1
|
Karar M, Pal A, Dey N. Exploring the time-dependent and wavelength-guided tunable binary and ternary logic behaviours of a charge-transfer probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7589-7597. [PMID: 39377566 DOI: 10.1039/d4ay01195c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
This study presents the development of a novel time-dependent logic behaviour system and a state-of-the-art inter-switchable ternary molecular logic system, comprising 3-input INHIBIT and 3-input TRANSFER logic gates driven by elementary chemical interactions. The absorption spectra of the probe molecule underwent versatile time-dependent changes upon the individual and simultaneous addition of two analytes, namely F- and CN-, leading to alterations in the logic behaviour observed at both the 295 nm (from AND to TRANSFER) and 400 nm bands (from OR to INHIBIT). Additionally, we explored the creation of wavelength-guided molecular logic systems that leverage reversible (F- and H2O) and irreversible (CN- and H2O) chemical interactions. By employing CN- and H2O as dual chemical inputs, we derived binary TRANSFER, 2-input PASS 0, and binary COMPLEMENT logic gates based on the opto-chemical responses at 295 nm, 400 nm, and 500 nm, respectively. Lastly, we introduced an innovative inter-switchable ternary molecular logic system, involving 3-input INHIBIT and 3-input TRANSFER logic gates, using F-, CN-, and H2O as ternary chemical inputs, capitalizing on the probes' versatile and distinct absorption responses at varying wavelengths (400 and 295 nm, respectively).
Collapse
Affiliation(s)
- Monaj Karar
- MLR Institute of Technology, Hyderabad, Telangana-500 043, India
| | - Animesh Pal
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana-500078, India.
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana-500078, India.
| |
Collapse
|
2
|
Das S, Sahoo A, Baitalik S. Advancing Molecular-Scale Logic Devices through Multistage Switching in a Luminescent Bimetallic Ru(II)-Terpyridine Complex. Inorg Chem 2024; 63:14933-14942. [PMID: 39091180 DOI: 10.1021/acs.inorgchem.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Stimuli-responsive multistep switching phenomena of a luminescent bimetallic Ru(II) complex are employed herein to fabricate multiple configurable logic devices. The complex exhibits "off-on" and "on-off" emission switching upon alternative treatment with visible and UV light. Additionally, remarkable augmentation of the rate as well as quantum yield of photoisomerization was achieved via the use of a chemical oxidant (Ce4+) as well as a reductant (metallic sodium). Upon exploiting the emission spectral response of the complex, several advanced Boolean logic functions, including IMPLICATION as well as 2-input 2-output and 3-input 2-output complex combinational logic gates, are successfully implemented. Additionally, by utilizing the vast efficacy of Python, a novel "logic_circuit" model is devised that is capable of making accurate decisions under the influence of various input combinations. This model transcends traditional Boolean logic gates, offering flexibility and intuition to design logical functions tailored to specific chemical contexts. By integrating principles of logic circuits with chemical processes, this innovative approach enables structure determination of the chemical states based on input conditions, thereby unlocking avenues for exploring intricate interactions and reactions beyond conventional Boolean logic paradigms.
Collapse
Affiliation(s)
- Soumi Das
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Anik Sahoo
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Inorganic Chemistry Section, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Suárez-García S, Solórzano R, Alibés R, Busqué F, Novio F, Ruiz-Molina D. Antitumour activity of coordination polymer nanoparticles. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Zeng HH, Yu K, Huang J, Liu F, Zhang ZY, Chen SP, Zhang F, Guan SP, Qiu L. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand. Colloids Surf B Biointerfaces 2021; 204:111796. [PMID: 33933879 DOI: 10.1016/j.colsurfb.2021.111796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 12/27/2022]
Abstract
The efficiency of energy transfer from guanine nucleotide to terbium ion (Tb3+) is affected by the phosphate group significantly. Compared with the biomolecules 5'-GMP (guanosine monophosphate), guanosine diphosphate (GDP) exhibits better sensitize ability to Tb3+ ions luminescence. Assisted with the carboxycoumarin ligand, we synthesized a more stable optical Coumarin@GDP-Tb polymer with the characteristic emission peaks located on 440 nm and 545 nm in this work. The Coumarin@GDP-Tb polymer is not only rich in metal binding sites, but also maintains a moderate ionic binding force, which helps metal ions to bind or leave it easily. Experiment result shows that Coumarin@GDP-Tb polymer has the appropriate binding force for Fe2+ ions, which can be destroyed by sulfur ions (S2-) as the formation of FeS precipitation. Based on this, Coumarin@GDP-Tb was designed as the ratio fluorescence probe for sulfur ions detection, where the fluorescence at 545 nm can be selectively quenched by Fe2+ ions, while that at 440 nm was unaffected, in the presence of S2- ions, the quenched fluorescence can be recovered remarkably. With the increasing S2- ions from 0.1-45 μM, the ratio of fluorescence intensity at 545 nm to 440 nm (F545/F440) is linear to S2- concentration, and the detection limit of S2- was calculated to be 0.073 μM. Contrast to those fluorescence probes with single wavelength emission, Coumarin@GDP-Tb displays a comparable sensitivity, the introduced self-adjust wavelength improved the detection accuracy efficiently. The above 98.1 % recovery rates of S2- ions in the actual water sample demonstrated the practicability of Coumarin@GDP-Tb fluorescence probe.
Collapse
Affiliation(s)
- Hui-Hui Zeng
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China.
| | - Kun Yu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Jian Huang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fang Liu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Zhi-Yi Zhang
- Jiangxi Institute of Analyzing and Testing, Nanchang, 330029, China
| | - Shi-Ping Chen
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Fei Zhang
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Shu-Ping Guan
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Li Qiu
- Jiangxi Key Laboratory of Industrial Ceramics, College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| |
Collapse
|
5
|
Suárez-García S, Solórzano R, Novio F, Alibés R, Busqué F, Ruiz-Molina D. Coordination polymers nanoparticles for bioimaging. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213716] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Nirmala A, Mukkatt I, Shankar S, Ajayaghosh A. Thermochromic Color Switching to Temperature Controlled Volatile Memory and Counter Operations with Metal–Organic Complexes and Hybrid Gels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
| | - Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
7
|
Nirmala A, Mukkatt I, Shankar S, Ajayaghosh A. Thermochromic Color Switching to Temperature Controlled Volatile Memory and Counter Operations with Metal–Organic Complexes and Hybrid Gels. Angew Chem Int Ed Engl 2020; 60:455-465. [DOI: 10.1002/anie.202011580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/09/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
| | - Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
8
|
Pu F, Qu S, Qiu H, Zhang L. Regulation of light-harvesting antenna based on silver ion-enhanced emission of dye-doped coordination polymer nanoparticles. J Colloid Interface Sci 2020; 578:254-261. [PMID: 32531555 DOI: 10.1016/j.jcis.2020.05.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
The design and construction of artificial light-harvesting systems for solar energy conversion to chemical energy has been an active research field. A variety of molecules and materials have been used to mimic the function of the light-harvesting antenna. However, the improvement or regulation of the antenna effect of the existing artificial light-harvesting systems is less explored. Coordination polymers have aroused extensive concern due to their applications in light-harvesting and energy conversion. Herein, it is found that silver ion can dramatically enhance the emission of dye encapsulated in the coordination polymer nanoparticles (CPNs). The mechanism of Ag+-induced fluorescence enhancement is elucidated. Taking advantage of the effect of Ag+ ions, the regulation of CPN-based light-harvesting system by Ag+ is achieved for the first time. The antenna effect could be up to 2.3 times the original value by adding Ag+ ions. The present work provides a new approach to regulate the antenna effect of the light-harvesting system with the advantages of convenience, rapidity, low cost, and flexibility.
Collapse
Affiliation(s)
- Fang Pu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Songrong Qu
- High School Attached to Northeast Normal University, Changchun, Jilin 130022, China
| | - Hao Qiu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
9
|
Barnoy EA, Popovtzer R, Fixler D. Fluorescence for biological logic gates. JOURNAL OF BIOPHOTONICS 2020; 13:e202000158. [PMID: 32537894 DOI: 10.1002/jbio.202000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/03/2023]
Abstract
Biological logic gates are smart probes able to respond to biological conditions in behaviors similar to computer logic gates, and they pose a promising challenge for modern medicine. Researchers are creating many kinds of smart nanostructures that can respond to various biological parameters such as pH, ion presence, and enzyme activity. Each of these conditions alone might be interesting in a biological sense, but their interactions are what define specific disease conditions. Researchers over the past few decades have developed a plethora of stimuli-responsive nanodevices, from activatable fluorescent probes to DNA origami nanomachines, many explicitly defining logic operations. Whereas many smart configurations have been explored, in this review we focus on logic operations actuated through fluorescent signals. We discuss the applicability of fluorescence as a means of logic gate implementation, and consider the use of both fluorescence intensity as well as fluorescence lifetime.
Collapse
Affiliation(s)
- Eran A Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Zhang Y, Li CW, Zhou L, Chen Z, Yi C. "Plug and Play" logic gate construction based on chemically triggered fluorescence switching of gold nanoparticles conjugated with Cy3-tagged aptamer. Mikrochim Acta 2020; 187:437. [PMID: 32647943 DOI: 10.1007/s00604-020-04421-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/30/2020] [Indexed: 11/29/2022]
Abstract
Gold nanoparticles (AuNPs) conjugated with Cy3-tagged aptamer which can specifically recognize chloramphenicol (CAP) (referred to as AuNPs-AptCAP) are described. CAP can trigger the configuration change of CAP binding aptamer, and thus switching the fluorescence of AuNPs-AptCAP through changing the efficiency of the fluorescence resonance energy transfer (FRET) system with Cy3 as donors and AuNPs as recipients. AuNPs-AptCAP exhibits a linear range of CAP concentrations from 26.0 to 277 μg L-1 with a limit of detection of 8.1 μg L-1 when Cy3 was excited at 530 nm and emission was measured at 570 nm. More importantly, AuNPs-AptCAP can be utilized as signal transducers for the build-up of a series of logic gates including YES, PASS 0, INH, NOT, PASS 1, and NAND. Utilizing the principle of a metal ion-mediated fluorescence switch together with a strong metal ion chelator, the fluorescence of AuNPs-AptCAP could be modulated by adding metal ions and EDTA sequentially. Therefore, a "Plug and Play" logic system based on AuNPs-AptCAP has been realized by simply adding other components to create new logic functions. This work highlights the advantages of simple synthesis and facile fluorescence switching properties, which will provide useful knowledge for the establishment of molecular logic systems. Graphical abstract.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheuk-Wing Li
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Lefei Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhanpeng Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China. .,Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
11
|
Karar M, Paul P, Biswas B, Mallick A, Majumdar T. Excitation wavelength as logic operator. J Chem Phys 2020; 152:075102. [PMID: 32087625 DOI: 10.1063/1.5142045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Multiple molecular logic gates were harvested on a single synthesized material, (E)-2-(2-hydroxy-3-methoxybenzylideneamino)phenol (MBAP), by combining excitation wavelength dependent multi-channel fluorescence outputs and the same chemical inputs. Interestingly, the effortless switching of logic behavior was achieved by simply tweaking the excitation wavelength and sometimes the emission wavelengths with no alteration of chemical inputs and the main device molecule, MBAP. Additionally, new generation purely optically driven memory units were designed on the same system supporting an almost infinite number of write-erase cycles since inter-conversion of memory states was completely free from chemical interferences and impurity issues. Two-way memory functions ("erase-read-write-read" and "write-read-erase-read") worked simultaneously on the same system and could be accessed by simple optical switching between two excitation and emission wavelengths. Our optically switchable device might outperform traditional multifunctional logic gates and memory devices that generally employ chemical triggers to switch functionality and memory states. These optically switchable multifunctional molecular logic gates and memory systems might drive smart devices in the near future with high energy efficiency, extended life span, structural and functional simplicity, exclusive reversibility and enhanced data storage density.
Collapse
Affiliation(s)
- Monaj Karar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| | - Provakar Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| | - Bhaskar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal 734013, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal 713 340, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal 741 235, India
| |
Collapse
|
12
|
Mahapatra M, Dutta A, Roy JSD, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Multi‐C−C/C−N‐Coupled Light‐Emitting Aliphatic Terpolymers: N−H‐Functionalized Fluorophore Monomers and High‐Performance Applications. Chemistry 2019; 26:502-516. [PMID: 31599070 DOI: 10.1002/chem.201903935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Arnab Dutta
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Joy Sankar Deb Roy
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Ujjal Das
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Snehasis Banerjee
- Department of ChemistryGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Sanjit Dey
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Pijush Kanti Chattopadhyay
- Department of Leather TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Dilip K. Maiti
- Department of ChemistryUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Nayan Ranjan Singha
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| |
Collapse
|
13
|
Mahapatra M, Dutta A, Roy JSD, Mitra M, Mahalanobish S, Sanfui MDH, Banerjee S, Chattopadhyay PK, Sil PC, Singha NR. Fluorescent Terpolymers via In Situ Allocation of Aliphatic Fluorophore Monomers: Fe(III) Sensor, High-Performance Removals, and Bioimaging. Adv Healthc Mater 2019; 8:e1900980. [PMID: 31664786 DOI: 10.1002/adhm.201900980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/21/2019] [Indexed: 12/22/2022]
Abstract
Herein, purely aliphatic intrinsically fluorescent terpolymers, i.e., 1 and 2, are synthesized through one-pot solution polymerization via N-H functionalized and multi C-C/C-N coupled in situ protrusion of fluorescent monomers using two nonemissive monomers. These scalable terpolymers are suitable for highly selective Fe(III) sensing, high-performance exclusion of Fe(III), logic function and the imaging of normal mammalian Madin-Darby canine kidney and human osteosarcoma cancer cell lines. The structures of terpolymers, in situ attachment of fluorescent monomers, clusteroluminescence, adsorption-mechanism, and cell-imaging abilities are understood via unadsorbed and/or adsorbed microstructural analyses using 1 H/13 C NMR, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, atomic absorption spectroscopy, thermogravimetric analysis, high-resolution transmission electron microscopy, dynamic light scattering, fluorescence imaging, and fluorescence lifetime. The geometries, electronic structures, location of fluorophores, and singlet-singlet absorption and emission of terpolymers are examined using density functional theory (DFT) and time-dependent DFT. For the precise identification of fluorophores, transition from occupied natural transition orbitals (NTOs) to unoccupied NTOs is computed. For 1/2, limit of detection (LOD) values and adsorption capacities are 6.0 × 10-7 /8.0 × 10-7 m and 147.82/120.56 mg g-1 at pHi = 7.0 and 303 K, respectively. The overall properties of 1 are more advantageous compared to 2 in sensing, cell imaging, and adsorptive exclusion of Fe(III).
Collapse
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Arnab Dutta
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Joy Sankar Deb Roy
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Madhushree Mitra
- Department of Leather TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Sushweta Mahalanobish
- Division of Molecular MedicineBose Institute P‐1/12, CIT Scheme VII M Kolkata 700054 West Bengal India
| | - MD Hussain Sanfui
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Snehasis Banerjee
- Department of ChemistryGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Pijush Kanti Chattopadhyay
- Department of Leather TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| | - Parames C. Sil
- Division of Molecular MedicineBose Institute P‐1/12, CIT Scheme VII M Kolkata 700054 West Bengal India
| | - Nayan Ranjan Singha
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather Technology (Post Graduate)Maulana Abul Kalam Azad University of Technology Salt Lake City Kolkata 700106 West Bengal India
| |
Collapse
|
14
|
Zhang Y, Yan B. MIL-61 and Eu 3+@MIL-61 as Signal Transducers To Construct an Intelligent Boolean Logical Library Based on Visualized Luminescent Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20125-20133. [PMID: 31088052 DOI: 10.1021/acsami.9b00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
MIL-61 and its postsynthesis product (Eu3+@MIL-61) are employed as signal transducers to construct a series of basic logic gates (NOT, NAND, INHIBIT, and XNOR) on account of their simple synthetic process and fascinating luminescent properties. Also, a two-output combinational logic gate and a cascaded logic gate can be constructed on these two signal transducers by changing the inputs. In this logic gate library system, the fluorescence of MIL-61 (λ395nm) or Eu3+@MIL-61 (λ615nm) is used as outputs with a threshold of 0.5. The advantage of this boolean logical library is that the two signal transducers are readily available and cost effective. In addition, the luminescence change is visible to the naked eye under a UV lamp, which is more convenient in application. More importantly, it presents a new route for the design of a molecular logic gate library based on luminescent metal-organic frameworks. And for further application, we experimentally construct two logic devices (a 4-to-2 encoder and a parity checker) based on Eu3+@MIL-61 to perform nonarithmetic information.
Collapse
Affiliation(s)
- Yu Zhang
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Bing Yan
- China-Australia Joint Laboratory of Functional Molecules and Ordered Matters, School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| |
Collapse
|
15
|
Wang Y, Lv Q, Zhang Y, Wang L, Dong Y. Probe computing model based on small molecular switch. BMC Bioinformatics 2019; 20:285. [PMID: 31182004 PMCID: PMC6557740 DOI: 10.1186/s12859-019-2767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background DNA is a promising candidate for the construction of biological devices due to its unique properties, including structural simplicity, convenient synthesis, high flexibility, and predictable behavior. And DNA has been widely used to construct the advanced logic devices. Results Herein, a molecular probe apparatus was constructed based on DNA molecular computing to perform fluorescent quenching and fluorescent signal recovery, with an ’ ON/OFF’ switching function. In this study, firstly, we program the streptavidin-mediated fluorescent quenching apparatus based on short-distance strand migration. The variation of fluorescent signal is acted as output. Then DNAzyme as a switching controller was involved to regulate the fluorescent signal increase. Finally, on this base, a cascade DNA logic gate consists of two logic AND operations was developed to enrich probe machine. Conclusion The designed probe computing model can be implemented with readout of fluorescence intensity, and exhibits great potential applications in the field of bioimaging as well as disease diagnosis.
Collapse
|
16
|
Swaminathan H, Balasurbamanian K. Design of “turn-ON and turn-OFF” fluorescence switching based photonic logic gates through multiple input-output models by MoS2 quantum dots. J Colloid Interface Sci 2019; 540:258-264. [DOI: 10.1016/j.jcis.2019.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022]
|
17
|
Tregubov AA, Nikitin PI, Nikitin MP. Advanced Smart Nanomaterials with Integrated Logic-Gating and Biocomputing: Dawn of Theranostic Nanorobots. Chem Rev 2018; 118:10294-10348. [DOI: 10.1021/acs.chemrev.8b00198] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Andrey A. Tregubov
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991, Russia
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology (State University), 1A Kerchenskaya St, Moscow 117303, Russia
| |
Collapse
|
18
|
Rezaeian K, Khanmohammadi H, Gholizadeh Dogaheh S. Studies on a multifunctional chromo-fluorogenic sensor for dual channel recognition of Zn2+ and CN− ions in aqueous media: mimicking multiple molecular logic gates and memory devices. NEW J CHEM 2018. [DOI: 10.1039/c7nj04216g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new effectual naphthalene-based azomethine receptor has been systematically designed and synthesized as a selective colorimetric and fluorescent chemosensor for dual channel detection of cations and anions in aqueous environments.
Collapse
Affiliation(s)
- Khatereh Rezaeian
- Department of Chemistry
- Faculty of Science
- Arak University
- Arak 38156 8 8349
- Iran
| | - Hamid Khanmohammadi
- Department of Chemistry
- Faculty of Science
- Arak University
- Arak 38156 8 8349
- Iran
| | | |
Collapse
|
19
|
Pu F, Ren J, Qu X. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem Soc Rev 2017; 47:1285-1306. [PMID: 29265140 DOI: 10.1039/c7cs00673j] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.
Collapse
Affiliation(s)
- Fang Pu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
20
|
Jana J, Aditya T, Negishi Y, Pal T. Solvent Polarity-Dependent Behavior of Aliphatic Thiols and Amines toward Intriguingly Fluorescent AuAgGSH Assembly. ACS OMEGA 2017; 2:8086-8098. [PMID: 31457357 PMCID: PMC6645147 DOI: 10.1021/acsomega.7b01560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 06/10/2023]
Abstract
Highly stable fluorescent glutathione (GSH)-protected AuAg assembly has been synthesized in water under UV irradiation. The assembly is composed of small Ag2/Ag3 clusters. These clusters gain stability through synergistic interaction with Au(I) present within the assembly. This makes the overall assembly fluorescent. Here, GSH acts as a reducing as well as stabilizing agent. The assembly is so robust that it can be vacuum-dried to solid particles. The as-obtained solid is dispersible in nonaqueous solvents. The interaction between solvent and the assembly provides stability to the assembly, and the assembly shows fluorescence. It is interesting to see that the behavior of long-chain aliphatic thiols or amines toward the fluorescent assembly is altogether a different phenomenon in aqueous and nonaqueous mediums. The assembly gets ruptured in water due to direct interaction with long-chain thiols or amines, whereas in nonaqueous medium, solvation of added thiols or amines becomes pronounced, which hinders the interaction of solvent with the assembly. However, the fluorescence of the assembly is always quenched with thiols or amines no matter what the solvent medium is. In aqueous medium, the fluorescence quenching by aliphatic thiol or amine becomes pronounced with successive decrease in their chain length, whereas in nonaqueous medium, the trend is just reversed with chain length. The reasons behind such an interesting reversal of fluorescence quenching in aqueous and nonaqueous solvents have been discussed explicitly. Again, in organic solvents, thiol or amine-induced quenched fluorescence is selectively recovered by Pb(II) ion without any alteration of excitation and emission maxima. This phenomenon is not observed in water because of the ruptured fluorescent assembly. The fluorescence recovery by Pb(II) and unaltered emission peak only in nonaqueous solvent unequivocally prove the engagement of Pb(II) with thiols or amines, which in turn revert the original solvent-supported stabilization of the assembly.
Collapse
Affiliation(s)
- Jayasmita Jana
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Teresa Aditya
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Yuichi Negishi
- Department
of Applied Chemistry, Tokyo University of
Science, Tokyo 1628601, Japan
| | - Tarasankar Pal
- Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
21
|
Hou T, Zhao T, Li W, Li F, Gai P. A label-free visual platform for self-correcting logic gate construction and sensitive biosensing based on enzyme-mimetic coordination polymer nanoparticles. J Mater Chem B 2017; 5:4607-4613. [PMID: 32264303 DOI: 10.1039/c7tb00791d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In molecular logic gates, the occurrence of erroneous procedures is a frequently encountered and critical problem in data transmission, and thus it is highly desirable to develop novel logic systems with self-correction abilities. Herein, based on the horseradish peroxidase (HRP)-like activity of the novel metal coordination polymer nanoparticles formed between Cu2+ and guanosine monophosphate (GMP), denoted as Cu-GMP CPNs, a label-free visual platform was constructed and successfully utilized for both self-correcting logic gate construction and sensitive biosensing. The HRP-mimicking ability of Cu-GMP CPNs was verified and utilized for the sensitive detection of both H2O2 and glucose. More importantly, a set of logic gates (AND, OR, NOR, INHIBIT, and XNOR) were fabricated, in which two intermediate outputs, i.e., color change and precipitate formation, were combined in an "AND" mode to produce the final output, and thus the as-proposed logic system exhibited the self-correction ability to automatically correct the erroneous intermediate outputs induced by interfering substances such as HRP. Moreover, in addition to the unique feature of self-correction, the as-proposed logic system also exhibited the advantages of simple operation, rapid response and easy detection of the visual outputs by the naked eye, thus expanding its practical applications to a variety of fields. Therefore, the label-free visual platform we have proposed here offers a promising strategy for logic gate fabrication and may pave the way for the development of novel molecular computing with self-correction abilities.
Collapse
Affiliation(s)
- Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China.
| | | | | | | | | |
Collapse
|
22
|
Evans AC, Thadani NN, Suh J. Biocomputing nanoplatforms as therapeutics and diagnostics. J Control Release 2016; 240:387-393. [PMID: 26826305 PMCID: PMC4965337 DOI: 10.1016/j.jconrel.2016.01.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Biocomputing nanoplatforms are designed to detect and integrate single or multiple inputs under defined algorithms, such as Boolean logic gates, and generate functionally useful outputs, such as delivery of therapeutics or release of optically detectable signals. Using sensing modules composed of small molecules, polymers, nucleic acids, or proteins/peptides, nanoplatforms have been programmed to detect and process extrinsic stimuli, such as magnetic fields or light, or intrinsic stimuli, such as nucleic acids, enzymes, or pH. Stimulus detection can be transduced by the nanomaterial via three different mechanisms: system assembly, system disassembly, or system transformation. The increasingly sophisticated suite of biocomputing nanoplatforms may be invaluable for a multitude of applications, including medical diagnostics, biomedical imaging, environmental monitoring, and delivery of therapeutics to target cell populations.
Collapse
Affiliation(s)
- A C Evans
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - N N Thadani
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - J Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
23
|
Xie YJ, Wu WY, Chen H, Li X, Zhang HL, Liu LL, Shao XX, Shan CF, Liu WS, Tang Y. An Elaborate Supramolecular Assembly for a Smart Nanodevice for Ratiometric Molecular Recognition and Logic Gates. Chemistry 2016; 22:8339-45. [DOI: 10.1002/chem.201505082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Yu-Jie Xie
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Wen-Yu Wu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Xiang Li
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Liang-Liang Liu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Xing-Xin Shao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Chang-Fu Shan
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Wei-Sheng Liu
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P. R. China
| |
Collapse
|
24
|
Dhenadhayalan N, Lin KC. Chemically induced fluorescence switching of carbon-dots and its multiple logic gate implementation. Sci Rep 2015; 5:10012. [PMID: 25943914 PMCID: PMC4650751 DOI: 10.1038/srep10012] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/25/2015] [Indexed: 11/24/2022] Open
Abstract
Investigations were carried out on the carbon-dots (C-dots) based fluorescent off - on (Fe(3 + )- S2O3(2-)) and on - off (Zn(2 + )- PO4(3-)) sensors for the detection of metal ions and anions. The sensor system exhibits excellent selectivity and sensitivity towards the detection of biologically important Fe(3 + ), Zn(2 + ) metal ions and S2O3(2-), PO4(3-) anions. It was found that the functional group on the C-dots surface plays crucial role in metal ions and anions detection. Inspired by the sensing results, we demonstrate C-dots based molecular logic gates operation using metal ions and anions as the chemical input. Herein, YES, NOT, OR, XOR and IMPLICATION (IMP) logic gates were constructed based on the selection of metal ions and anions as inputs. This carbon-dots sensor can be utilized as various logic gates at the molecular level and it will show better applicability for the next generation of molecular logic gates. Their promising properties of C-dots may open up a new paradigm for establishing the chemical logic gates via fluorescent chemosensors.
Collapse
Affiliation(s)
- Namasivayam Dhenadhayalan
- Department of Chemistry, National Taiwan University, and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| |
Collapse
|
25
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014; 54:446-50. [DOI: 10.1002/anie.201408334] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/27/2014] [Indexed: 12/19/2022]
|
26
|
Chen J, Zhou S, Wen J. Concatenated Logic Circuits Based on a Three-Way DNA Junction: A Keypad-Lock Security System with Visible Readout and an Automatic Reset Function. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|