1
|
Lin Y, Li R, Yu N, Chen J, Zhang A. Surface-Imprinted Polysiloxane with Recognition Ability Based on an ITO Layer for Rapid Detection of Fusarium oxysporum f. sp. cubense by the Naked Eye. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33182-33191. [PMID: 38903013 DOI: 10.1021/acsami.4c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Direct observation by the naked eye of fluorescence-stained microbes adsorbed on surface imprinted polymers (SIPs) is highly challenging and limited by speed, accuracy and the semiquantitative nature of the method. In this study, we tested for the presence of spores of Fusarium oxysporum f. sp. cubense race 4 (Foc4), which cause severe banana Fusarium wilt disease and reduces the area of banana plants. This kind of spore can become dormant in soil, which means that the detection of secreted molecules (molecular imprinting) in soil may be inaccurate; detection methods such as polymerase chain reaction (PCR) and Raman spectroscopy are more accurate but time-consuming and inconvenient. Therefore, a semiquantitative and rapid SIP detection method for Foc4 was proposed. Based on the ITO conductive layer, a reusable and naked-eye-detectable Foc4-PDMS SIP film was prepared with a site density of approximately 9000 mm-2. Adsorption experiments showed that when the Foc4 spore concentration was between 104 to 107 CFU/mL, the number of Foc4 spores adsorbed and the fluorescence intensity were strongly correlated with the concentration and could be fully distinguished by the naked eye after fluorescence staining. Adsorption tests on other microbes showed that the SIP film completely recognized only the Foc series. All the results were highly consistent with the naked-eye observations after fluorescence staining, and the results of the Foc4-infected soil experiment were also close to the ideal situation. Taken together, these results showed that Foc4-PDMS SIPs have the ability to rapidly and semiquantitatively detect the concentration of Foc in soil, which can provide good support for banana cultivation. This method also has potential applications in the detection of other fungal diseases.
Collapse
Affiliation(s)
- Yaling Lin
- College of Materials and Energy, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, Guangdong, China
| | - Rui Li
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Rd., Guangzhou 510641, Guangdong, China
| | - Ning Yu
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Rd., Guangzhou 510641, Guangdong, China
| | - Jianjun Chen
- College of Materials and Energy, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, Guangdong, China
| | - Anqiang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Rd., Guangzhou 510641, Guangdong, China
| |
Collapse
|
2
|
Wagner P, Bakhshi Sichani S, Khorshid M, Lieberzeit P, Losada-Pérez P, Yongabi D. Bioanalytical sensors using the heat-transfer method HTM and related techniques. TECHNISCHES MESSEN : TM 2023; 90:761-785. [PMID: 38046181 PMCID: PMC10690833 DOI: 10.1515/teme-2023-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 12/05/2023]
Abstract
This review provides an overview on bio- and chemosensors based on a thermal transducer platform that monitors the thermal interface resistance R th between a solid chip and the supernatant liquid. The R th parameter responds in a surprisingly strong way to molecular-scale changes at the solid-liquid interface, which can be measured thermometrically, using for instance thermocouples in combination with a controllable heat source. In 2012, the effect was first observed during on-chip denaturation experiments on complementary and mismatched DNA duplexes that differ in their melting temperature. Since then, the concept is addressed as heat-transfer method, in short HTM, and numerous applications of the basic sensing principle were identified. Functionalizing the chip with bioreceptors such as molecularly imprinted polymers makes it possible to detect neurotransmitters, inflammation markers, viruses, and environmental pollutants. In combination with aptamer-type receptors, it is also possible to detect proteins at low concentrations. Changing the receptors to surface-imprinted polymers has opened up new possibilities for quantitative bacterial detection and identification in complex matrices. In receptor-free variants, HTM was successfully used to characterize lipid vesicles and eukaryotic cells (yeast strains, cancer cell lines), the latter showing spontaneous detachment under influence of the temperature gradient inherent to HTM. We will also address modifications to the original HTM technique such as M-HTM, inverted HTM, thermal wave transport analysis TWTA, and the hot-wire principle. The article concludes with an assessment of the possibilities and current limitations of the method, together with a technological forecast.
Collapse
Affiliation(s)
- Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Soroush Bakhshi Sichani
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| | - Peter Lieberzeit
- Department of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090Wien, Austria
| | - Patricia Losada-Pérez
- Physique Expérimentale Thermique et de la Matière Molle, Université Libre de Bruxelles, Campus de la Plaine – CP 223, Boulevard du Triomphe, ACC.2, B-1050Bruxelles, Belgium
| | - Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics ZMB, KU Leuven, Celestijnenlaan 200 D, B-3001Leuven, Belgium
| |
Collapse
|
3
|
Cui A, Meng P, Hu J, Yang H, Yang Z, Li H, Sun Y. Fabrication of high-performance cell-imprinted polymers based on AuNPs/MXene composites via metal-free visible light-induced ATRP. Analyst 2023; 148:1058-1067. [PMID: 36728941 DOI: 10.1039/d2an01896a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cell-imprinted polymers (CIPs) for yeasts were fabricated via metal-free visible-light-induced atom transfer radical polymerization (MVL ATRP) on the surface of a glassy carbon electrode (GCE) which had been modified with gold nanoparticles (AuNPs)/MXene (Ti3C2Tx) composites. Here, the AuNPs/Ti3C2Tx composites form a macroporous structure, which could improve the electron transfer rate of the materials and facilitate the leaving or rebinding of cells. Methacrylic acid (MAA) and N,N'-methylene bis-acrylamide (MBA) were selected as the functional monomer and cross-linker of CIPs, because they could form efficient hydrogen bonding with mannan from yeast cell walls. The obtained electrode (CIPs/AuNPs/Ti3C2Tx/GCE) was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Further experiments indicated that the CIPs/AuNPs/Ti3C2Tx/GCE electrode could be utilized as an electrochemical biosensor to determine yeast cells by differential pulse voltammetry (DPV). The linear response range was 1.0 × 102 to 1.0 × 109 cells per mL and the detection limit was 20 cells per mL (S/N = 3). The CIPs/AuNPs/Ti3C2Tx/GCE electrode also showed good selectivity, repeatability, reproducibility, and regeneration. Finally, the proposed sensor was used to detect yeast cells in commercial samples of Saccharomyces boulardii sachets by a standard addition method. The obtained recovery was from 96.9 to 104.8% showing its potential applications in clinical and diagnostic research.
Collapse
Affiliation(s)
- Ailu Cui
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Jing Hu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Huimin Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Zuan Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Hongchao Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
4
|
Yongabi D, Khorshid M, Losada‐Pérez P, Bakhshi Sichani S, Jooken S, Stilman W, Theßeling F, Martens T, Van Thillo T, Verstrepen K, Dedecker P, Vanden Berghe P, Lettinga MP, Bartic C, Lieberzeit P, Schöning MJ, Thoelen R, Fransen M, Wübbenhorst M, Wagner P. Synchronized, Spontaneous, and Oscillatory Detachment of Eukaryotic Cells: A New Tool for Cell Characterization and Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200459. [PMID: 35780480 PMCID: PMC9403630 DOI: 10.1002/advs.202200459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.
Collapse
Affiliation(s)
- Derick Yongabi
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patricia Losada‐Pérez
- Faculté des SciencesExperimental Soft Matter and Thermal Physics (EST)Université Libre de BruxellesBoulevard du Triomphe ACC.2BrusselsB‐1050Belgium
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Stijn Jooken
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Wouter Stilman
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Florian Theßeling
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Tobie Martens
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Toon Van Thillo
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Kevin Verstrepen
- Laboratory for Systems BiologyVIB Center for MicrobiologyDepartment of Microbial and Molecular SystemsKU LeuvenGaston Geenslaan 1HeverleeB‐3001Belgium
| | - Peter Dedecker
- BiochemistryMolecular and Structural BiologyKU LeuvenCelestijnenlaan 200 GLeuvenB‐3001Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS)Department of Chronic Diseases Metabolism and AgeingKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Minne Paul Lettinga
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
- Biomacromolecular Systems and Processes (IBI‐4)Research Center Jülich GmbHLeo‐Brandt‐StraßeD‐52425JülichGermany
| | - Carmen Bartic
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Peter Lieberzeit
- Faculty of ChemistryDepartment of Physical ChemistryUniversity of ViennaWähringer, Straße 38ViennaA‐1090Austria
| | - Michael J. Schöning
- Institute of Nano‐ and Biotechnologies INBAachen University of Applied SciencesHeinrich‐Mußmann‐Straße 1D‐52428JülichGermany
| | - Ronald Thoelen
- Institute for Materials ResearchHasselt UniversityWetenschapspark 1DiepenbeekB‐3590Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular CommunicationDepartment of Cellular and Molecular MedicineKU LeuvenHerestraat 49LeuvenB‐3000Belgium
| | - Michael Wübbenhorst
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and BiophysicsDepartment of Physics and AstronomyKU LeuvenCelestijnenlaan 200 DLeuvenB‐3001Belgium
| |
Collapse
|
5
|
Arreguin-Campos R, Eersels K, Rogosic R, Cleij TJ, Diliën H, van Grinsven B. Imprinted Polydimethylsiloxane-Graphene Oxide Composite Receptor for the Biomimetic Thermal Sensing of Escherichia coli. ACS Sens 2022; 7:1467-1475. [PMID: 35537189 PMCID: PMC9150177 DOI: 10.1021/acssensors.2c00215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
This work presents
an imprinted polymer-based thermal biomimetic
sensor for the detection of Escherichia coli. A novel
and facile bacteria imprinting protocol for polydimethylsiloxane (PDMS)
films was investigated, and these receptor layers were functionalized
with graphene oxide (GO) in order to improve the overall sensitivity
of the sensor. Upon the recognition and binding of the target to the
densely imprinted polymers, a concentration-dependent measurable change
in temperature was observed. The limit of detection attained for the
sensor employing PDMS-GO imprints was 80 ± 10 CFU/mL, a full
order lower than neat PDMS imprints (670 ± 140 CFU/mL), illustrating
the beneficial effect of the dopant on the thermo-dynamical properties
of the interfacial layer. A parallel benchmarking of the thermal sensor
with a commercial impedance analyzer was performed in order to prove
the possibility of using the developed PDMS-GO receptors with multiple
readout platforms. Moreover, S. aureus, C.
sakazakii and an additional E. coli strain
were employed as analogue species for the assessment of the selectivity
of the device. Finally, because of the potential that this biomimetic
platform possesses as a low-cost, rapid, and on-site tool for monitoring E. coli contamination in food safety applications, spiked
fruit juice was analyzed as a real sample. Reproducible and sensitive
results fulfill the limit requirements of the applicable European
microbiological regulation.
Collapse
Affiliation(s)
- Rocio Arreguin-Campos
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Renato Rogosic
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
6
|
Arreguin-Campos R, Eersels K, Lowdon JW, Rogosic R, Heidt B, Caldara M, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B. Biomimetic sensing of Escherichia coli at the solid-liquid interface: From surface-imprinted polymer synthesis toward real sample sensing in food safety. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Fu X, Li Y, Gao S, Lv Y. Selective recognition of tumor cells by molecularly imprinted polymers. J Sep Sci 2021; 44:2483-2495. [PMID: 33835702 DOI: 10.1002/jssc.202100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers, developed 50 years ago, have garnered enormous attention as receptor-like materials. Lately, molecularly imprinted polymers have been employed as a specific target tool in favor of cancer diagnosis and therapy by the selective recognition of tumor cells. Although the molecular imprinting technology has been well-innovated recently, the cell still remains the most challenging target for imprinting. In this review, we summarize the advances in the synthesis of molecularly imprinted polymers suitable for the selective recognition of tumor cells. Through a sustained effort, three strategies have been developed including peptide-imprinting, polysaccharide-imprinting, and whole-cell imprinting, which have resulted in inspiring applications in effective cancer diagnosis and therapy. The major challenges and perspectives on the further directions related to the synthesis of molecularly imprinted polymers were also outlined.
Collapse
Affiliation(s)
- Xiaopeng Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Shuang Gao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
8
|
The hot-wire concept: Towards a one-element thermal biosensor platform. Biosens Bioelectron 2021; 179:113043. [PMID: 33609951 DOI: 10.1016/j.bios.2021.113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
In this work, the 3ω hot-wire concept is explored as a prospective biosensing platform with a single sensing element that can detect analytes based on a change in the thermal interface conductance. A uniform receptor layer such as single-stranded DNA is immobilized on a thin aluminium wire, which serves not only as an immobilization platform but also as a heating element and temperature sensor together. The wire is heated periodically with an alternating current (angular frequency ω) and the third harmonic (frequency 3ω) of the voltage across the wire renders the efficiency of heat transfer from the wire to the surrounding medium. The amplitude of the 3ω voltage depends sensitively on the composition and conformation of the biofunctional interface layer. We illustrate this with a model system that includes blank aluminium wires, wires with silanes bound covalently to the native surface oxide, and with single-, respectively double-stranded DNA tethered to the silanes. The difference in heat-transfer due to these coatings is significant and measurable not only in a liquid but also in air. Based on this proof-of-concept, various applications come in sight such as mutation analysis and analyte detection with aptamers or molecularly-imprinted polymers as receptors. Wire materials other than aluminium are possible as well and the concept is suitable for miniaturization and parallelization.
Collapse
|
9
|
Arreguin-Campos R, Jiménez-Monroy KL, Diliën H, Cleij TJ, van Grinsven B, Eersels K. Imprinted Polymers as Synthetic Receptors in Sensors for Food Safety. BIOSENSORS 2021; 11:46. [PMID: 33670184 PMCID: PMC7916965 DOI: 10.3390/bios11020046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023]
Abstract
Foodborne illnesses represent high costs worldwide in terms of medical care and productivity. To ensure safety along the food chain, technologies that help to monitor and improve food preservation have emerged in a multidisciplinary context. These technologies focus on the detection and/or removal of either biological (e.g., bacteria, virus, etc.) or chemical (e.g., drugs and pesticides) safety hazards. Imprinted polymers are synthetic receptors able of recognizing both chemical and biological contaminants. While numerous reviews have focused on the use of these robust materials in extraction and separation applications, little bibliography summarizes the research that has been performed on their coupling to sensing platforms for food safety. The aim of this work is therefore to fill this gap and highlight the multidisciplinary aspects involved in the application of imprinting technology in the whole value chain ranging from IP preparation to integrated sensor systems for the specific recognition and quantification of chemical and microbiological contaminants in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616,6200 MD Maastricht, The Netherlands; (R.A.-C.); (K.L.J.-M.); (H.D.); (T.J.C.); (B.v.G.)
| |
Collapse
|
10
|
Lowdon JW, Diliën H, Singla P, Peeters M, Cleij TJ, van Grinsven B, Eersels K. MIPs for commercial application in low-cost sensors and assays - An overview of the current status quo. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 325:128973. [PMID: 33012991 PMCID: PMC7525251 DOI: 10.1016/j.snb.2020.128973] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 05/05/2023]
Abstract
Molecularly imprinted polymers (MIPs) have emerged over the past few decades as interesting synthetic alternatives due to their long-term chemical and physical stability and low-cost synthesis procedure. They have been integrated into many sensing platforms and assay formats for the detection of various targets, ranging from small molecules to macromolecular entities such as pathogens and whole cells. Despite the advantages MIPs have over natural receptors in terms of commercialization, the striking success stories of biosensor applications such as the glucose meter or the self-test for pregnancy have not been matched by MIP-based sensor or detection kits yet. In this review, we zoom in on the commercial potential of MIP technology and aim to summarize the latest developments in their commercialization and integration into sensors and assays with high commercial potential. We will also analyze which bottlenecks are inflicting with commercialization and how recent advances in commercial MIP synthesis could overcome these obstacles in order for MIPs to truly achieve their commercial potential in the near future.
Collapse
Affiliation(s)
- Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Pankaj Singla
- Department of Chemistry, UGC-Centre for advanced studies-1, Guru Nanak Dev University, Amritsar 143005, India
| | - Marloes Peeters
- School of Engineering, Newcastle University, Merz Court, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
11
|
Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol Adv 2020; 45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
|
12
|
Yongabi D, Jooken S, Givanoudi S, Khorshid M, Deschaume O, Bartic C, Losada-Pérez P, Wübbenhorst M, Wagner P. Ionic strength controls long-term cell-surface interactions - A QCM-D study of S. cerevisiae adhesion, retention and detachment. J Colloid Interface Sci 2020; 585:583-595. [PMID: 33127054 DOI: 10.1016/j.jcis.2020.10.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Understanding microbial adhesion and retention is crucial for controlling many processes, including biofilm formation, antimicrobial therapy as well as cell sorting and cell detection platforms. Cell detachment is inextricably linked to cell adhesion and retention and plays an important part in the mechanisms involved in these processes. Physico-chemical and biological forces play a crucial role in microbial adhesion interactions and altering the medium ionic strength offers a potential means for modulating these interactions. Real-time studies on the effect of ionic strength on microbial adhesion are often limited to short-term bacterial adhesion. Therefore, there is a need, not only for long-term bacterial adhesion studies, but also for similar studies focusing on eukaryotic microbes, such as yeast. Hereby, we monitored, in real-time, S. cerevisiae adhesion on gold and silica as examples of surfaces with different surface charge properties to disclose long-term adhesion, retention and detachment as a function of ionic strength using quartz crystal microbalance with dissipation monitoring. Our results show that short- and long-term cell adhesion levels in terms of mass-loading increase with increasing ionic strength, while cells dispersed in a medium of higher ionic strength experience longer retention and detachment times. The positive correlation between the cell zeta potential and ionic strength suggests that zeta potential plays a role on cell retention and detachment. These trends are similar for measurements on silica and gold, with shorter retention and detachment times for silica due to strong short-range repulsions originating from a high electron-donicity. Furthermore, the results are comparable with measurements in standard yeast culture medium, implying that the overall effect of ionic strength applies for cells in nutrient-rich and nutrient-deficient media.
Collapse
Affiliation(s)
- Derick Yongabi
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
| | - Stijn Jooken
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Stella Givanoudi
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Carmen Bartic
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patricia Losada-Pérez
- Université Libre de Bruxelles (ULB), Experimental Soft Matter and Thermal Physics Group, Campus La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Michael Wübbenhorst
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- KU Leuven, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Betlem K, Canfarotta F, Raumbault R, Banks CE, Eersels K, van Grinsven B, Cleij TJ, Crapnell R, Hudson A, Peeters M. Thermistors coated with molecularly imprinted nanoparticles for the electrical detection of peptides and proteins. Analyst 2020; 145:5419-5424. [PMID: 32589168 DOI: 10.1039/d0an01046d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, molecularly imprinted nanoparticles (nanoMIPs) that are produced by solid-phase synthesis are functionalised onto thermistors via dip-coating. These thermistors are soldered onto a printed-circuit board to facilitate electrical detection. Subsequently, these are inserted into a home-made thermal device that can measure the selective binding of biomolecules to the nanoMIP layer via monitoring the thermal resistance (Rth) at the solid-liquid interface. This thermal analysis technique, referred to as the Heat-Transfer Method, has previously been used for detection of proteins with MIP-based binders. While offering the advantages of low-cost and label free analysis, this method is limited by the high noise on the feedback loop and not being commercially available. These disadvantages can be overcome by the use of thermistors, which offer superior temperature sensitivity compared to thermocouples, and its electrical read-out can be easily integrated into portable devices. To our knowledge, this is the first report where MIPs are directly integrated onto thermistors for detection purposes. Measurements were conducted with an epitope of epidermal growth factor receptor (EGFR) and trypsin, where the electrical resistance was correlated to the biomolecule concentration. For both EGFR and trypsin, an enhanced signal to noise ratio for the electrical measurements was observed compared to previous analysis that was based on thermal resistance. The sensitivity of the sensors in buffered solution was in the nanomolar range, which is compatible with physiologically relevant concentrations. Upon exposure of the nanoMIP for EGFR towards pepsin no significant change in the resistance was yielded, establishing the selectivity of the developed sensor platform. Besides the enhanced sensitivity, the use of thermistors will enable miniaturisation of the device and has potential for in vivo measurements since specified electrochemical measurements are compatible with human use. To highlight the versatility of the nanoMIPs, this work should be extended to a set of biomolecules with various structures, with the possibility of extending this to an array format.
Collapse
Affiliation(s)
- K Betlem
- Université Libre de Bruxelles, Experimental Soft Matter and Thermal Physics group, Physics division, Campus de Plaine, Boulevard du Triomphe, B-1050, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yongabi D, Khorshid M, Gennaro A, Jooken S, Duwé S, Deschaume O, Losada-Pérez P, Dedecker P, Bartic C, Wübbenhorst M, Wagner P. QCM-D Study of Time-Resolved Cell Adhesion and Detachment: Effect of Surface Free Energy on Eukaryotes and Prokaryotes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18258-18272. [PMID: 32223273 DOI: 10.1021/acsami.0c00353] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-material interactions are crucial for many biomedical applications, including medical implants, tissue engineering, and biosensors. For implants, while the adhesion of eukaryotic host cells is desirable, bacterial adhesion often leads to infections. Surface free energy (SFE) is an important parameter that controls short- and long-term eukaryotic and prokaryotic cell adhesion. Understanding its effect at a fundamental level is essential for designing materials that minimize bacterial adhesion. Most cell adhesion studies for implants have focused on correlating surface wettability with mammalian cell adhesion and are restricted to short-term time scales. In this work, we used quartz crystal microbalance with dissipation monitoring (QCM-D) and electrical impedance analysis to characterize the adhesion and detachment of S. cerevisiae and E. coli, serving as model eukaryotic and prokaryotic cells within extended time scales. Measurements were performed on surfaces displaying different surface energies (Au, SiO2, and silanized SiO2). Our results demonstrate that tuning the surface free energy of materials is a useful strategy for selectively promoting eukaryotic cell adhesion and preventing bacterial adhesion. Specifically, we show that under flow and steady-state conditions and within time scales up to ∼10 h, a high SFE, especially its polar component, enhances S. cerevisiae adhesion and hinders E. coli adhesion. In the long term, however, both cells tend to detach, but less detachment occurs on surfaces with a high dispersive SFE contribution. The conclusions on S. cerevisiae are also valid for a second eukaryotic cell type, being the human embryonic kidney (HEK) cells on which we performed the same analysis for comparison. Furthermore, each cell adhesion phase is associated with unique cytoskeletal viscoelastic states, which are cell-type-specific and surface free energy-dependent and provide insights into the underlying adhesion mechanisms.
Collapse
Affiliation(s)
- Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Alessia Gennaro
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Stijn Jooken
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group, Université Libre de Bruxelles (ULB), Campus La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Peter Dedecker
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michael Wübbenhorst
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
15
|
Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol 2019; 38:368-387. [PMID: 31677857 DOI: 10.1016/j.tibtech.2019.10.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Since their conception 50 years ago, molecularly imprinted polymers (MIPs) have seen extensive development both in terms of synthetic routes and applications. Cells are perhaps the most challenging target for molecular imprinting. Although early work was based almost entirely around microprinting methods, recent developments have shifted towards epitope imprinting to generate MIP nanoparticles (NPs). Simultaneously, the development of techniques such as solid phase MIP synthesis has solved many historic issues of MIP production. This review briefly describes various approaches used in cell imprinting with a focus on applications of the created materials in imaging, drug delivery, diagnostics, and tissue engineering.
Collapse
|
16
|
Cornelis P, Givanoudi S, Yongabi D, Iken H, Duwé S, Deschaume O, Robbens J, Dedecker P, Bartic C, Wübbenhorst M, Schöning MJ, Heyndrickx M, Wagner P. Sensitive and specific detection of E. coli using biomimetic receptors in combination with a modified heat-transfer method. Biosens Bioelectron 2019; 136:97-105. [DOI: 10.1016/j.bios.2019.04.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/14/2019] [Indexed: 12/31/2022]
|
17
|
Zhang N, Zhang N, Xu Y, Li Z, Yan C, Mei K, Ding M, Ding S, Guan P, Qian L, Du C, Hu X. Molecularly Imprinted Materials for Selective Biological Recognition. Macromol Rapid Commun 2019; 40:e1900096. [PMID: 31111979 DOI: 10.1002/marc.201900096] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Indexed: 12/11/2022]
Abstract
Molecular imprinting is an approach of generating imprinting cavities in polymer structures that are compatible with the target molecules. The cavities have memory for shape and chemical recognition, similar to the recognition mechanism of antigen-antibody in organisms. Their structures are also called biomimetic receptors or synthetic receptors. Owing to the excellent selectivity and unique structural predictability of molecularly imprinted materials (MIMs), practical MIMs have become a rapidly evolving research area providing key factors for understanding separation, recognition, and regenerative properties toward biological small molecules to biomacromolecules, even cell and microorganism. In this review, the characteristics, morphologies, and applicability of currently popular carrier materials for molecular imprinting, especially the fundamental role of hydrogels, porous materials, hierarchical nanoparticles, and 2D materials in the separation and recognition of biological templates are discussed. Moreover, through a series of case studies, emphasis is given on introducing imprinting strategies for biological templates with different molecular scales. In particular, the differences and connections between small molecular imprinting (bulk imprinting, "dummy" template imprinting, etc.), large molecular imprinting (surface imprinting, interfacial imprinting, etc.), and cell imprinting strategies are demonstrated in detail. Finally, future research directions are provided.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.,Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1, 117575, Singapore
| | - Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarong Xu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhiling Li
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chaoren Yan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kun Mei
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Minling Ding
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Ping Guan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Chunbao Du
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Xiaoling Hu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
18
|
Das AA, Medlock J, Liang H, Nees D, Allsup DJ, Madden LA, Paunov VN. Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood. J Mater Chem B 2019. [DOI: 10.1039/c9tb00679f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a large scale preparation of bioimprints of layers of cultured leukemic HL60 cells which can perform cell shape and size recognition from a mixture with peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Anupam A.K. Das
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - Jevan Medlock
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | - He Liang
- Department of Chemistry and Biochemistry
- University of Hull
- Hull
- UK
| | | | | | | | | |
Collapse
|
19
|
Kellens E, Bové H, Vandenryt T, Lambrichts J, Dekens J, Drijkoningen S, D'Haen J, Ceuninck WD, Thoelen R, Junkers T, Haenen K, Ethirajan A. Micro-patterned molecularly imprinted polymer structures on functionalized diamond-coated substrates for testosterone detection. Biosens Bioelectron 2018; 118:58-65. [PMID: 30056301 DOI: 10.1016/j.bios.2018.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/09/2022]
Abstract
Molecularly imprinted polymers (MIPs) can selectively bind target molecules and can therefore be advantageously used as a low-cost and robust alternative to replace fragile and expensive natural receptors. Yet, one major challenge in using MIPs for sensor development is the lack of simple and cost-effective techniques that allow firm fixation as well as controllable and consistent receptor material distribution on the sensor substrate. In this work, a convenient method is presented wherein microfluidic systems in conjunction with in situ photo-polymerization on functionalized diamond substrates are used. This novel strategy is simple, efficient, low-cost and less time consuming. Moreover, the approach ensures a tunable and consistent MIP material amount and distribution between different sensor substrates and thus a controllable active sensing surface. The obtained patterned MIP structures are successfully tested as a selective sensor platform to detect physiological concentrations of the hormone disruptor testosterone in buffer, urine and saliva using electrochemical impedance spectroscopy. The highest added testosterone concentration (500 nM) in buffer resulted in an impedance signal of 10.03 ± 0.19% and the lowest concentration (0.5 nM) led to a measurable signal of 1.8 ± 0.15% for the MIPs. With a detection limit of 0.5 nM, the MIP signals exhibited good linearity between a 0.5 nM and 20 nM concentration range. Apart from the excellent and selective recognition offered by these MIP structures, they are also stable during and after the dynamic sensor measurements. Additionally, the MIPs can be easily regenerated by a simple washing procedure and are successfully tested for their reusability.
Collapse
Affiliation(s)
- Evelien Kellens
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Hannelore Bové
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Thijs Vandenryt
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jeroen Lambrichts
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jolien Dekens
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Sien Drijkoningen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jan D'Haen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ward De Ceuninck
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ronald Thoelen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Tanja Junkers
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium
| | - Ken Haenen
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Anitha Ethirajan
- Institute for Materials Research (IMO), Hasselt University, Wetenschapspark 1 and Agoralaan D, 3590 Diepenbeek, Belgium; IMOMEC, IMEC vzw, Wetenschapspark 1, 3590 Diepenbeek, Belgium.
| |
Collapse
|
20
|
Eersels K, Diliën H, Lowdon JW, Steen Redeker E, Rogosic R, Heidt B, Peeters M, Cornelis P, Lux P, Reutelingsperger CP, Schurgers LJ, Cleij TJ, van Grinsven B. A Novel Biomimetic Tool for Assessing Vitamin K Status Based on Molecularly Imprinted Polymers. Nutrients 2018; 10:E751. [PMID: 29891757 PMCID: PMC6024727 DOI: 10.3390/nu10060751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 11/18/2022] Open
Abstract
Vitamin K was originally discovered as a cofactor required to activate clotting factors and has recently been shown to play a key role in the regulation of soft tissue calcification. This property of vitamin K has led to an increased interest in novel methods for accurate vitamin K detection. Molecularly Imprinted Polymers (MIPs) could offer a solution, as they have been used as synthetic receptors in a large variety of biomimetic sensors for the detection of similar molecules over the past few decades, because of their robust nature and remarkable selectivity. In this article, the authors introduce a novel imprinting approach to create a MIP that is able to selectively rebind vitamin K₁. As the native structure of the vitamin does not allow for imprinting, an alternative imprinting strategy was developed, using the synthetic compound menadione (vitamin K₃) as a template. Target rebinding was analyzed by means of UV-visible (UV-VIS) spectroscopy and two custom-made thermal readout techniques. This analysis reveals that the MIP-based sensor reacts to an increasing concentration of both menadione and vitamin K₁. The Limit of Detection (LoD) for both compounds was established at 700 nM for the Heat Transfer Method (HTM), while the optimized readout approach, Thermal Wave Transport Analysis (TWTA), displayed an increased sensitivity with a LoD of 200 nM. The sensor seems to react to a lesser extent to Vitamin E, the analogue under study. To further demonstrate its potential application in biochemical research, the sensor was used to measure the absorption of vitamin K in blood serum after taking vitamin K supplements. By employing a gradual enrichment strategy, the sensor was able to detect the difference between baseline and peak absorption samples and was able to quantify the vitamin K concentration in good agreement with a validation experiment using High-Performance Liquid Chromatography (HPLC). In this way, the authors provide a first proof of principle for a low-cost, straightforward, and label-free vitamin K sensor.
Collapse
Affiliation(s)
- Kasper Eersels
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Hanne Diliën
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Joseph W Lowdon
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Erik Steen Redeker
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Renato Rogosic
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Benjamin Heidt
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Marloes Peeters
- Division of Chemistry and Environmental Science, School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Peter Cornelis
- Soft-Matter Physics and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium.
| | - Petra Lux
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands.
| | - Thomas J Cleij
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Bart van Grinsven
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
21
|
Medlock J, Das AAK, Madden LA, Allsup DJ, Paunov VN. Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment. Chem Soc Rev 2018; 46:5110-5127. [PMID: 28660268 DOI: 10.1039/c7cs00179g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer incidence and mortality have both increased in the last decade and are predicted to continue to rise. Diagnosis and treatment of cancers are often hampered by the inability to specifically target neoplastic cells. Bioimprinting is a promising new approach to overcome shortfalls in cancer targeting. Highly specific recognition cavities can be made into polymer matrices to mimic lock-and-key actions seen in in vivo biological systems. Early studies concentrated on molecules and were inhibited by template size complexity. Surface imprinting allows the capture of increasingly complex motifs from polypeptides to single cell organisms and mammalian cells. Highly specific cell shape recognition can also be achieved by cell interaction with imprints that can be made into polymer matrices to mimic biological systems at a molecular level. Bioimprinting has also been used to achieve nanometre scale resolution imaging of cancer cells. Studies of bioimprint-based drug delivery on cancer cells have been recently trialled in vitro and show that this approach can potentially improve existing chemotherapeutic approaches. This review focuses on the possible applications of bioimprinting with particular regards to cancer understanding, diagnosis and therapy. Cell imprints, incorporated into biosensors can allow the limits of detection to be improved or negate the need for extensive patient sample processing. Similar cell imprinting platforms can be used for nanoscale imaging of cancer morphology, as well as to investigate topographical signalling of cancer cells in vitro. Lastly, bioimprints also have applications as selective drug delivery vehicles to tumours with the potential to decrease chemotherapy-related side effects.
Collapse
Affiliation(s)
- Jevan Medlock
- School of Mathematics and Physical Sciences (Chemistry), University of Hull, Cottingham Road, Hull, HU67RX, UK.
| | | | | | | | | |
Collapse
|
22
|
Hasanzadeh M, Shadjou N, de la Guardia M. Cytosensing of cancer cells using antibody-based molecular imprinting: A short-review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Pan J, Chen W, Ma Y, Pan G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 2018; 47:5574-5587. [DOI: 10.1039/c7cs00854f] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecularly imprinted polymers are now approaching the perfection of natural receptors, e.g., the ability to interact with or recognize cells.
Collapse
Affiliation(s)
- Jianming Pan
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Wei Chen
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao
- China
| | - Yue Ma
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang
- China
| | - Guoqing Pan
- Institute for Advanced Materials
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
24
|
Steen Redeker E, Eersels K, Akkermans O, Royakkers J, Dyson S, Nurekeyeva K, Ferrando B, Cornelis P, Peeters M, Wagner P, Diliën H, van Grinsven B, Cleij TJ. Biomimetic Bacterial Identification Platform Based on Thermal Wave Transport Analysis (TWTA) through Surface-Imprinted Polymers. ACS Infect Dis 2017; 3:388-397. [PMID: 28388095 PMCID: PMC5432958 DOI: 10.1021/acsinfecdis.7b00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
This
paper introduces a novel bacterial identification assay based on thermal
wave analysis through surface-imprinted polymers (SIPs). Aluminum
chips are coated with SIPs, serving as synthetic cell receptors that
have been combined previously with the heat-transfer method (HTM)
for the selective detection of bacteria. In this work, the concept
of bacterial identification is extended toward the detection of nine
different bacterial species. In addition, a novel sensing approach,
thermal wave transport analysis (TWTA), is introduced, which analyzes
the propagation of a thermal wave through a functional interface.
The results presented here demonstrate that bacterial rebinding to
the SIP layer resulted in a measurable phase shift in the propagated
wave, which is most pronounced at a frequency of 0.03 Hz. In this
way, the sensor is able to selectively distinguish between the different
bacterial species used in this study. Furthermore, a dose–response
curve was constructed to determine a limit of detection of 1 ×
104 CFU mL–1, indicating that TWTA is
advantageous over HTM in terms of sensitivity and response time. Additionally,
the limit of selectivity of the sensor was tested in a mixed bacterial
solution, containing the target species in the presence of a 99-fold
excess of competitor species. Finally, a first application for the
sensor in terms of infection diagnosis is presented, revealing that
the platform is able to detect bacteria in clinically relevant concentrations
as low as 3 × 104 CFU mL–1 in spiked
urine samples.
Collapse
Affiliation(s)
- Erik Steen Redeker
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Soft-Matter
Physics and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Onno Akkermans
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jeroen Royakkers
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Simba Dyson
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kunya Nurekeyeva
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Beniamino Ferrando
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Peter Cornelis
- Soft-Matter
Physics and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Marloes Peeters
- Faculty of Science and
Engineering, School of Science and the Environment, Division of Chemistry
and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Patrick Wagner
- Soft-Matter
Physics and Biophysics Section, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Hanne Diliën
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas Jan Cleij
- Maastricht Science
Programme, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
25
|
Diliën H, Peeters M, Royakkers J, Harings J, Cornelis P, Wagner P, Steen Redeker E, Banks CE, Eersels K, van Grinsven B, Cleij TJ. Label-Free Detection of Small Organic Molecules by Molecularly Imprinted Polymer Functionalized Thermocouples: Toward In Vivo Applications. ACS Sens 2017; 2:583-589. [PMID: 28480332 PMCID: PMC5414145 DOI: 10.1021/acssensors.7b00104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/13/2017] [Indexed: 01/14/2023]
Abstract
Molecularly imprinted polymers (MIPs), synthetic polymeric receptors, have been combined successfully with thermal transducers for the detection of small molecules in recent years. However, up until now they have been combined with planar electrodes which limits their use for in vivo applications. In this work, a new biosensor platform is developed by roll-coating MIP particles onto thermocouples, functionalized with polylactic acid (PLLA). As a first proof-of-principle, MIPs for the neurotransmitter dopamine were incorporated into PLLA-coated thermocouples. The response of the synthetic receptor layer to an increasing concentration of dopamine in buffer was analyzed using a homemade heat-transfer setup. Binding of the template to the MIP layer blocks the heat transport through the thermocouple, leading to less heat loss to the environment and an overall higher temperature in the measuring chamber. The measured temperature increase is correlated to the neurotransmitter concentration, which enables measurement of dopamine levels in the micromolar regime. To demonstrate the general applicability of the proposed biosensor platform, thermocouples were functionalized with similar MIPs for cortisol and serotonin, indicating a similar response and limit-of-detection. As the platform does not require planar electrodes, it can easily be integrated in, e.g., a catheter. In this way, it is an excellent fit for the current niche in the market of therapeutics and diagnostics. Moreover, the use of a biocompatible and disposable PLLA-layer further illustrates its potential for in vivo diagnostics.
Collapse
Affiliation(s)
- Hanne Diliën
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marloes Peeters
- Manchester
Metropolitan University, Faculty of Science
and Engineering, School of Science and the Environment, Division of
Chemistry and Environmental Science, Chester Street, Manchester M1 5GD, United Kingdom
| | - Jeroen Royakkers
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jules Harings
- Maastricht
University, Faculty of Humanities and Sciences,
Department of Biobased Materials, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| | - Peter Cornelis
- KU
Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- KU
Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Erik Steen Redeker
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Craig E. Banks
- Manchester
Metropolitan University, Faculty of Science
and Engineering, School of Science and the Environment, Division of
Chemistry and Environmental Science, Chester Street, Manchester M1 5GD, United Kingdom
| | - Kasper Eersels
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- KU
Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Bart van Grinsven
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Maastricht
University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
26
|
Heat Transfer as a New Sensing Technique for the Label-Free Detection of Biomolecules. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/5346_2017_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
28
|
Eersels K, Lieberzeit P, Wagner P. A Review on Synthetic Receptors for Bioparticle Detection Created by Surface-Imprinting Techniques—From Principles to Applications. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00572] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kasper Eersels
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Peter Lieberzeit
- University of Vienna, Faculty of Chemistry, Department
of Physical Chemistry, Währinger Straße 38, A-1090 Vienna, Austria
| | - Patrick Wagner
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
29
|
van Grinsven B, Betlem K, Cleij T, Banks C, Peeters M. Evaluating the potential of thermal read-out techniques combined with molecularly imprinted polymers for the sensing of low-weight organic molecules. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/17/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023]
Affiliation(s)
- B. van Grinsven
- Maastricht Science Programme; Maastricht University; Maastricht The Netherlands
| | - K. Betlem
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science; Manchester Metropolitan University; Manchester UK
| | - T.J. Cleij
- Maastricht Science Programme; Maastricht University; Maastricht The Netherlands
| | - C.E. Banks
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science; Manchester Metropolitan University; Manchester UK
| | - M. Peeters
- Faculty of Science and Engineering, School of Science and the Environment, Division of Chemistry and Environmental Science; Manchester Metropolitan University; Manchester UK
| |
Collapse
|
30
|
van Grinsven B, Eersels K, Akkermans O, Ellermann S, Kordek A, Peeters M, Deschaume O, Bartic C, Diliën H, Steen Redeker E, Wagner P, Cleij TJ. Label-Free Detection of Escherichia coli Based on Thermal Transport through Surface Imprinted Polymers. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00435] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bart van Grinsven
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Onno Akkermans
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sophie Ellermann
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aleksandra Kordek
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Marloes Peeters
- Faculty
of Science and Engineering, School of Science and the Environment,
Division of Chemistry and Environmental Science, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom
| | - Olivier Deschaume
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Carmen Bartic
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Hanne Diliën
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Erik Steen Redeker
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Patrick Wagner
- KU Leuven, Soft-Matter Physics and Biophysics
Section, Department of Physics and Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Thomas J. Cleij
- Maastricht University, Maastricht Science Programme, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
31
|
Tan L, He R, Li Y, Liang Y, Li H, Tang Y. Fabrication of a biomimetic adsorbent imprinted with a common specificity determinant for the removal of α- and β-amanitin from plasma. J Chromatogr A 2016; 1459:1-8. [DOI: 10.1016/j.chroma.2016.06.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023]
|
32
|
Bole AL, Manesiotis P. Advanced Materials for the Recognition and Capture of Whole Cells and Microorganisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5349-5366. [PMID: 26662854 DOI: 10.1002/adma.201503962] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Indexed: 06/05/2023]
Abstract
Selective cell recognition and capture has recently attracted significant interest due to its potential importance for clinical, diagnostic, environmental, and security applications. Current methods for cell isolation from complex samples are largely dependent on cell size and density, with limited application scope as many of the target cells do not exhibit appreciable differences in this respect. The most recent and forthcoming developments in the area of selective recognition and capture of whole cells, based on natural receptors, as well as synthetic materials utilising physical and chemical properties of the target cell or microorganism, are highlighted. Particular focus is given to the development of cell complementary surfaces using the cells themselves as templating agents, by means of molecular imprinting, and their combination with sensing platforms for rapid cell detection in complex media. The benefits and challenges of each approach are discussed and a perspective of the future of this research area is given.
Collapse
Affiliation(s)
- Amanda L Bole
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, N. Ireland, UK
| | - Panagiotis Manesiotis
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, N. Ireland, UK
| |
Collapse
|
33
|
Azeem A, English A, Kumar P, Satyam A, Biggs M, Jones E, Tripathi B, Basu N, Henkel J, Vaquette C, Rooney N, Riley G, O'Riordan A, Cross G, Ivanovski S, Hutmacher D, Pandit A, Zeugolis D. The influence of anisotropic nano- to micro-topography on in vitro and in vivo osteogenesis. Nanomedicine (Lond) 2016; 10:693-711. [PMID: 25816874 DOI: 10.2217/nnm.14.218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM Topographically modified substrates are increasingly used in tissue engineering to enhance biomimicry. The overarching hypothesis is that topographical cues will control cellular response at the cell-substrate interface. MATERIALS & METHODS The influence of anisotropically ordered poly(lactic-co-glycolic acid) substrates (constant groove width of ~1860 nm; constant line width of ~2220 nm; variable groove depth of ~35, 306 and 2046 nm) on in vitro and in vivo osteogenesis were assessed. RESULTS & DISCUSSION We demonstrate that substrates with groove depths of approximately 306 and 2046 nm promote osteoblast alignment parallel to underlined topography in vitro. However, none of the topographies assessed promoted directional osteogenesis in vivo. CONCLUSION 2D imprinting technologies are useful tools for in vitro cell phenotype maintenance.
Collapse
Affiliation(s)
- Ayesha Azeem
- Network of Excellence for Functional Biomaterials (NFB), Biosciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Recognition of Rhodobacter sphaeroides by microcontact-imprinted poly(ethylene-co-vinyl alcohol). Colloids Surf B Biointerfaces 2015; 135:394-399. [DOI: 10.1016/j.colsurfb.2015.07.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/16/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022]
|
35
|
Peeters M, van Grinsven B, Cleij TJ, Jiménez-Monroy KL, Cornelis P, Pérez-Ruiz E, Wackers G, Thoelen R, De Ceuninck W, Lammertyn J, Wagner P. Label-free Protein Detection Based on the Heat-Transfer Method--A Case Study with the Peanut Allergen Ara h 1 and Aptamer-Based Synthetic Receptors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10316-10323. [PMID: 25916249 DOI: 10.1021/acsami.5b00994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aptamers are an emerging class of molecules that, because of the development of the systematic evolution of ligands by exponential enrichment (SELEX) process, can recognize virtually every target ranging from ions, to proteins, and even whole cells. Although there are many techniques capable of detecting template molecules with aptamer-based systems with high specificity and selectivity, they lack the possibility of integrating them into a compact and portable biosensor setup. Therefore, we will present the heat-transfer method (HTM) as an interesting alternative because this offers detection in a fast and low-cost manner and has the possibility of performing experiments with a fully integrated device. This concept has been demonstrated for a variety of applications including DNA mutation analysis and screening of cancer cells. To the best our knowledge, this is the first report on HTM-based detection of proteins, in this case specifically with aptamer-type receptors. For proof-of-principle purposes, measurements will be performed with the peanut allergen Ara h 1 and results indicate detection limits in the lower nanomolar regime in buffer liquid. As a first proof-of-application, spiked Ara h 1 solutions will be studied in a food matrix of dissolved peanut butter. Reference experiments with the quartz-crystal microbalance will allow for an estimate of the areal density of aptamer molecules on the sensor-chip surface.
Collapse
Affiliation(s)
- Marloes Peeters
- †Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ‡School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Bart van Grinsven
- §Maastricht Science Programme, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- §Maastricht Science Programme, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Peter Cornelis
- ∥Department of Physics and Astronomy, Soft-Matter and Biophysics Section, Catholic University Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
| | - Elena Pérez-Ruiz
- #BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Crooylan 42, 3000 Leuven, Belgium
| | - Gideon Wackers
- †Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ∥Department of Physics and Astronomy, Soft-Matter and Biophysics Section, Catholic University Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
| | - Ronald Thoelen
- †Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ⊥Division IMOMEC, IMEC v.z.w. , Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Ward De Ceuninck
- †Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ⊥Division IMOMEC, IMEC v.z.w. , Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jeroen Lammertyn
- #BIOSYST-MeBioS, KU Leuven-University of Leuven, Willem de Crooylan 42, 3000 Leuven, Belgium
| | - Patrick Wagner
- †Institute for Materials Research, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
- ∥Department of Physics and Astronomy, Soft-Matter and Biophysics Section, Catholic University Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
| |
Collapse
|
36
|
Zhang Z, Guan Y, Li M, Zhao A, Ren J, Qu X. Highly stable and reusable imprinted artificial antibody used for in situ detection and disinfection of pathogens. Chem Sci 2015; 6:2822-2826. [PMID: 28706671 PMCID: PMC5489049 DOI: 10.1039/c5sc00489f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 12/20/2022] Open
Abstract
Sandwich ELISA methods have been widely used for biomarker and pathogen detection because of their high specificity and sensitivity. However, the main drawbacks of this assay are the cost, the time-consuming procedure for the isolation of antibodies and their poor stability. To overcome these restrictions, we herein fabricated artificial antibodies based on imprinting technology and developed a sandwich ELISA for pathogen detection. Both the capture and detection antibodies were obtained via an in situ method, with simplicity, rapidity and low cost. The peroxidase mimics, the CeO2 nanoparticles, as signal generators were integrated with the detection antibody. The fabricated artificial antibodies exhibited not only natural antibody-like binding affinities and selectivities, but also superior stability and reusability. The detection limit was about 500 CFU mL-1, which is much lower than that of traditional ELISA methods (104 to 105 CFU mL-1). Furthermore, the capture antibody can disinfect pathogens in situ.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Yijia Guan
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Meng Li
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Andong Zhao
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Jinsong Ren
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| | - Xiaogang Qu
- Laboratory of Chemical Biology and Division of Biological Inorganic Chemistry , State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry , University of Chinese Academy of Sciences , Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China .
| |
Collapse
|
37
|
Zhang Z, Li M, Ren J, Qu X. Cell-imprinted antimicrobial bionanomaterials with tolerable toxic side effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1258-1264. [PMID: 25348284 DOI: 10.1002/smll.201402400] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 06/04/2023]
Abstract
Taking advantage of imprinting technology, artificial antibody-microbial imprinted Ag-TiO(2) materials are fabricated for microbial inactivation using a facile and green method. Due to the induced shape and size recognition elements, the artificial antibodies specifically recognize and kill target microbes under visible-light irradiation with minimal toxic side effects toward mammalian cells.
Collapse
Affiliation(s)
- Zhijun Zhang
- Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | |
Collapse
|
38
|
Eersels K, van Grinsven B, Khorshid M, Somers V, Püttmann C, Stein C, Barth S, Diliën H, Bos GMJ, Germeraad WTV, Cleij TJ, Thoelen R, De Ceuninck W, Wagner P. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2043-2050. [PMID: 25654744 DOI: 10.1021/la5046173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.
Collapse
Affiliation(s)
- Kasper Eersels
- Hasselt University , Institute for Materials Research IMO, Wetenschapspark 1, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Hu Y, Xie L, Lu Y, Ren X. Isolation of viable type I and II methanotrophs using cell-imprinted polyurethane thin films. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20550-20556. [PMID: 25373718 DOI: 10.1021/am506223k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Studies on methanotrophs utilizing methane as sole source of carbon and energy are meaningful for governing global warming; although, the isolation of methanotrophs from nature is challenging. Here, surface imprinted polyurethane films were fabricated to selectively capture living methanotrophs from paddy soil. Two tracks of molecularly imprinted film based on polyurethane (PU-MIF1 and PU-MIF2) were imprinted using type I or II methanotrophs as template, respectively, and then reacted with polyethylene glycol, castor oil, and hexamethylene diisocyanate. Results demonstrated these PU-MIFs hold low water absorption rate and superior biocompatibility, which was highly demanded for maintaining cell viability. Superior selectivity and affinity of PU-MIFs toward their cognate methanotroph cells was observed by fluorescent microscopy. Atomic force microscopy revealed the adhesion force of PU-MIFs with its cognate cells was much stronger in comparison with noncognate ones. Using the as-prepared PU-MIFs, within 30 min, methanotroph cells could be separated from rice paddy efficiently. Therefore, the PU-MIFs might be used as an efficient approach for cell sorting from environmental samples.
Collapse
Affiliation(s)
- Yufeng Hu
- Department of Environmental Sciences & Engineering, College of Resources and Environmental Sciences, China Agricultural University , Beijing, People's Republic of China , 100193
| | | | | | | |
Collapse
|
40
|
Lee MH, Thomas JL, Lai MY, Shih CP, Lin HY. Microcontact imprinting of algae for biofuel systems: the effects of the polymer concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14014-14020. [PMID: 25356853 DOI: 10.1021/la5031119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microcontact imprinting of cells often involves the deposition of a polymer solution onto a monolayer cell stamp, followed by solvent evaporation. Thus, the concentration of the polymer may play an important role in the final morphology and efficacy of the imprinted film. In this work, various concentrations of poly(ethylene-co-vinyl alcohol) (EVAL) were dissolved in dimethyl sulfoxide (DMSO) for the microcontact imprinting of algae on an electrode. Scanning electron microscopy and fluorescence spectrometry were used to characterize the surface morphology and recognition capacity of algae to the algae-imprinted cavities. The readsorption of algae onto algae-imprinted EVAL thin films was quantified to obtain the EVAL concentration that maximized algal binding. Finally, the power and current density of an algal biofuel cell with the algae-imprinted EVAL-coated electrode were measured and found to be approximately double those of such a cell with a Pt/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) electrode.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University , Kaohsiung 84001, Taiwan
| | | | | | | | | |
Collapse
|
41
|
van Grinsven B, Eersels K, Peeters M, Losada-Pérez P, Vandenryt T, Cleij TJ, Wagner P. The heat-transfer method: a versatile low-cost, label-free, fast, and user-friendly readout platform for biosensor applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13309-13318. [PMID: 25105260 DOI: 10.1021/am503667s] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.
Collapse
Affiliation(s)
- Bart van Grinsven
- Maastricht Science Programme, Maastricht University , PO Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
A New Molecularly Imprinted Polymer Prepared by Surface Imprinting Technique for Selective Adsorption towards Rhodamine B. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amr.998-999.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new molecularly imprinted polymers (Rhodamine B-KH-570/SiO2,MIPS) with high performance for recognizing Rhodamine B was prepared by adopting the surface molecular imprinting technique with silica-gel modified by KH-570 as a carrier material, acrylamide as the functional monomer and N,N-methylene-bis-acrylamide (MBA) as the crosslinker.The static adsorption experiments indicated that MIPS had significantly higher adsorption capacity for Rhodamine B than its non-imprinted polymers (NIPS). Dynamic binding study showed that the MIPS had good site accessibility and mass transport for Rhodamine B.Scatchard analysis revealed that two classes of binding sites were formed in MIPS with dissociation constants of 0.086mol/L and 0.0076 mol/L, and the maximum apparent binding capacity was 96.00μmol/g and 50.07 μmol/g, respectively.The selectivity coefficients and separation factors of MIPS for Rhodamine B in relation to competition species Rhodamine123 were 131.51 and 3.86 respectively, which suggested that MIPS had high recognition selectivity and binding affinity for the template molecule Rhodamine B.
Collapse
|
43
|
Wackers G, Vandenryt T, Cornelis P, Kellens E, Thoelen R, De Ceuninck W, Losada-Pérez P, van Grinsven B, Peeters M, Wagner P. Array formatting of the heat-transfer method (HTM) for the detection of small organic molecules by molecularly imprinted polymers. SENSORS 2014; 14:11016-30. [PMID: 24955945 PMCID: PMC4118400 DOI: 10.3390/s140611016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/25/2023]
Abstract
In this work we present the first steps towards a molecularly imprinted polymer (MIP)-based biomimetic sensor array for the detection of small organic molecules via the heat-transfer method (HTM). HTM relies on the change in thermal resistance upon binding of the target molecule to the MIP-type receptor. A flow-through sensor cell was developed, which is segmented into four quadrants with a volume of 2.5 μL each, allowing four measurements to be done simultaneously on a single substrate. Verification measurements were conducted, in which all quadrants received a uniform treatment and all four channels exhibited a similar response. Subsequently, measurements were performed in quadrants, which were functionalized with different MIP particles. Each of these quadrants was exposed to the same buffer solution, spiked with different molecules, according to the MIP under analysis. With the flow cell design we could discriminate between similar small organic molecules and observed no significant cross-selectivity. Therefore, the MIP array sensor platform with HTM as a readout technique, has the potential to become a low-cost analysis tool for bioanalytical applications.
Collapse
Affiliation(s)
- Gideon Wackers
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
| | - Thijs Vandenryt
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
| | - Peter Cornelis
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
| | - Evelien Kellens
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Ronald Thoelen
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Ward De Ceuninck
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +32-1126-8872; Fax: +32-1126-8899
| | - Patricia Losada-Pérez
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Bart van Grinsven
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Maastricht Science Programme, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Marloes Peeters
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Patrick Wagner
- Institute for Materials Research, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium; E-Mails: (G.W.); (T.V.); (P.C.); (E.K.); (R.T.); (P.L.-P.); (B.G.); (M.P.); (P.W.)
- IMEC vzw—Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
44
|
Bers K, Eersels K, van Grinsven B, Daemen M, Bogie JFJ, Hendriks JJA, Bouwmans EE, Püttmann C, Stein C, Barth S, Bos GMJ, Germeraad WTV, De Ceuninck W, Wagner P. Heat-transfer resistance measurement method (HTM)-based cell detection at trace levels using a progressive enrichment approach with highly selective cell-binding surface imprints. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3631-3639. [PMID: 24606112 DOI: 10.1021/la5001232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Surface-imprinted polymers allow for specific cell detection based on simultaneous recognition of the cell shape, cell size, and cell membrane functionalities by macromolecular cell imprints. In this study, the specificity of detection and the detection sensitivity for target cells within a pool of non-target cells were analyzed for a cell-specific surface-imprinted polymer combined with a heat-transfer-based read-out technique (HTM). A modified Chinese hamster ovarian cell line (CHO-ldlD) was used as a model system on which the transmembrane protein mucin-1 (MUC1) could be excessively expressed and for which the occurrence of MUC1 glycosylation could be controlled. In specific cancer cells, the overexpressed MUC1 protein typically shows an aberrant apical distribution and glycosylation. We show that surface-imprinted polymers discriminate between cell types that (1) only differ in the expression of a specific membrane protein (MUC1) or (2) only differ in the membrane protein being glycosylated or not. Moreover, surface-imprinted polymers of cells carrying different glycoforms of the same membrane protein do target both types of cells. These findings illustrate the high specificity of cell detection that can be reached by the structural imprinting of cells in polymer layers. Competitiveness between target and non-target cells was proven to negatively affect the detection sensitivity of target cells. Furthermore, we show that the detection sensitivity can be increased significantly by repetitively exposing the surface to the sample and eliminating non-specifically bound cells by flushing between consecutive cell exposures.
Collapse
Affiliation(s)
- Karolien Bers
- Institute for Materials Research (IMO), Hasselt University , Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee MH, Thomas JL, Lai MY, Lin HY. Recognition of algae by microcontact-imprinted polymers modulates hydrogenase expression. RSC Adv 2014. [DOI: 10.1039/c4ra11132j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physico-chemical environment of algal cells is shown to affect algal cell metabolism, and, consequently hydrogen production, which can be used for electricity generation in fuel cells.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering
- I-Shou University
- Kaohsiung 840, Taiwan
| | - James L. Thomas
- Department of Physics and Astronomy
- University of New Mexico
- Albuquerque, USA
| | - Ming-Yuan Lai
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering
- National University of Kaohsiung
- Kaohsiung 81148, Taiwan
| |
Collapse
|