1
|
Song XC, Yu YL, Yang GY, Jiang AL, Ruan YJ, Fan SH. One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids Surf B Biointerfaces 2022; 216:112560. [PMID: 35636322 DOI: 10.1016/j.colsurfb.2022.112560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/16/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
A simple and versatile strategy for controlled production of monodisperse ethyl cellulose (EC) microcapsules by a single-stage emulsification method has been developed. Monodisperse oil-in-water emulsions, obtained by a microfluidic device, are used as templates for preparing EC microcapsules. Oil-soluble ethyl acetate (EA) is miscible with water, so the interfacial mass transfer between EA and water occurs sufficiently, which leads to water molecules pass through the phase interface and diffuse into emulsion interior. Water molecules aggregate at the interface, and some merge into a large water drop in the central position of the emulsion. After evaporation of EA solvent, monodisperse EC microcapsules create large numbers of pits on the surface with a hollow structure. Curcumin is used as a model drug and embedded in the hollow structure. EC microcapsules have good, sustained drug release efficacy in a simulated intestinal environment, and the release process of EC microcapsules containing 6.14% drug-loaded capacity is fully consistent with the vitro drug release model. Such simple techniques for making EC microcapsules may open a window to the controlled preparation of other multifunctional microcapsules. Besides, it offers theoretical guidance for the study of EC microcapsules as drug carriers and expanding clinical application of curcumin.
Collapse
Affiliation(s)
- Xu-Chun Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ya-Lan Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Gui-Yuan Yang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - A-Li Jiang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Ying-Jie Ruan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Shang-Hua Fan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
2
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
3
|
Wu Z, Werner JG, Weitz DA. Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity. ACS Macro Lett 2021; 10:116-121. [PMID: 35548985 DOI: 10.1021/acsmacrolett.0c00858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microcapsules with liquid cores and solid shells are attractive as dispersible protective micron-sized containers. Applications that rely on molecular mass transport often require a combination of size selectivity, high permeability, and mechanical stability. Capsule architectures that combine all these features represent a material property, design, and fabrication challenge. In this work, the design of an asymmetric microcapsule shell architecture is reported to achieve a good combination of the desired features. Poly(methyl methacrylate) phase-inverted microcapsules featuring an asymmetric graded macroporous shell covered with a dense skin separation layer are obtained from water-in-oil-in-water double emulsion drops that are phase-inverted in a water-based coagulation bath. The phase-inverted microcapsules exhibit good mechanical stability and allow for high permeability of its shell membrane with molecular size dependence.
Collapse
Affiliation(s)
- Zhang Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jörg G. Werner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Mechanical Engineering and Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Webb C, Forbes N, Roces CB, Anderluzzi G, Lou G, Abraham S, Ingalls L, Marshall K, Leaver TJ, Watts JA, Aylott JW, Perrie Y. Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: A case study using protein-loaded liposomes. Int J Pharm 2020; 582:119266. [DOI: 10.1016/j.ijpharm.2020.119266] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
|
5
|
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.
Collapse
Affiliation(s)
- Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andre Python
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, OX3 7LF, Oxford, UK
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
6
|
Micro and nanoscale technologies in oral drug delivery. Adv Drug Deliv Rev 2020; 157:37-62. [PMID: 32707147 PMCID: PMC7374157 DOI: 10.1016/j.addr.2020.07.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022]
Abstract
Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies. Micro and nanoscale drug carriers fabricated using these technologies, including bioadhesives, microparticles, micropatches, and nanoparticles, are described. Other applications of micro and nanoscale technologies are discussed, including fabrication of devices and tissue engineering models to precisely control or assess oral drug delivery in vivo and in vitro, respectively. Strategies to advance translation of micro and nanotechnologies into clinical trials for oral drug delivery are mentioned. Finally, challenges and future prospects on further integration of micro and nanoscale technologies with oral drug delivery systems are highlighted.
Collapse
|
7
|
Di D, Qu X, Liu C, Fang L, Quan P. Continuous production of celecoxib nanoparticles using a three-dimensional-coaxial-flow microfluidic platform. Int J Pharm 2019; 572:118831. [DOI: 10.1016/j.ijpharm.2019.118831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 01/07/2023]
|
8
|
Mäkilä E, Anton Willmore AM, Yu H, Irri M, Aindow M, Teesalu T, Canham LT, Kolasinski KW, Salonen J. Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching. ACS NANO 2019; 13:13056-13064. [PMID: 31670505 DOI: 10.1021/acsnano.9b05740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchically nanostructured silicon was produced by regenerative electroless etching (ReEtching) of Si powder made from pulverized anodized porous silicon. This material is characterized by ∼15 nm mesopores, into the walls of which tortuous 2-4 nm pores have been introduced. The walls are sufficiently narrow that they support quantum-confined crystallites that are photoluminescent. With suitable parameters, the ReEtching process also provides control over the emission color of the photoluminescence. Ball milling and hydrosilylation of this powder with undecylenic acid produces nanoparticles with hydrodynamic diameter of ∼220 nm that exhibit robust and bright luminescence that can be excited with either one ultraviolet/visible photon or two near-infrared photons. The long-lived, robust visible photoluminescence of these chemically passivated porous silicon nanoparticles is well-suited for bioimaging and theranostic applications.
Collapse
Affiliation(s)
- Ermei Mäkilä
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | | | - Haibo Yu
- Department of Materials Science and Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Marianna Irri
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | - Mark Aindow
- Department of Materials Science and Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Tambet Teesalu
- Laboratory for Cancer Biology , University of Tartu , Tartu 50411 , Estonia
| | - Leigh T Canham
- School of Physics and Astronomy , University of Birmingham , Birmingham B15 2TT , United Kingdom
| | - Kurt W Kolasinski
- Department of Chemistry , West Chester University , West Chester , Pennsylvania 19383-2115 , United States
| | - Jarno Salonen
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| |
Collapse
|
9
|
Hao N, Nie Y, Zhang JX. Microfluidics for silica biomaterials synthesis: opportunities and challenges. Biomater Sci 2019; 7:2218-2240. [PMID: 30919847 PMCID: PMC6538461 DOI: 10.1039/c9bm00238c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design and controllable synthesis of silica nanomaterials bearing unique physicochemical properties is becoming increasingly important for a variety of biomedical applications from imaging to drug delivery. Microfluidics has recently emerged as a promising platform for nanomaterial synthesis, providing precise control over particle size, shape, porosity, and structure compared to conventional batch synthesis approaches. This review summarizes microfluidics approaches for the synthesis of silica materials as well as the design, fabrication and the emerging roles in the development of new classes of functional biomaterials. We highlight the unprecedented opportunities of using microreactors in biomaterial synthesis, and assess the recent progress of continuous and discrete microreactors and the associated biomedical applications of silica materials. Finally, we discuss the challenges arising from the intrinsic properties of microfluidics reactors for inspiring future research in this field.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
10
|
Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci U S A 2019; 116:7744-7749. [PMID: 30926671 DOI: 10.1073/pnas.1817251116] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.
Collapse
|
11
|
Martins JP, Liu D, Fontana F, Ferreira MPA, Correia A, Valentino S, Kemell M, Moslova K, Mäkilä E, Salonen J, Hirvonen J, Sarmento B, Santos HA. Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44354-44367. [PMID: 30525379 DOI: 10.1021/acsami.8b20821] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microfluidics technology is emerging as a promising strategy in improving the oral delivery of proteins and peptides. Herein, a multistage drug delivery system is proposed as a step forward in the development of noninvasive therapies. Undecylenic acid-modified thermally hydrocarbonized porous silicon (UnPSi) nanoparticles (NPs) were functionalized with the Fc fragment of immunoglobulin G for targeting purposes. Glucagon-like peptide-1 (GLP-1) was loaded into the NPs as a model antidiabetic drug. Fc-UnPSi NPs were coated with mucoadhesive chitosan and ultimately entrapped into a polymeric matrix with pH-responsive properties by microfluidic nanoprecipitation. The final formulation showed a controlled and narrow size distribution. The pH-responsive matrix remained intact in acidic conditions, dissolving only in intestinal pH, resulting in a sustained release of the payload. The NPs presented high cytocompatibility and increased levels of interaction with intestinal cells when functionalized with the Fc fragment, which was supported by the validation of the Fc-fragment integrity after conjugation to the NPs. Finally, the Fc-conjugated NPs showed augmented GLP-1 permeability in an intestinal in vitro model. These results highlight the potential of microfluidics as an advanced technique for the preparation of multistage platforms for oral administration. Moreover, this study provides new insights on the potential of the Fc receptor transcytotic capacity for the development of targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Valentino
- Department of Drug Sciences , Università degli Studi di Pavia , Viale Taramello 12 , 27100 Pavia , Itália
| | | | | | - Ermei Mäkilä
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | - Jarno Salonen
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | | | - Bruno Sarmento
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , 4585-116 Gandra , Portugal
| | | |
Collapse
|
12
|
Levin A, Michaels TCT, Mason TO, Müller T, Adler-Abramovich L, Mahadevan L, Cates ME, Gazit E, Knowles TPJ. Self-Assembly-Mediated Release of Peptide Nanoparticles through Jets Across Microdroplet Interfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27578-27583. [PMID: 30080033 DOI: 10.1021/acsami.8b09511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The release of nanoscale structures from microcapsules, triggered by changes in the capsule in response to external stimuli, has significant potential for active component delivery. Here, we describe an orthogonal strategy for controlling molecular species' release across oil/water interfaces by modulating their intrinsic self-assembly state. We show that although the soluble peptide Boc-FF can be stably encapsulated for days, its self-assembly into nanostructures triggers jet-like release within seconds. Moreover, we exploit this self-assembly-mediated release to deliver other molecular species that are transported as cargo. These results demonstrate the role of self-assembly in modulating the transport of peptides across interfaces.
Collapse
Affiliation(s)
- Aviad Levin
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Thomas C T Michaels
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Paulson School of Engineering and Applied Science , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Thomas O Mason
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | - Thomas Müller
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
| | | | - Lakshminarayanan Mahadevan
- Paulson School of Engineering and Applied Science , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences , University of Cambridge , Cambridge CB3 0WA , United Kingdom
| | | | - Tuomas P J Knowles
- Department of Chemistry , University of Cambridge , Cambridge CB2 1EW , United Kingdom
- Cavendish Laboratory , University of Cambridge , Cambridge CB3 0HE , United Kingdom
| |
Collapse
|
13
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fontana F, Figueiredo P, Zhang P, Hirvonen JT, Liu D, Santos HA. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv Drug Deliv Rev 2018; 131:3-21. [PMID: 29738786 DOI: 10.1016/j.addr.2018.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
The use of drug nanocrystals in the drug formulation is increasing due to the large number of poorly water-soluble drug compounds synthetized and due to the advantages brought by the nanonization process. The downsizing processes are done using a top-down approach (milling and homogenization currently employed at the industrial level), while the crystallization process is performed by bottom-up techniques (e.g., antisolvent precipitation, use of supercritical fluids or spray and freeze drying). In addition, the production of nanocrystals in confined environment can be achieved within microfluidics channels. This review analyzes the processes for the preparation of nanocrystals and co-crystals, divided by top-down and bottom-up approaches, together with their combinations. The combination of both strategies merges the favorable features of each process and avoids the disadvantages of single processes. Overall, the applicability of drug nanocrystals is highlighted by the widespread research on the production processes at the engineering, pharmaceutical, and nanotechnology level.
Collapse
|
15
|
Liu D, Chen J, Jiang T, Li W, Huang Y, Lu X, Liu Z, Zhang W, Zhou Z, Ding Q, Santos HA, Yin G, Fan J. Biodegradable Spheres Protect Traumatically Injured Spinal Cord by Alleviating the Glutamate-Induced Excitotoxicity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706032. [PMID: 29441625 DOI: 10.1002/adma.201706032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Indexed: 06/08/2023]
Abstract
New treatment strategies for spinal cord injury with good therapeutic efficacy are actively pursued. Here, acetalated dextran (AcDX), a biodegradable polymer obtained by modifying vicinal diols of dextran, is demonstrated to protect the traumatically injured spinal cord. To facilitate its administration, AcDX is formulated into microspheres (≈7.2 µm in diameter) by the droplet microfluidic technique. Intrathecally injected AcDX microspheres effectively reduce the traumatic lesion volume and inflammatory response in the injured spinal cord, protect the spinal cord neurons from apoptosis, and ultimately, recover the locomotor function of injured rats. The neuroprotective feature of AcDX microspheres is achieved by sequestering glutamate and calcium ions in cerebrospinal fluid. The scavenging of glutamate and calcium ion reduces the influx of calcium ions into neurons and inhibits the formation of reactive oxygen species. Consequently, AcDX microspheres attenuate the expression of proapoptotic proteins, Calpain, and Bax, and enhance the expression of antiapoptotic protein Bcl-2. Overall, AcDX microspheres protect traumatically injured spinal cord by alleviating the glutamate-induced excitotoxicity. This study opens an exciting perspective toward the application of neuroprotective AcDX for the treatment of severe neurological diseases.
Collapse
Affiliation(s)
- Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Jian Chen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Orthopaedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wei Li
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yao Huang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Institute of Sport Medicine, The Affiliated Hospital of Nanjing, University of TCM, Nanjing, 210004, China
| | - Xiyi Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Weixia Zhang
- John A. Paulson School of Applied Science and Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Zheng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qirui Ding
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-0014, Helsinki, Finland
| | - Guoyong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
16
|
Choi G, Kim TH, Oh JM, Choy JH. Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Li H, Lv N, Li X, Liu B, Feng J, Ren X, Guo T, Chen D, Fraser Stoddart J, Gref R, Zhang J. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. NANOSCALE 2017; 9:7454-7463. [PMID: 28530283 DOI: 10.1039/c6nr07593b] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and pharmaceutically acceptable MOF-based carrier for sustained drug release.
Collapse
Affiliation(s)
- Haiyan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA. Microfluidic-assisted fabrication of carriers for controlled drug delivery. LAB ON A CHIP 2017; 17:1856-1883. [PMID: 28480462 DOI: 10.1039/c7lc00242d] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The microfluidic technique has brought unique opportunities toward the full control over the production processes for drug delivery carriers, owing to the miniaturisation of the fluidic environment. In comparison to the conventional batch methods, the microfluidic setup provides a range of advantages, including the improved controllability of material characteristics, as well as the precisely controlled release profiles of payloads. This review gives an overview of different fluidic principles used in the literature to produce either polymeric microparticles or nanoparticles, focusing on the materials that could have an impact on drug delivery. We also discuss the relations between the particle size and size distribution of the obtained carriers, and the design and configuration of the microfluidic setups. Overall, the use of microfluidic technologies brings exciting opportunities to expand the body of knowledge in the field of controlled drug delivery and great potential to clinical translation of drug delivery systems.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
19
|
Ollikainen E, Liu D, Kallio A, Mäkilä E, Zhang H, Salonen J, Santos HA, Sikanen TM. The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. Eur J Pharm Sci 2017; 104:124-132. [PMID: 28366651 DOI: 10.1016/j.ejps.2017.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023]
Abstract
Engineered nanoparticles are increasingly used as drug carriers in pharmaceutical formulations. This study focuses on the hitherto unaddressed impact of porous silicon (PSi) nanoparticles on human cytochrome P450 (CYP) metabolism, which is the major detoxification route of most pharmaceuticals and other xenobiotics. Three different surface chemistries, including thermally carbonized PSi (TCPSi), aminopropylsilane-modified TCPSi (APTES-TCPSi) and alkyne-terminated thermally hydrocarbonized PSi (Alkyne-THCPSi), were compared for their effects on the enzyme kinetics of the major CYP isoforms (CYP1A2, CYP2A6, CYP2D6, and CYP3A4) in human liver microsomes (HLM) in vitro. The enzyme kinetic parameters, Km and Vmax, and the intrinsic clearance (CLint) were determined using FDA-recommended, isoenzyme-specific model reactions with and without PSi nanoparticles. Data revealed statistically significant alterations of most isoenzyme activities in HLM in the presence of nanoparticles at 1mg/ml concentration, and polymorphic CYP2D6 was the most vulnerable to enzyme inhibition. However, the observed CYP2D6 inhibition was shown to be dose-dependent in case of TCPSi and Alkyne-THCPSi nanoparticles and attenuated at the concentrations below 1μg/ml. Adsorption of the probe substrates onto the hydrophobic Alkyne-THCPSi particles was also observed and taken into account in the determination of the kinetic parameters. Three polymer additives commonly used in pharmaceutical nanoformulations (Pluronics F68 and F127, and polyvinylalcohol) were also separately screened for their effects on CYP isoenzyme activities. These polymers had less effect on the enzyme kinetic parameters, and resulted in increased activity rather than enzyme inhibition, in contrast to the PSi nanoparticles. Although the chosen subcellular model (HLM) is not able to predict the cellular disposition of PSi nanoparticles in hepatocytes and thus provides limited information of probability of CYP interactions in vivo, the present study suggests that mechanistic interactions by the PSi nanoparticles or the polymer stabilizers may appear if these are effectively uptaken by the hepatocytes.
Collapse
Affiliation(s)
- Elisa Ollikainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arttu Kallio
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tiina M Sikanen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
|
21
|
Wang B, Prinsen P, Wang H, Bai Z, Wang H, Luque R, Xuan J. Macroporous materials: microfluidic fabrication, functionalization and applications. Chem Soc Rev 2017; 46:855-914. [DOI: 10.1039/c5cs00065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article provides an up-to-date highly comprehensive overview (594 references) on the state of the art of the synthesis and design of macroporous materials using microfluidics and their applications in different fields.
Collapse
Affiliation(s)
- Bingjie Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Pepijn Prinsen
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Huizhi Wang
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Zhishan Bai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hualin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Rafael Luque
- Departamento de Quimica Organica
- Universidad de Cordoba
- Campus de Rabanales
- Cordoba
- Spain
| | - Jin Xuan
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh
- UK
| |
Collapse
|
22
|
Kong F, Zhang H, Qu X, Zhang X, Chen D, Ding R, Mäkilä E, Salonen J, Santos HA, Hai M. Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10195-10203. [PMID: 27689681 DOI: 10.1002/adma.201602763] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/21/2016] [Indexed: 05/28/2023]
Abstract
Gold nanorods, DNA origami, and porous silicon nanoparticle-functionalized biocompatible double emulsion are developed for versatile molecular targeted therapeutics and antibody combination therapy. This advanced photothermal responsive all-in-one biocompatible platform can be easily formed with great therapeutics loading capacity for different cancer treatments with synergism and multidrug resistance inhibition, which has great potential in advancing biomedical applications.
Collapse
Affiliation(s)
- Feng Kong
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hongbo Zhang
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Xiangmeng Qu
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xu Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS, B1P 6L2, Canada
| | - Dong Chen
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ruihua Ding
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku, FI-20014, Turku, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mingtan Hai
- Beijing Key Laboratory of Function Materials for Molecule and Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
23
|
|
24
|
|
25
|
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3463-70. [PMID: 27197594 DOI: 10.1002/smll.201600798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 05/10/2023]
Abstract
Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor-selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH-sensitive, multicompartmental particles are promising drug carriers enabling tumor-selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Dae Gun Choi
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| |
Collapse
|
26
|
Fontana F, Mori M, Riva F, Mäkilä E, Liu D, Salonen J, Nicoletti G, Hirvonen J, Caramella C, Santos HA. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:988-996. [PMID: 26652045 DOI: 10.1021/acsami.5b10950] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.
Collapse
Affiliation(s)
- Flavia Fontana
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | | | - Ermei Mäkilä
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku , Turku, Finland
| | | | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| | | | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , Helsinki 00014, Finland
| |
Collapse
|
27
|
Zhu Z, Wu Q, Li G, Han S, Si T, Xu RX. Microfluidic fabrication of stimuli-responsive microdroplets for acoustic and optical droplet vaporization. J Mater Chem B 2016; 4:2723-2730. [DOI: 10.1039/c5tb02402a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We developed a flow-focusing microfluidic assay for fabricating stimuli-responsive microdroplets (SRMs) for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Qiang Wu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Guangbin Li
- Department of Modern Mechanics
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Shuya Han
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Ting Si
- Department of Modern Mechanics
- University of Science and Technology of China
- Hefei
- P. R. China
- Department of Biomedical Engineering
| | - Ronald X. Xu
- Department of Precision Machinery and Precision Instrumentation
- University of Science and Technology of China
- Hefei
- P. R. China
- Department of Biomedical Engineering
| |
Collapse
|
28
|
Guan L, Rizzello L, Battaglia G. Polymersomes and their applications in cancer delivery and therapy. Nanomedicine (Lond) 2015; 10:2757-80. [DOI: 10.2217/nnm.15.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polymersomes have been proposed as a platform for drug delivery systems since late 90s. They are exploited to deliver hydrophilic and/or hydrophobic therapeutic and diagnostic agents. The relatively robust membrane, the colloidal stability, along with a significant biocompatibility and easy ligands conjugation methods make polymersomes primary candidates for therapeutic drugs delivery in cancer clinical treatments. In addition, they represent an optimal choice as imaging tools in noninvasive diagnostic. As a result, polymersomes have been proposed and widely studied for anticancer treatments. However, there are not sufficient clinic translation data of human studies yet. In this critical review, we will discuss such topics, focusing on the self-assembly of membrane-forming copolymers, on their tunable physicochemical properties and on the consequential applications of these biocompatible polymersomes in drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Lijuan Guan
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| | - Loris Rizzello
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- MRC Center for Medical Molecular Virology, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
29
|
Araújo F, Shrestha N, Shahbazi MA, Liu D, Herranz-Blanco B, Mäkilä EM, Salonen JJ, Hirvonen JT, Granja PL, Sarmento B, Santos HA. Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS NANO 2015; 9:8291-8302. [PMID: 26235314 DOI: 10.1021/acsnano.5b02762] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional tailorable composite systems, specifically designed for oral dual-delivery of a peptide (glucagon-like peptide-1) and an enzymatic inhibitor (dipeptidyl peptidase 4 (DPP4)), were assembled through the microfluidics technique. Both drugs were coloaded into these systems for a synergistic therapeutic effect. The systems were composed of chitosan and cell-penetrating peptide modified poly(lactide-co-glycolide) and porous silicon nanoparticles as nanomatrices, further encapsulated in an enteric hydroxypropylmethylcellulose acetylsuccinate polymer. The developed multifunctional systems were pH-sensitive, inherited by the enteric polymer, enabling the release of the nanoparticles only in the simulated intestinal conditions. Moreover, the encapsulation into this polymer prevented the degradation of the nanoparticles' modifications. These nanoparticles showed strong and higher interactions with the intestinal cells in comparison with the nonmodified ones. The presence of DPP4 inhibitor enhanced the peptide permeability across intestinal cell monolayers. Overall, this is a promising platform for simultaneously delivering two drugs from a single formulation. Through this approach peptides are expected to increase their bioavailability and efficiency in vivo both by their specific release at the intestinal level and also by the reduced enzymatic activity. The use of this platform, specifically in combination of the two antidiabetic drugs, has clinical potential for the therapy of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Francisca Araújo
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, University of Porto , 4150-180 Porto, Portugal
| | - Neha Shrestha
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Ermei M Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Laboratory of Industrial Physics, University of Turku , FI-20014 Turku, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, University of Turku , FI-20014 Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- ICBAS - Instituto Ciências Biomédicas Abel Salazar, University of Porto , 4150-180 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto , 4150-180 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto , 4150-180 Porto, Portugal
- CESPU , Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|
30
|
Vasiliauskas R, Liu D, Cito S, Zhang H, Shahbazi MA, Sikanen T, Mazutis L, Santos HA. Simple Microfluidic Approach to Fabricate Monodisperse Hollow Microparticles for Multidrug Delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14822-14832. [PMID: 26098382 DOI: 10.1021/acsami.5b04824] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we report the production of monodisperse hollow microparticles from three different polymers, namely, pH-responsive acetylated dextran and hypromellose acetate succinate and biodegradable poly(lactic-co-glycolic acid), at varying polymer concentrations using a poly(dimethylsiloxane)-based microfluidic device. Hollow microparticles formed during solvent diffusion into the continuous phase when the polymer close to the interface solidified, forming the shell. In the inner part of the particle, phase separation induced solvent droplet formation, which dissolved the shell, forming a hole and a hollow-core particle. Computational simulations showed that, despite the presence of convective recirculation around the droplet, the mass-transfer rate of the solvent dissolution from the droplet to the surrounding phase was dominated by diffusion. To illustrate the potential use of hollow microparticles, we simultaneously encapsulated two anticancer drugs and investigated their loading and release profiles. In addition, by utilizing different polymer shells and polymer concentrations, the release profiles of the model drugs could be tailored according to specific demands and applications. The high encapsulation efficiency, controlled drug release, unique hollow microparticle structure, small particle size (<7 μm), and flexibility of the polymer choice could make these microparticles advanced platforms for pulmonary drug delivery.
Collapse
Affiliation(s)
- Remigijus Vasiliauskas
- †Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Dongfei Liu
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Salvatore Cito
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Hongbo Zhang
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Tiina Sikanen
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Linas Mazutis
- †Vilnius University Institute of Biotechnology, Vilnius LT-02241, Lithuania
- §School of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hélder A Santos
- ‡Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
31
|
Roine J, Kaasalainen M, Peurla M, Correia A, Araújo F, Santos HA, Murtomaa M, Salonen J. Controlled Dissolution of Griseofulvin Solid Dispersions from Electrosprayed Enteric Polymer Micromatrix Particles: Physicochemical Characterization and in Vitro Evaluation. Mol Pharm 2015; 12:2254-64. [DOI: 10.1021/mp500787b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jorma Roine
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Martti Kaasalainen
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Markus Peurla
- Laboratory
of Electron Microscopy, University of Turku, FI-20014 Turku, Finland
| | - Alexandra Correia
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Francisca Araújo
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- INEB—Instituto
de Engenharia Biomédica, University of Porto, Rua do Campo
Alegre, 823, 4150-180 Porto, Portugal
- ICBAS—Instituto
Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal
| | - Hélder A. Santos
- Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Matti Murtomaa
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jarno Salonen
- Department
of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
32
|
Liu D, Cito S, Zhang Y, Wang CF, Sikanen TM, Santos HA. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2298-304. [PMID: 25684077 DOI: 10.1002/adma.201405408] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/18/2015] [Indexed: 05/17/2023]
Abstract
A versatile and robust microfluidic nanoprecipitation platform for high throughput synthesis of nanoparticles is fabricated. The versatility of this platform is proven through the successful preparation of different types of nanoparticles. This platform presents great robustness, with homogeneous nanoparticles always being obtained, regardless of the formulation parameters. The diameter and surface charge of the prepared nanoparticles can also be easily tuned.
Collapse
Affiliation(s)
- Dongfei Liu
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:103102. [PMID: 25679044 DOI: 10.1088/0953-8984/27/10/103102] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Collapse
Affiliation(s)
- Patrick Huber
- Hamburg University of Technology (TUHH), Institute of Materials Physics and Technology, Eißendorfer Str. 42, D-21073 Hamburg-Harburg (Germany
| |
Collapse
|
34
|
Liu D, Zhang H, Mäkilä E, Fan J, Herranz-Blanco B, Wang CF, Rosa R, Ribeiro AJ, Salonen J, Hirvonen J, Santos HA. Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials 2015; 39:249-59. [DOI: 10.1016/j.biomaterials.2014.10.079] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 12/11/2022]
|
35
|
Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4497-503. [PMID: 24737409 DOI: 10.1002/adma.201400953] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/23/2014] [Indexed: 05/22/2023]
Abstract
A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties.
Collapse
Affiliation(s)
- Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tölli MA, Ferreira MPA, Kinnunen SM, Rysä J, Mäkilä EM, Szabó Z, Serpi RE, Ohukainen PJ, Välimäki MJ, Correia AMR, Salonen JJ, Hirvonen JT, Ruskoaho HJ, Santos HA. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials 2014; 35:8394-405. [PMID: 24985734 DOI: 10.1016/j.biomaterials.2014.05.078] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 05/28/2014] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI), commonly known as a heart attack, is the irreversible necrosis of heart muscle secondary to prolonged ischemia, which is an increasing problem in terms of morbidity, mortality and healthcare costs worldwide. Along with the idea to develop nanocarriers that efficiently deliver therapeutic agents to target the heart, in this study, we aimed to test the in vivo biocompatibility of different sizes of thermally hydrocarbonized porous silicon (THCPSi) microparticles and thermally oxidized porous silicon (TOPSi) micro and nanoparticles in the heart tissue. Despite the absence or low cytotoxicity, both particle types showed good in vivo biocompatibility, with no influence on hematological parameters and no considerable changes in cardiac function before and after MI. The local injection of THCPSi microparticles into the myocardium led to significant higher activation of inflammatory cytokine and fibrosis promoting genes compared to TOPSi micro and nanoparticles; however, both particles showed no significant effect on myocardial fibrosis at one week post-injection. Our results suggest that THCPSi and TOPSi micro and nanoparticles could be applied for cardiac delivery of therapeutic agents in the future, and the PSi biomaterials might serve as a promising platform for the specific treatment of heart diseases.
Collapse
Affiliation(s)
- Marja A Tölli
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Mónica P A Ferreira
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sini M Kinnunen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Ermei M Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Zoltán Szabó
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Raisa E Serpi
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland
| | - Pauli J Ohukainen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Mika J Välimäki
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland
| | - Alexandra M R Correia
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarno J Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland
| | - Jouni T Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Heikki J Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, FI-90014 Oulu, Finland; Division of Pharmacology and Pharmacotherapy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
37
|
Herranz-Blanco B, Arriaga LR, Mäkilä E, Correia A, Shrestha N, Mirza S, Weitz DA, Salonen J, Hirvonen J, Santos HA. Microfluidic assembly of multistage porous silicon-lipid vesicles for controlled drug release. LAB ON A CHIP 2014; 14:1083-6. [PMID: 24469311 PMCID: PMC4092317 DOI: 10.1039/c3lc51260f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A reliable microfluidic platform for the generation of stable and monodisperse multistage drug delivery systems is reported. A glass-capillary flow-focusing droplet generation device was used to encapsulate thermally hydrocarbonized porous silicon (PSi) microparticles into the aqueous cores of double emulsion drops, yielding the formation of a multistage PSi-lipid vesicle. This composite system enables a large loading capacity for hydrophobic drugs.
Collapse
Affiliation(s)
- Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|