolet illumination for high-volume vascularised tissue. Biofabrication 2020; 12:045033. [DOI: 10.1088/1758-5090/abafc6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Deng Y, Zhou Z, Lin S, Yu B. METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochem Biophys Res Commun 2020; 527:791-798. [PMID: 32430183 DOI: 10.1016/j.bbrc.2020.04.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Transplantation of endothelial progenitor cells (EPCs) has high therapeutic potential for ischemia-related ailments like heart attacks and claudication. Due to limited EPC sources, direct reprogramming is a fast-developing way to convert human-induced pluripotent stem cells (hiPSCs) into EPCs fit for transplantation. However, the procedural efficacy was affected by multiple factors, including epigenetic modifications. Recent studies have shown that m7G methylation mediated by Methyltransferase like 1 (METTL1) is required for mouse embryonic stem cells (mESCs) to differentiate normally. Yet, its contributions to EPC differentiation still require elucidation. Here, using immunofluorescence microscopy and Fluorescence-activated Cell Sorting (FACS), we found that the typical EPC markers were significantly increased in METTL1 knockdown (METTL1-KD) hiPSCs-derived EPCs compared to those of control types. In addition, we found that METTL1 knockdown activates the MAPK/ERK signaling pathway during EPCs differentiation from hiPSCs. Furthermore, functional properties of METTL1-KD EPCs were significantly raised above those of control hiPSCs-derived EPCs. Moreover, we proved that METTL1-KD hiPSCs-derived EPCs significantly accelerate vascular smooth muscle cell proliferation and 'phenotype switching' through a co-culture system. To sum up, our results demonstrate that METTL1-KD significantly promotes the differentiation of EPCs along with their in vitro functions, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. This enhances current knowledge of EPC generation from hiPSCs and presents a new therapeutic target of vascular diseases.
Collapse
Affiliation(s)
- Yujie Deng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Beixin Yu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Jäger MA, De La Torre C, Arnold C, Kohlhaas J, Kappert L, Hecker M, Feldner A, Korff T. Assembly of vascular smooth muscle cells in 3D aggregates provokes cellular quiescence. Exp Cell Res 2019; 388:111782. [PMID: 31857114 DOI: 10.1016/j.yexcr.2019.111782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/15/2019] [Indexed: 11/25/2022]
Abstract
Three-dimensional (3D) cell culture conditions are often used to promote the differentiation of human cells as a prerequisite for the study of organotypic functions and environment-specific cellular responses. Here, we assessed the molecular and functional phenotype of vascular smooth muscle cells (VSMCs) cultured as 3D multilayered aggregates. Microarray studies revealed that these conditions decrease the expression of genes associated with cell cycle control and DNA replication and cease proliferation of VSMCs. This was accompanied by a lower activity level of the mitogen-activated protein kinase ERK1/2 and an increase in autocrine TGFβ/SMAD2/3-mediated signaling - a determinant of VSMC differentiation. However, inhibition of TGFβ signaling did not affect markers of VSMC differentiation such as smooth muscle myosin heavy chain (MYH11) but stimulated pro-inflammatory NFκB-associated gene expression in the first place while decreasing the protein level of NFKB1/p105 and NFKB2/p100 - inhibitors of NFκB transcriptional activity. Moreover, loss of TGFβ signaling also revived VSMC proliferation in 3D aggregates. In conclusion, assembly of VSMCs in multilayered aggregates alters their transcriptome to translate the cellular organization into a resting phenotype. In this context, TGFβ signaling appears to attenuate cell growth and NFκB-controlled gene expression representing important aspects of VSMC quiescence.
Collapse
Affiliation(s)
- Marius Andreas Jäger
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Carolina De La Torre
- Center of Medical Research, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Caroline Arnold
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Johanna Kohlhaas
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Lena Kappert
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Markus Hecker
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Anja Feldner
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Thomas Korff
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Heidelberg University, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Germany.
| |
Collapse
|
12
|
Shen C, Li Y, Wang Y, Meng Q. Non-swelling hydrogel-based microfluidic chips. LAB ON A CHIP 2019; 19:3962-3973. [PMID: 31656966 DOI: 10.1039/c9lc00564a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Hydrogel-based microfluidic chips are more biologically relevant than conventional polydimethylsiloxane (PDMS) chips, but the inherent swelling of hydrogels leads to a decrease in mechanical performance and deformation of the as-prepared structure in their manufacture and application processing. Non-swelling hydrogel has, for the first time, been utilized to construct microfluidic chips in this study. It was fabricated by covalently cross-linking the biocompatible copolymer of di-acrylated Pluronic F127 (F127-DA). Thanks to their non-swelling property, the hydrogel-based microfluidic chips maintain their as-prepared mechanical strength and channel morphology when equilibrated in aqueous solution at 37 °C. Moreover, the microfluidic chips are autoclavable and show an appropriately slow degradation rate by remaining stable within 21 days of incubation. Based on these properties, a vessel-on-a-chip was established by seeding human umbilical vein endothelial cells (HUVECs) onto the microchannel surfaces inside the microfluidic chip. Under 6 days of perfusion culture with a physiologically relevant shear stress of 5 dyne per cm2, the HUVECs in the chip show responsivity to fluid shear stress and express higher endothelial functions than the corresponding static culture. Therefore, non-swelling hydrogel-based microfluidic chips could potentially be applicable for cell/tissue-related applications, performing much better than conventional PDMS or existing hydrogel based microfluidic chips.
Collapse
Affiliation(s)
- Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Yingjun Li
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Ying Wang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| | - Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
13
|
Li N, Sanyour H, Remund T, Kelly P, Hong Z. Vascular extracellular matrix and fibroblasts-coculture directed differentiation of human mesenchymal stem cells toward smooth muscle-like cells for vascular tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:61-69. [PMID: 30274093 PMCID: PMC11264340 DOI: 10.1016/j.msec.2018.07.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Construction of an artificial vascular graft is widely considered a promising strategy in vascular tissue engineering. However, limited sources of functional vascular smooth muscle cells (VSMCs) remain a major obstacle in vascular tissue engineering. In this study, we innovatively developed an approach to obtain functional VSMCs by onsite differentiating human bone marrow-derived mesenchymal stem cells (MSCs) directed by decellularized extracellular matrix (ECM) and fibroblasts. The resulting cells and ECM-cells constructs were characterized by real time RT-PCR, immunofluorescence staining, cell contractile functions, and migration capacity. Our results showed both ECM and fibroblasts induced MSCs differentiation toward VSMC-like cells with increased transcription of marker genes, upregulated expression of contractile apparatus proteins, and enhanced functional activity of VSMC phenotype. Interestingly, our findings revealed that native ECM and fibroblasts-coculture had a higher potential to promote MSCs differentiation into VSMCs than growth factors cocktail (GFC) supplemented culture, thereby providing a potential source of VSMCs for blood vessel constitution.
Collapse
Affiliation(s)
- Na Li
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America
| | - Hanna Sanyour
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America
| | - Tyler Remund
- Sanford Health, Sioux Falls, SD, United States of America
| | - Patrick Kelly
- Sanford Health, Sioux Falls, SD, United States of America; School of Medicine, University of South Dakota, SD, United States of America
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, SD, United States of America; BioSNTR, Sioux Falls, SD, United States of America.
| |
Collapse
|
14
|
Yamazaki T, Taniguchi H, Tsuji S, Sato S, Kenmotsu T, Yoshikawa K, Sadakane K. Manipulating Living Cells to Construct Stable 3D Cellular Assembly Without Artificial Scaffold. J Vis Exp 2018:57815. [PMID: 30417883 PMCID: PMC6235610 DOI: 10.3791/57815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regenerative medicine and tissue engineering offer several advantages for the treatment of intractable diseases, and several studies have demonstrated the importance of 3-dimensional (3D) cellular assemblies in these fields. Artificial scaffolds have often been used to construct 3D cellular assemblies. However, the scaffolds used to construct cellular assemblies are sometimes toxic and may change the properties of the cells. Thus, it would be beneficial to establish a non-toxic method for facilitating cell-cell contact. In this paper, we introduce a novel method for constructing stable cellular assemblies by using optical tweezers with dextran. One of the advantages of this method is that it establishes stable cell-to-cell contact within a few minutes. This new method allows the construction of 3D cellular assemblies in a natural hydrophilic polymer and is expected to be useful for constructing next-generation 3D single-cell assemblies in the fields of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
| | - Hiroaki Taniguchi
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences
| | - Shoto Tsuji
- Faculty of Life and Medical Sciences, Doshisha University
| | - Shiho Sato
- Faculty of Life and Medical Sciences, Doshisha University
| | | | | | | |
Collapse
|
15
|
Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models. MICROMACHINES 2018; 9:mi9100493. [PMID: 30424426 PMCID: PMC6215090 DOI: 10.3390/mi9100493] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The microvasculature plays a critical role in human physiology and is closely associated to various human diseases. By combining advanced microfluidic-based techniques, the engineered 3D microvascular network model provides a precise and reproducible platform to study the microvasculature in vitro, which is an essential and primary component to engineer organ-on-chips and achieve greater biological relevance. In this review, we discuss current strategies to engineer microvessels in vitro, which can be broadly classified into endothelial cell lining-based methods, vasculogenesis and angiogenesis-based methods, and hybrid methods. By closely simulating relevant factors found in vivo such as biomechanical, biochemical, and biological microenvironment, it is possible to create more accurate organ-specific models, including both healthy and pathological vascularized microtissue with their respective vascular barrier properties. We further discuss the integration of tumor cells/spheroids into the engineered microvascular to model the vascularized microtumor tissue, and their potential application in the study of cancer metastasis and anti-cancer drug screening. Finally, we conclude with our commentaries on current progress and future perspective of on-chip vascularization techniques for fundamental and clinical/translational research.
Collapse
|
16
|
Liu X, Jakus AE, Kural M, Qian H, Engler A, Ghaedi M, Shah R, Steinbacher DM, Niklason LE. Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplant 2018; 27:1269-1280. [PMID: 30008231 PMCID: PMC6434463 DOI: 10.1177/0963689718782452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic "Bone" scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized bone grafts. Using this sequential cell-seeding process, the HUVECs formed lumen structures throughout the DB scaffolds as well as vascular tissue bridging 3D-printed fibers within the HB. The pre-cultured hSMCs were essential for endothelial cell (EC) lumen formation within DB scaffolds, as well as for upregulating EC-specific gene expression of HUVECs grown on HB scaffolds. We further applied this co-culture protocol to DB scaffolds using a perfusion bioreactor, to overcome the limitations of diffusive mass transport into the interiors of the scaffolds. Compared with static culture, panoramic histological sections of DB scaffolds cultured in bioreactors showed improved cellular density, as well as a nominal increase in the number of lumen structures formed by ECs in the interior regions of the scaffolds. In conclusion, we have demonstrated that the sequential seeding of hSMCs and HUVECs can serve to generate early microvascular networks that could further support the in vitro tissue engineering of naturally or synthetically derived bone grafts and in both random (DB) and ordered (HB) pore networks. Combined with the preliminary bioreactor study, this process also shows potential to generate clinically sized, vascularized bone scaffolds for tissue and regenerative engineering.
Collapse
Affiliation(s)
- Xi Liu
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Adam E Jakus
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA
| | - Mehmet Kural
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hong Qian
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Alexander Engler
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mahboobe Ghaedi
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ramille Shah
- 2 Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,3 Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL, USA.,6 Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.,7 Division of Organ Transplantation, Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Derek M Steinbacher
- 1 Plastic and Reconstructive Surgery, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | - Laura E Niklason
- 4 Department of Anesthesiology, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
17
|
Tu F, Liu Y, Li H, Shi P, Hao Y, Wu Y, Yi H, Yin Y, Wang J. Vascular Cell Co-Culture on Silk Fibroin Matrix. Polymers (Basel) 2018; 10:E39. [PMID: 30966074 PMCID: PMC6414862 DOI: 10.3390/polym10010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023] Open
Abstract
Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture. Immunofluorescence and scanning electron microscopy (SEM) analysis showed that HUVECs and HAFs co-existed well with HAVSMCs on SF films or SFTSs. Cytokine expression determined by reverse transcription-polymerase chain reaction (RT-PCR) indicated that the expression levels of α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) in HAVSMCs were inhibited on SF films or SFTSs, but expression could be obviously promoted by co-culture with HUVECs or HAFs, especially that of SM-MHC. On SF films, the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (CD31) in HUVECs was promoted, and the expression levels of both increased obviously when co-cultured with HAVSMCs, with the expression levels of VEGF increasing with increasing incubation time. The expression levels of VEGF and CD31 in cells co-cultured on SFTSs improved significantly from day 3 compared with the mono-culture group. These results were beneficial to the mechanism analysis on vascular cell colonization and vascular tissue repair after in vivo transplantation of SFTSs.
Collapse
Affiliation(s)
- Fangfang Tu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunfei Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Helei Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pange Shi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunxia Hao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yue Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Honggen Yi
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yin Yin
- Laboratory Animal Research Center, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
18
|
Manipulating Living Cells to Construct a 3D Single-Cell Assembly without an Artificial Scaffold. Polymers (Basel) 2017; 9:polym9080319. [PMID: 30970994 PMCID: PMC6418816 DOI: 10.3390/polym9080319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/23/2022] Open
Abstract
Artificial scaffolds such as synthetic gels or chemically-modified glass surfaces that have often been used to achieve cell adhesion are xenobiotic and may harm cells. To enhance the value of cell studies in the fields of regenerative medicine and tissue engineering, it is becoming increasingly important to create a cell-friendly technique to promote cell–cell contact. In the present study, we developed a novel method for constructing stable cellular assemblies by using optical tweezers in a solution of a natural hydrophilic polymer, dextran. In this method, a target cell is transferred to another target cell to make cell–cell contact by optical tweezers in a culture medium containing dextran. When originally non-cohesive cells are held in contact with each other for a few minutes under laser trapping, stable cell–cell adhesion is accomplished. This method for creating cellular assemblies in the presence of a natural hydrophilic polymer may serve as a novel next-generation 3D single-cell assembly system with future applications in the growing field of regenerative medicine.
Collapse
|
19
|
Wolf F, Vogt F, Schmitz-Rode T, Jockenhoevel S, Mela P. Bioengineered vascular constructs as living models for in vitro cardiovascular research. Drug Discov Today 2016; 21:1446-1455. [PMID: 27126777 DOI: 10.1016/j.drudis.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Cardiovascular diseases represent the most common cause of morbidity and mortality worldwide. In this review, we explore the potential of bioengineered vascular constructs as living models for in vitro cardiovascular research to advance the current knowledge of pathophysiological processes and support the development of clinical therapies. Bioengineered vascular constructs capable of recapitulating the cellular and mechanical environment of native vessels represent a valuable platform to study cellular interactions and signaling cascades, test drugs and medical devices under (patho)physiological conditions, with the additional potential benefit of reducing the number of animals required for preclinical testing.
Collapse
Affiliation(s)
- Frederic Wolf
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Felix Vogt
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute Aachen, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Stefan Jockenhoevel
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; Institut für Textiltechnik, RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials, Maastricht University at Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Petra Mela
- Department of Tissue Engineering & Textile Implants, Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
20
|
Greiner AM, Biela SA, Chen H, Spatz JP, Kemkemer R. Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain. Exp Biol Med (Maywood) 2015; 240:1298-309. [PMID: 25687334 DOI: 10.1177/1535370215570191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/05/2014] [Indexed: 01/23/2023] Open
Abstract
The physiology of vascular cells depends on stimulating mechanical forces caused by pulsatile flow. Thus, mechano-transduction processes and responses of primary human endothelial cells (ECs) and smooth muscle cells (SMCs) have been studied to reveal cell-type specific differences which may contribute to vascular tissue integrity. Here, we investigate the dynamic reorientation response of ECs and SMCs cultured on elastic membranes over a range of stretch frequencies from 0.01 to 1 Hz. ECs and SMCs show different cell shape adaptation responses (reorientation) dependent on the frequency. ECs reveal a specific threshold frequency (0.01 Hz) below which no responses is detectable while the threshold frequency for SMCs could not be determined and is speculated to be above 1 Hz. Interestingly, the reorganization of the actin cytoskeleton and focal adhesions system, as well as changes in the focal adhesion area, can be observed for both cell types and is dependent on the frequency. RhoA and Rac1 activities are increased for ECs but not for SMCs upon application of a uniaxial cyclic tensile strain. Analysis of membrane protrusions revealed that the spatial protrusion activity of ECs and SMCs is independent of the application of a uniaxial cyclic tensile strain of 1 Hz while the total number of protrusions is increased for ECs only. Our study indicates differences in the reorientation response and the reaction times of the two cell types in dependence of the stretching frequency, with matching data for actin cytoskeleton, focal adhesion realignment, RhoA/Rac1 activities, and membrane protrusion activity. These are promising results which may allow cell-type specific activation of vascular cells by frequency-selective mechanical stretching. This specific activation of different vascular cell types might be helpful in improving strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Hao Chen
- Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Kemkemer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany Department of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
21
|
Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang YS, Dokmeci MR, Khademhosseini A. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 2014; 35:7308-25. [PMID: 24906345 PMCID: PMC4118596 DOI: 10.1016/j.biomaterials.2014.04.091] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/19/2014] [Indexed: 01/17/2023]
Abstract
Development of a vascularized tissue is one of the key challenges for the successful clinical application of tissue engineered constructs. Despite the significant efforts over the last few decades, establishing a gold standard to develop three dimensional (3D) vascularized tissues has still remained far from reality. Recent advances in the application of microfluidic platforms to the field of tissue engineering have greatly accelerated the progress toward the development of viable vascularized tissue constructs. Numerous techniques have emerged to induce the formation of vascular structure within tissues which can be broadly classified into two distinct categories, namely (1) prevascularization-based techniques and (2) vasculogenesis and angiogenesis-based techniques. This review presents an overview of the recent advancements in the vascularization techniques using both approaches for generating 3D vascular structure on microfluidic platforms.
Collapse
Affiliation(s)
- Anwarul Hasan
- Biomedical Engineering, and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Arghya Paul
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Nihal E Vrana
- INSERM, UMR-S 1121, Biomatériaux et Bioingénierie, 11 rue Humann, F-67085 Strasbourg Cedex, France
| | - Xin Zhao
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mehmet R Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; World Premier International - Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan; Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
22
|
Li L, Ge J, Wang L, Guo B, Ma PX. Electroactive nanofibrous biomimetic scaffolds by thermally induced phase separation. J Mater Chem B 2014; 2:6119-6130. [DOI: 10.1039/c4tb00493k] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Bhattacharyya A, Lin S, Sandig M, Mequanint K. Regulation of vascular smooth muscle cell phenotype in three-dimensional coculture system by Jagged1-selective Notch3 signaling. Tissue Eng Part A 2014; 20:1175-87. [PMID: 24138322 PMCID: PMC3993058 DOI: 10.1089/ten.tea.2013.0268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
The modulation of vascular smooth muscle cell (VSMC) phenotype is an essential element to fabricate engineered conduits of clinical relevance. In vivo, owing to their close proximity, endothelial cells (ECs) play a role in VSMC phenotype switching. Although considerable progress has been made in vascular tissue engineering, significant knowledge gaps exist on how the contractile VSMC phenotype is induced at the conclusion of the tissue fabrication process. The objectives of this study were as follows: (1) to establish ligand presentation modes on transcriptional activation of VSMC-specific genes, (2) to develop a three-dimensional (3D) coculture model using human coronary artery smooth muscle cells (HCASMCs) and human coronary artery endothelial cells (HCAECs) on porous synthetic scaffolds and, (3) to investigate EC-mediated Notch signaling in 3D cultures and the induction of the HCASMC contractile phenotype. Whereas transcriptional activation of VSMC-specific genes was not induced by presenting soluble Jagged1 and Jagged1 bound to protein G beads, a direct link between HCAEC-bound Jagged1 and HCASMC differentiation genes was observed. Our 3D culture results showed that HCASMCs seeded to scaffolds and cultured for up to 16 days readily attached, infiltrated the scaffold, proliferated, and formed dense confluent layers. HCAECs, seeded on top of an HCASMC layer, formed a distinct, separate monolayer with cell-type partitioning, suggesting that HCAEC growth was contact inhibited. While we observed EC monolayer formation with 200,000 HCAECs/scaffold, seeding 400,000 HCAECs/scaffold revealed the formation of cord-like structures akin to angiogenesis. Western blot analyses showed that 3D coculture induced an upregulation of Notch3 receptor in HCASMCs and its ligand Jagged1 in HCAECs. This was accompanied by a corresponding induction of the contractile HCASMC phenotype as demonstrated by increased expression of smooth muscle-α-actin (SM-α-actin) and calponin. Knockdown of Jagged1 with siRNA showed a reduction in SM-α-actin and calponin in cocultures, identifying a link between Jagged1 and the expression of contractile proteins in 3D cocultures. We therefore conclude that the Notch3 signaling pathway is an important regulator of VSMC phenotype and could be targeted when fabricating engineered vascular tissues.
Collapse
Affiliation(s)
- Aparna Bhattacharyya
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
| | - Shigang Lin
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| | - Martin Sandig
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Kibret Mequanint
- Graduate Program of Biomedical Engineering, The University of Western Ontario, London, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Canada
| |
Collapse
|
24
|
Harrington H, Cato P, Salazar F, Wilkinson M, Knox A, Haycock JW, Rose F, Aylott JW, Ghaemmaghami AM. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol Pharm 2014; 11:2082-91. [PMID: 24628276 PMCID: PMC4086737 DOI: 10.1021/mp5000295] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air-liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery.
Collapse
Affiliation(s)
- Helen Harrington
- Division of Immunology, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham , Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shav D, Gotlieb R, Zaretsky U, Elad D, Einav S. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall. PLoS One 2014; 9:e88304. [PMID: 24520363 PMCID: PMC3919748 DOI: 10.1371/journal.pone.0088304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/05/2014] [Indexed: 12/30/2022] Open
Abstract
Vascular functions are affected by wall shear stresses (WSS) applied on the endothelial cells (EC), as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC). The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm2 for 30 min) increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.
Collapse
Affiliation(s)
- Dalit Shav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Ruth Gotlieb
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - David Elad
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Leszczak V, Popat KC. Direct co-culture of endothelial and smooth muscle cells on poly(ε-caprolactone) nanowire surfaces. RSC Adv 2014. [DOI: 10.1039/c4ra09416f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we have investigated co-cultures of ECs and SMCs on nanostructured poly(ε-caprolactone) surfaces. The results presented here indicate that nanostructured surfaces may be good interfaces for use in cardiovascular applications and warrants further investigation.
Collapse
Affiliation(s)
- Victoria Leszczak
- Department of Mechanical Engineering
- Colorado State University
- Fort Collins, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering
- Colorado State University
- Fort Collins, USA
- School of Biomedical Engineering
- Colorado State University
| |
Collapse
|
27
|
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013; 2013:316-42. [PMID: 24689032 PMCID: PMC3963751 DOI: 10.5339/gcsp.2013.38] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described.
Collapse
Affiliation(s)
- Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, 12588 Giza, Egypt
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|