1
|
Tian Y, Hou Y, Tian J, Zheng J, Xiao Z, Hu J, Zhang Y. D-Peptide cell culture scaffolds with enhanced antibacterial and controllable release properties. J Mater Chem B 2024; 12:8122-8132. [PMID: 39044470 DOI: 10.1039/d4tb00969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The development of peptide-based hydrogels characterized by both high biostability and potent antimicrobial activity, aimed at combating multidrug-resistant bacterial infections and providing scaffolds for cell cultures, continues to pose a significant challenge. The susceptibility of antimicrobial peptides (AMPs) to degradation by cations, serum, and proteases restricted their applications in clinical environments. In this study, we designed a peptide sequence (termed D-IK1) entirely consisting of D-amino acids, an enantiomer of a previously reported AMP IK1. Our results demonstrated remarkably improved antibacterial and anticancer activities of D-IK1 as compared to IK1. D-IK1 self-assembled into hydrogels that effectively inhibited bacterial and cancer cell growth by the controlled and sustained release of D-IK1. Importantly, D-IK1 was extremely stable in salt solutions and resisted serum and protease degradation. In addition, the D-IK1 hydrogel fostered cell adhesion and proliferation, proving its viability as a 3D scaffold for cell culture applications. Our research presents a versatile, highly stable antibacterial hydrogel scaffold with potential widespread applications in cell culture, wound healing, and the eradication of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yu Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangqian Hou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakun Tian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeyu Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
3
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
4
|
Abioye RO, Camaño Echavarría JA, Obeme-Nmom JI, Yiridoe MS, Ogunrinola OA, Ezema MD, Udenigwe CC. Self-Assembled Food Peptides: Recent Advances and Perspectives in Food and Health Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8372-8379. [PMID: 38579274 DOI: 10.1021/acs.jafc.4c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Self-assembling peptides are rapidly gaining attention as novel biomaterials for food and biomedical applications. Peptides self-assemble when triggered by physical or chemical factors due to their versatile physicochemical characteristics. Peptide self-assembly, when combined with the health-promoting bioactivity of peptides, can also result in a plethora of biofunctionalities of the biomaterials. This perspective highlights current developments in the use of food-derived self-assembling peptides as biomaterials, bioactive nutraceuticals, and potential dual functioning bioactive biomaterials. Also discussed are the challenges and opportunities in the use of self-assembling bioactive peptides in designing biocompatible, biostable, and bioavailable multipurpose biomaterials.
Collapse
Affiliation(s)
- Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jairo Andrés Camaño Echavarría
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- CNRS, LRGP, Université de Lorraine, F-54000 Nancy, France
| | - Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Martha S Yiridoe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Oluwaseyi A Ogunrinola
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Matthew D Ezema
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Biochemistry, Federal University Oye-Ekiti, PMB 373 Oye-Ekiti, Ekiti State, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Wang J, Ye M, Zhu B. Peptide Self-Assembly Facilitating DNA Transfection and the Application in Inhibiting Cancer Cells. Molecules 2024; 29:932. [PMID: 38474444 DOI: 10.3390/molecules29050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
Non-viral vectors have been developing in gene delivery due to their safety and low immunogenicity. But their transfection effect is usually very low, thus limiting the application. Hence, we designed eight peptides (compounds 1-8). We compared their performances; compound 8 had the best transfection efficacy and biocompatibility. The transfection effect was similar with that of PEI, a most-widely-employed commercial transfection reagent. Atomic force microscope (AFM) images showed that the compound could self-assemble and the self-assembled peptide might encapsulate DNA. Based on these results, we further analyzed the inhibitory result in cancer cells and found that compound 8 could partially fight against Hela cells. Therefore, the compound is promising to pave the way for the development of more effective and less toxic transfection vectors.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Min Ye
- College of Pharmacy, Southern Medical University, Guangzhou 510280, China
| | - Baokuan Zhu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Mu Z, Shen T, Deng H, Zeng B, Huang C, Mao Z, Xie Y, Pei Y, Guo L, Hu R, Chen L, Zhou Y. Enantiomer-Dependent Supramolecular Immunosuppressive Modulation for Tissue Reconstruction. ACS NANO 2024; 18:5051-5067. [PMID: 38306400 DOI: 10.1021/acsnano.3c11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Modulating the properties of biomaterials in terms of the host immune response is critical for tissue repair and regeneration. However, it is unclear how the preference for the cellular microenvironment manipulates the chiral immune responses under physiological or pathological conditions. Here, we reported that in vivo and in vitro oligopeptide immunosuppressive modulation was achieved by manipulation of macrophage polarization using chiral tetrapeptide (Ac-FFFK-OH, marked as FFFK) supramolecular polymers. The results suggested that chiral FFFK nanofibers can serve as a defense mechanism in the restoration of tissue homeostasis by upregulating macrophage M2 polarization via the Src-STAT6 axis. More importantly, transiently acting STAT6, insufficient to induce a sustained polarization program, then passes the baton to EGR2, thereby continuously maintaining the M2 polarization program. It is worth noting that the L-chirality exhibits a more potent effect in inducing macrophage M2 polarization than does the D-chirality, leading to enhanced tissue reconstruction. These findings elucidate the crucial molecular signals that mediate chirality-dependent supramolecular immunosuppression in damaged tissues while also providing an effective chiral supramolecular strategy for regulating macrophage M2 polarization and promoting tissue injury repair based on the self-assembling chiral peptide design.
Collapse
Affiliation(s)
- Zhixiang Mu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Tianxi Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Bairui Zeng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Chen Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Zhengjin Mao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Yuyu Xie
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Yu Pei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Liting Guo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, P. R. China
| | - Limin Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|
7
|
Adorinni S, Gentile S, Bellotto O, Kralj S, Parisi E, Cringoli MC, Deganutti C, Malloci G, Piccirilli F, Pengo P, Vaccari L, Geremia S, Vargiu AV, De Zorzi R, Marchesan S. Peptide Stereochemistry Effects from p Ka-Shift to Gold Nanoparticle Templating in a Supramolecular Hydrogel. ACS NANO 2024; 18:3011-3022. [PMID: 38235673 DOI: 10.1021/acsnano.3c08004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The divergent supramolecular behavior of a series of tripeptide stereoisomers was elucidated through spectroscopic, microscopic, crystallographic, and computational techniques. Only two epimers were able to effectively self-organize into amphipathic structures, leading to supramolecular hydrogels or crystals, respectively. Despite the similarity between the two peptides' turn conformations, stereoconfiguration led to different abilities to engage in intramolecular hydrogen bonding. Self-assembly further shifted the pKa value of the C-terminal side chain. As a result, across the pH range 4-6, only one epimer predominated sufficiently as a zwitterion to reach the critical molar fraction, allowing gelation. By contrast, the differing pKa values and higher dipole moment of the other epimer favored crystallization. The four stereoisomers were further tested for gold nanoparticle (AuNP) formation, with the supramolecular hydrogel being the key to control and stabilize AuNPs, yielding a nanocomposite that catalyzed the photodegradation of a dye. Importantly, the AuNP formation occurred without the use of reductants other than the peptide, and the redox chemistry was investigated by LC-MS, NMR, and infrared scattering-type near field optical microscopy (IR s-SNOM). This study provides important insights for the rational design of simple peptides as minimalistic and green building blocks for functional nanocomposites.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Serena Gentile
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Ottavia Bellotto
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Evelina Parisi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Maria C Cringoli
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Caterina Deganutti
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
- Area Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Paolo Pengo
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Lisa Vaccari
- Elettra Sincrotrone Trieste, 34149 Basovizza, Italy
| | - Silvano Geremia
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Attilio V Vargiu
- Physics Department, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Rita De Zorzi
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
8
|
Aoki K, Manabe A, Kimura H, Katoh Y, Inuki S, Ohno H, Nonaka M, Oishi S. Mirror-Image Single-Domain Antibody for a Novel Nonimmunogenic Drug Scaffold. Bioconjug Chem 2023; 34:2055-2065. [PMID: 37883660 DOI: 10.1021/acs.bioconjchem.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Immunogenic responses by protein therapeutics often lead to reduced therapeutic effects and/or adverse effects via the generation of neutralizing antibodies and/or antidrug antibodies (ADA). Mirror-image proteins of the variable domain of the heavy chain of the heavy chain antibody (VHH) are potential novel protein therapeutics with high-affinity binding to target proteins and reduced immunogenicity because these mirror-image VHHs (d-VHHs) are less susceptible to proteolytic degradation in antigen-presenting cells (APCs). In this study, we investigated the preparation protocols of d-VHHs and their biological properties, including stereoselective target binding and immunogenicity. Initially, we established a facile synthetic process of two model VHHs [anti-GFP VHH and PMP12A2h1 (monomeric VHH of caplacizumab)] and their mirror-image proteins by three-step native chemical ligations (NCLs) from four peptide segments. The folded synthetic VHHs (l-anti-GFP VHH and l-PMP12A2h1) bound to the target proteins (EGFP and vWF-A1 domain, respectively), while their mirror-image proteins (d-anti-GFP VHH and d-PMP12A2h1) showed no binding to the native proteins. For biodistribution studies, l-VHH and d-VHH with single radioactive indium diethylenetriamine-pentaacid (111In-DTPA) labeling at the C-terminus were designed and synthesized by the established protocol. The distribution profiles were essentially similar between l-VHH and d-VHH, in which the probes accumulated in the kidney within 15 min after intravenous administration in mice, because of the small molecular size of VHHs. Comparative assessment of the immunogenicity responses revealed that d-VHH-induced levels of ADA generation were significantly lower than those of native VHH, regardless of the peptide sequences and administration routes. The resulting scaffold investigated should be applicable in the design of d-VHHs with various C-terminal CDR3 sequences, which can be identified by screening using display technologies.
Collapse
Affiliation(s)
- Keisuke Aoki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Asako Manabe
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroyuki Kimura
- Laboratory of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Motohiro Nonaka
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| |
Collapse
|
9
|
Hao B, Wei L, Cheng Y, Ma Z, Wang J. Advanced nanomaterial for prostate cancer theranostics. Front Bioeng Biotechnol 2022; 10:1046234. [PMID: 36394009 PMCID: PMC9663994 DOI: 10.3389/fbioe.2022.1046234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Prostate cancer (PC) has the second highest incidence in men, according to global statistical data. The symptoms of PC in the early stage are not obvious, causing late diagnosis in most patients, which is the cause for missing the optimal treatment time. Thus, highly sensitive and precise early diagnosis methods are very important. Additionally, precise therapy regimens for good targeting and innocuous to the body are indispensable to treat cancer. This review first introduced two diagnosis methods, containing prostate-specific biomarkers detection and molecular imaging. Then, it recommended advanced therapy approaches, such as chemotherapy, gene therapy, and therapeutic nanomaterial. Afterward, we summarized the development of nanomaterial in PC, highlighting the importance of integration of diagnosis and therapy as the future direction against cancer.
Collapse
Affiliation(s)
- Bin Hao
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Li Wei
- Internal Medicine, Rongjun Hospital of Shanxi Province, Shanxi, China
| | - Yusheng Cheng
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Shanxi, China
| | - Jingyu Wang
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Zhang Z, Wang J, Xia W, Cao D, Wang X, Kuang Y, Luo Y, Yuan C, Lu J, Liu X. Application of Hydrogels as Carrier in Tumor Therapy: A Review. Chem Asian J 2022; 17:e202200740. [PMID: 36070227 DOI: 10.1002/asia.202200740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Cancer is one of the most intractable diseases in the world because of its high recurrence rate, high metastasis rate and high lethality rate. Traditional chemotherapy, radiotherapy and surgery have unsatisfactory therapeutic effects and cause many severe side effects at the same time. Hydrogel is a new type of biomaterial with the advantages of good biocompatibility and easy degradation, which can be used as a carrier of functional nanomaterials for tumor therapy. Herein, we represent the progress of hydrogels with different skeletons and their application as carrier in tumor treatment. The hydrogels are listed as polyethylene glycol-based hydrogels, chitosan-based hydrogels, peptide-based hydrogels, hyaluronic acid-based hydrogels, steroid-based hydrogels and other hydrogels by skeletons, and their properties, modifications and toxicities were introduced. Some representative applications of combined hydrogels with nanomaterial for chemotherapy, photodynamic therapy, photothermal therapy, sonodynamic therapy, chemodynamic therapy and synergistic therapy are highlighted.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jinxia Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Dongmiao Cao
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xingyan Wang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yunqi Kuang
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Yu Luo
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Chunping Yuan
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Jie Lu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Xijian Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| |
Collapse
|
11
|
Yang C, Mu G, Zhang Y, Gao Y, Zhang W, Liu J, Zhang W, Li P, Yang L, Yang Z, Gao J, Liu J. Supramolecular Nitric Oxide Depot for Hypoxic Tumor Vessel Normalization and Radiosensitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202625. [PMID: 35906003 DOI: 10.1002/adma.202202625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In cancer radiotherapy, the lack of fixed DNA damage by oxygen in hypoxic microenvironment of solid tumors often leads to severe radioresistance. Nitric oxide (NO) is a potent radiosensitizer that acts in two ways. It can directly react with the radical DNA thus fixing the damage. It also normalizes the abnormal tumor vessels, thereby increasing blood perfusion and oxygen supply. To achieve these functions, the dosage and duration of NO treatment need to be carefully controlled, otherwise it will lead to the exact opposite outcomes. However, a delivery method that fulfills both requirements is still lacking. A NO depot is designed for the control of NO releasing both over quantity and duration for hypoxic tumor vessel normalization and radiosensitization. In B16-tumor-bearing mice, the depot can provide low dosage NO continuously and release large amount of NO immediately before irradiation for a short period of time. These two modes of treatment work in synergy to reverse the radioresistance of B16 tumors more efficiently than releasing at single dosage.
Collapse
Affiliation(s)
- Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yang Gao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Wenwen Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Paiyun Li
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
12
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
13
|
Ma S, Gu S, Zhang J, Qi W, Lin Z, Zhai W, Zhan J, Li Q, Cai Y, Lu Y. Robust drug bioavailability and safety for rheumatoid arthritis therapy using D-amino acids-based supramolecular hydrogels. Mater Today Bio 2022; 15:100296. [PMID: 35665233 PMCID: PMC9157599 DOI: 10.1016/j.mtbio.2022.100296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Shaodan Ma
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shunan Gu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jinwei Zhang
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weizhong Qi
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhaowei Lin
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Weicheng Zhai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi Li
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| | - Yanbin Cai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Diseases, Guangzhou, 510280, China
- Corresponding author.
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Key Lab of Orthopedic Technology and Implant, Guangzhou, 510010, China
- Corresponding author. Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Recent advancements of electrospun nanofibers for cancer therapy. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Zhang L, Li Y, Mu G, Yang L, Ren C, Wang Z, Guo Q, Liu J, Yang C. Structure of Self-assembled Peptide Determines the Activity of Aggregation-Induced Emission Luminogen-Peptide Conjugate for Detecting Alkaline Phosphatase. Anal Chem 2022; 94:2236-2243. [PMID: 35042329 DOI: 10.1021/acs.analchem.1c04936] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The unique property of turning on their fluorescence after aggregation or assembly makes aggregation-induced emission luminogens (AIEgens) ideal luminescent molecules for the construction of self-assembled peptide-based nanoprobes. However, the characteristic highly twisted or propeller-shaped molecular conformation of AIEgens tends to prevent the assembly of AIEgen-peptides. Here, we show that (i) the distance between tetraphenylethene (TPE) and assembled peptides should not be too far (less than five glycines), otherwise the self-assembly of peptides cannot limit the intramolecular rotation of conjugated TPE and the luminous efficiency of TPE-peptide to alkaline phosphatase (ALP) will decrease; (ii) properly increasing the number of amino acids with self-assembly ability (three phenylalanines) can improve their ALP-responsive self-assembly and luminescence ability; (iii) the strategy of co-assembly with a non-AIEgen-capped self-assembled peptide is a simple and effective way to realize the efficient assembly and luminescence of AIEgen-peptides; and (iv) the hydrophilic and hydrophobic balance of the probe should always be considered in the construction of an efficient AIEgen-peptide probe. In addition, AIEgen-peptide probes show good selectivity and sensitivity for ALP detection both in vitro and in live bacteria. These insights illustrated here are crucial for guiding the design of AIEgen-conjugated supramolecular materials, especially for the construction of AIEgen-peptides, for enzymes detection, biomarker imaging, diseases therapy, and other biomedical fields.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yun Li
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ganen Mu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhongyan Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingxiang Guo
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
16
|
Song J, Wu C, Zhao Y, Yang M, Yao Q, Gao Y. Bioorthogonal Disassembly of Tetrazine Bearing Supramolecular Assemblies Inside Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104772. [PMID: 34843166 DOI: 10.1002/smll.202104772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Supramolecular assemblies are an emerging class of nanomaterials for drug delivery systems (DDS), while their unintended retention in the biological milieu remains largely unsolved. To realize the prompt clearance of supramolecular assemblies, the bioorthogonal reaction to disassemble and clear the supramolecular assemblies within living cells is investigated here. A series of tetrazine-capped assembly precursors which can self-assemble into nanofibers and hydrogels upon enzymatic dephosphorylation are designed. Such an enzyme-instructed supramolecular assembly process can perform intracellularly. The time-dependent accumulation of assemblies elicits oxidative stress and induces cellular toxicity. Tetrazine-bearing assemblies react with trans-cyclooctene derivatives, which lead to the disruption of π-π stacking and induce disassembly. In this way, the intracellular self-assemblies disassemble and are deprived of potency. This bioorthogonal disassembly strategy leverages the biosafety aspect in developing nanomaterials for DDSs.
Collapse
Affiliation(s)
- Jialei Song
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengling Wu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yan Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Min Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Das S, Das D. Rational Design of Peptide-based Smart Hydrogels for Therapeutic Applications. Front Chem 2021; 9:770102. [PMID: 34869218 PMCID: PMC8635208 DOI: 10.3389/fchem.2021.770102] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Peptide-based hydrogels have captivated remarkable attention in recent times and serve as an excellent platform for biomedical applications owing to the impressive amalgamation of unique properties such as biocompatibility, biodegradability, easily tunable hydrophilicity/hydrophobicity, modular incorporation of stimuli sensitivity and other functionalities, adjustable mechanical stiffness/rigidity and close mimicry to biological molecules. Putting all these on the same plate offers smart soft materials that can be used for tissue engineering, drug delivery, 3D bioprinting, wound healing to name a few. A plethora of work has been accomplished and a significant progress has been realized using these peptide-based platforms. However, designing hydrogelators with the desired functionalities and their self-assembled nanostructures is still highly serendipitous in nature and thus a roadmap providing guidelines toward designing and preparing these soft-materials and applying them for a desired goal is a pressing need of the hour. This review aims to provide a concise outline for that purpose and the design principles of peptide-based hydrogels along with their potential for biomedical applications are discussed with the help of selected recent reports.
Collapse
Affiliation(s)
- Saurav Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
18
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
19
|
Zhao C, Chen H, Wang F, Zhang X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B Biointerfaces 2021; 208:112040. [PMID: 34425532 DOI: 10.1016/j.colsurfb.2021.112040] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Amphiphilic self-assembling peptides are widely used in tissue and cell engineering, antimicrobials, drug-delivery systems and other biomedical fields due to their good biocompatibility, functionality, flexibility of design and synthesis, and tremendous potential as delivery carriers for drugs. Currently, the design and study of amphipathic peptides by a bottom-up method to develop new biomedical materials have become a hot topic. However, defined rules have not been established for the design and development of self-assembled peptides. Therefore, the focus of this review is to summarize and provide several rational strategies for the design and study of amphiphilic self-assembly peptides. In addition, this paper also describes the types and general self-assembling mechanism of amphipathic peptides, and outlines their applications in the delivery of hydrophobic drugs, nucleic acid drugs, peptide drugs and vaccines. Amphiphilic self-assembled peptides are expected to exploit new functional materials for drug delivery and other applications.
Collapse
Affiliation(s)
- Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, People's Republic of China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
20
|
Wang Q, Hou X, Gao J, Ren C, Guo Q, Fan H, Liu J, Zhang W, Liu J. A coassembled peptide hydrogel boosts the radiosensitization of cisplatin. Chem Commun (Camb) 2021; 56:13017-13020. [PMID: 33000806 DOI: 10.1039/d0cc05184e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed a novel supramolecular hydrogel by carrying out a coassembly of cisplatin and short naproxen-capped peptides. This procedure boosted the radiosensitization effect of cisplatin by increasing the number of Pt-DNA adducts, arresting the cell cycle, and inhibiting cyclooxygenase-2.
Collapse
Affiliation(s)
- Qian Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Xiaoxue Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Qingxiang Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
| |
Collapse
|
21
|
Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible Ionic Liquid-Mediated Micelles for Enhanced Transdermal Delivery of Paclitaxel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19745-19755. [PMID: 33891816 DOI: 10.1021/acsami.1c03111] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapeutic cytotoxic agents such as paclitaxel (PTX) are considered essential for the treatment of various cancers. However, PTX injection is associated with severe systemic side effects and high rates of patient noncompliance. Micelle formulations (MFs) are nano-drug delivery systems that offer a solution to these problems. Herein, we report an advantageous carrier for the transdermal delivery of PTX comprising a new MF that consists of two biocompatible surfactants: cholinium oleate ([Cho][Ole]), which is a surface-active ionic liquid (SAIL), and sorbitan monolaurate (Span-20). A solubility assessment confirmed that PTX was readily solubilized in the SAIL-based micelles via multipoint hydrogen bonding and cation-π and π-π interactions between PTX and SAIL[Cho][Ole]. Dynamic light scattering (DLS) and transmission electron microscopy revealed that in the presence of PTX, the MF formed spherical PTX-loaded micelles that were well-distributed in the range 8.7-25.3 nm. According to DLS, the sizes and size distributions of the micelle droplets did not change significantly over the entire storage period, attesting to their physical stability. In vitro transdermal assessments using a Franz diffusion cell revealed that the MF absorbed PTX 4 times more effectively than a Tween 80-based formulation and 6 times more effectively than an ethanol-based formulation. In vitro and in vivo skin irritation tests revealed that the new carrier had a negligible toxicity profile compared with a conventional ionic liquid-based carrier. Based on these findings, we believe that the SAIL[Cho][Ole]-based MF has potential as a biocompatible nanocarrier for the effective transdermal delivery of poorly soluble chemotherapeutics such as PTX.
Collapse
Affiliation(s)
- Md Korban Ali
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Chemistry, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rahman Md Moshikur
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Moniruzzaman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, 32610 Perak, Malaysia
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Advanced Transdermal Drug Delivery System Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Zhou Y, Chen Y, Tan Y, Hu R, Niu M. An NRP1/MDM2-Targeted D-Peptide Supramolecular Nanomedicine for High-Efficacy and Low-Toxic Liver Cancer Therapy. Adv Healthc Mater 2021; 10:e2002197. [PMID: 33690977 DOI: 10.1002/adhm.202002197] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/31/2021] [Indexed: 01/15/2023]
Abstract
Supramolecular nanomedicines based on self-assembly of D-peptides have been of great interest as potential candidates for cancer therapy. Neuropilin-1 (NRP1) and mouse double minute 2 (MDM2) have been considered as the anticancer targets because of their overexpression in cancers. However, NRP1/MDM2-targeted D-peptide supramolecular nanomedicines remain unreported. Here, a potent anticancer D-peptide supramolecular nanomedicine targeting NRP1 and MDM2, termed as NMTP-5, is identified by using structure-based virtual screening techniques. NMTP-5 exhibits good biostability and strong cellular uptake performance. Moreover, NMTP-5 displays strong anticancer activity to SK-Hep-1 cells in vitro and in vivo, with no apparent host toxicity. This work demonstrates that NMTP-5 can be used as a potential chemotherapeutic agent for the treatment of liver cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Yaxin Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Yingying Tan
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Rong Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| | - Miao‐Miao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education State Key Laboratory of Natural Medicines School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
23
|
Lau CYJ, Mastrobattista E. Programming supramolecular peptide materials by modulating the intermediate steps in the complex assembly pathway: Implications for biomedical applications. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Gao Y, Gao J, Mu G, Zhang Y, Huang F, Zhang W, Ren C, Yang C, Liu J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm Sin B 2020; 10:2374-2383. [PMID: 33354508 PMCID: PMC7745053 DOI: 10.1016/j.apsb.2020.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/20/2020] [Accepted: 06/23/2020] [Indexed: 01/20/2023] Open
Abstract
The radiotherapy modulators used in clinic have disadvantages of high toxicity and low selectivity. For the first time, we used the in situ enzyme-instructed self-assembly (EISA) of a peptide derivative (Nap-GDFDFpYSV) to selectively enhance the sensitivity of cancer cells with high alkaline phosphatase (ALP) expression to ionizing radiation (IR). Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays, with a remarkable sensitizer enhancement ratio. Our results indicated that the enhancement was a result of fixing DNA damage, arresting cell cycles and inducing cell apoptosis. Interestingly, in vitro pre-formed assemblies mainly localized in the lysosomes after incubating with cells, while the assemblies formed via in situ EISA scattered in the cell cytosol. The accumulation of these molecules in cells could not be inhibited by endocytosis inhibitors. We believed that this molecule entered cancer cells by diffusion and then in situ self-assembled to form nanofibers under the catalysis of endogenous ALP. This study provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers. The intracellular in situ enzyme-instructed self-assembly (in situ EISA) was firstly used for selective cancer radiosensitization. Compared with the in vitro pre-assembled control formed by the same molecule, assemblies formed by in-situ EISA in cells greatly sensitized the ALP-high-expressing cancer cells to γ-rays. This work provides a successful example to utilize intracellular in situ EISA of small molecules to develop selective tumor radiosensitizers.
Collapse
Affiliation(s)
- Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Ganen Mu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Wenxue Zhang
- Radiation Oncology Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
- Corresponding authors.
| |
Collapse
|
25
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
26
|
Chen M, Zhang S, He Z. Controlled Block Polypeptide Composed of d-Type Amino Acids: A Therapeutics Delivery Platform to Inhibit Biofilm Formation of Drug-Resistant Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:6343-6350. [PMID: 35021764 DOI: 10.1021/acsabm.0c00795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibiotic resistance of bacteria has been widely developed due to biofilm protection and separating the bacteria from antibiotics. The phenomenon of biofilm inhibition or disassembly by d-amino acids (DAAs) has been reported recently, while it was also challenged by some other scientists. Presuming DAAs work for biofilms on the surface of bacteria, delivery of the DAAs to disease sites is important while small DAAs are easily removed by kidney. To resolve the above issues, it is urgent to develop a biofilm inhibitor. To achieve this goal, we synthesized d-type polypeptides via NCA ring-opening polymerization with the initiator of HMDS to generate poly(CBZ-l-lysine)33-block-poly(d-phenylalanine)14. After deprotection, the resultant polypeptides were converted into amphiphilic poly(l-lysine)33-block-poly(d-phenylalanine)14, which can be self-assembled into well-defined homogeneous nanoparticles capable of capsulizing penicillin G. For the molecular weight of polypeptides resulting in various bioeffects, we prepared similar-sized polypeptides of an l-type equivalent polypeptide as control. The data from microbial experiments indicated that poly(l-lysine)33-block-poly(d-phenylalanine)14 can inhibit biofilm formation of Bacillus subtilis at a low final concentration (24 μg/mL), much stronger than poly(l-lysine)40-block-poly(l-phenylalanine)19 at the same concentration. This is the first report in that synthetic d-type polypeptides can inhibit biofilms of bacteria. Poly(l-lysine)33-block-poly(d-phenylalanine)14 can be assembled into well-defined, biostable homogeneous nanoparticles. This research provides a potential solution to overcome bacteria antibiotic resistance from small molecules to material sciences and gives a unique angle to understand the current dispute if DAAs can disassemble the biofilms. Additionally, these nanoparticles have great potential in the development of nanomedicines with a longer circulation time in blood and this discovery has implications in developing antimicrobial nanodevices for therapy and basic scientific interest.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Shanghai 201508, China.,Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States
| | - Songhe Zhang
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States.,Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, Florida 34945, United States
| |
Collapse
|
27
|
Yang L, Zhang C, Huang F, Liu J, Zhang Y, Yang C, Ren C, Chu L, Liu B, Liu J. Triclosan-based supramolecular hydrogels as nanoantibiotics for enhanced antibacterial activity. J Control Release 2020; 324:354-365. [PMID: 32454121 DOI: 10.1016/j.jconrel.2020.05.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
With the emergence of drug-resistant bacteria, conventional antibiotics are becoming increasingly ineffective for the treatment of bacterial infections. Nanomaterial-modified antibiotics, denoted as "nanoantibiotics", can usually circumvent most of the shortcomings of conventional antibiotics, thus improving antibacterial activities. Here, we developed triclosan-based supramolecular hydrogel nanoantibiotics by conjugating small molecule antibiotic triclosan (TCS) to self-assembling peptides. The resultant nanoantibiotics presented many beneficial characteristics: (i) a stable three-dimensional nanofiber structure; (ii) increased TCS solubility by 850-fold; (iii) acid-responsive TCS release; (iv) favorable biocompatibility. In consequence, the nanoantibiotics showed potent in vitro broad-spectrum antibacterial activities against both Gram-positive and Gram-negative bacteria based on the cooperative effect of antibiotic TCS and the nanostructure-induced bacterial membrane disruption. Furthermore, the TCS-based supramolecular hydrogel nanoantibiotics exhibited enhanced antibacterial activities with low side effects, according to the in vivo antibacterial evaluation at the macro and micro level. Therefore, the simple and effective hydrogel nanoantibiotics developed here hold great potential for the treatment of intractable bacterial infections.
Collapse
Affiliation(s)
- Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Congrou Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China.
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
28
|
Meng J, Ge Y, Xing H, Wei H, Xu S, Liu J, Yan D, Wen T, Wang M, Fang X, Ma L, Yang Y, Wang C, Wang J, Xu H. Synthetic CXCR4 Antagonistic Peptide Assembling with Nanoscaled Micelles Combat Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001890. [PMID: 32608185 DOI: 10.1002/smll.202001890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia with very low survival rate due to drug resistance and high relapse rate. The C-X-C chemokine receptor 4 (CXCR4) is highly expressed by AML cells, actively mediating chemoresistance and reoccurrence. Herein, a chemically synthesized CXCR4 antagonistic peptide E5 is fabricated to micelle formulation (M-E5) and applied to refractory AML mice, and its therapeutic effects and pharmacokinetics are investigated. Results show that M-E5 can effectively block the surface CXCR4 in leukemic cells separated from bone marrow (BM) and spleen, and inhibit the C-X-C chemokine ligand 12-mediated migration. Subcutaneous administration of M-E5 significantly inhibits the engraftment of leukemic cells in spleen and BM, and mobilizes residue leukemic cells into peripheral blood, reducing organs' burden and significantly prolonging the survival of AML mice. M-E5 can also increase the efficacy of combining regime of homoharringtonine and doxorubicin. Ribonucleic acid sequencing demonstrates that the therapeutic effect is contributed by inhibiting proliferation and enhancing apoptosis and differentiation, all related to the CXCR4 signaling blockade. M-E5 reaches the concentration peak at 2 h after administration with a half-life of 14.5 h in blood. In conclusion, M-E5 is a novel promising therapeutic candidate for refractory AML treatment.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yangyang Ge
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shilin Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Doudou Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
29
|
Szigyártó IC, Mihály J, Wacha A, Bogdán D, Juhász T, Kohut G, Schlosser G, Zsila F, Urlacher V, Varga Z, Fülöp F, Bóta A, Mándity I, Beke-Somfai T. Membrane active Janus-oligomers of β 3-peptides. Chem Sci 2020; 11:6868-6881. [PMID: 33042513 PMCID: PMC7504880 DOI: 10.1039/d0sc01344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of an acyclic β3-hexapeptide with alternating side chain chirality, into nanometer size oligomeric bundles showing membrane activity and hosting capacity for hydrophobic small molecules.
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies – key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - András Wacha
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Dóra Bogdán
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Gergely Kohut
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Gitta Schlosser
- Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Vlada Urlacher
- Institute of Biochemistry , Heinrich-Heine University , 40225 Düsseldorf , Germany
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Ferenc Fülöp
- MTA-SZTE Stereochemistry Research Group , Institute of Pharmaceutical Chemistry , University of Szeged , H-6720 Szeged , Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - István Mándity
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Chemistry and Chemical Engineering , Physical Chemistry , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
30
|
Jeena MT, Lee S, Barui AK, Jin S, Cho Y, Hwang SW, Kim S, Ryu JH. Intra-mitochondrial self-assembly to overcome the intracellular enzymatic degradation of l-peptides. Chem Commun (Camb) 2020; 56:6265-6268. [PMID: 32373826 DOI: 10.1039/d0cc02029j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of peptide-based therapeutics is generally based on the replacement of l-amino acids with d-isomers to obtain improved therapeutic efficiency. However, d-isomers are expensive and frequently induce undesirable immune responses. In the present work, we demonstrate that an intra-mitochondrially self-assembling amphiphilic peptide exhibits analogous activity in both d- and l-isomeric forms. This outcome is in contrast to the general observation considering higher therapeutic efficiencies of d-isomers compared with l-analogues. This suggests that l-peptides overcome proteolytic degradation during intra-mitochondrial self-assembly both in vitro and in vivo.
Collapse
Affiliation(s)
- M T Jeena
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang C, Hu F, Zhang X, Ren C, Huang F, Liu J, Zhang Y, Yang L, Gao Y, Liu B, Liu J. Combating bacterial infection by in situ self-assembly of AIEgen-peptide conjugate. Biomaterials 2020; 244:119972. [DOI: 10.1016/j.biomaterials.2020.119972] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/04/2023]
|
32
|
Zhang X, Ren C, Hu F, Gao Y, Wang Z, Li H, Liu J, Liu B, Yang C. Detection of Bacterial Alkaline Phosphatase Activity by Enzymatic In Situ Self-Assembly of the AIEgen-Peptide Conjugate. Anal Chem 2020; 92:5185-5190. [PMID: 32207924 DOI: 10.1021/acs.analchem.9b05704] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal levels of alkaline phosphatase (ALP) activity are associated with various diseases, and many ALP probes have been developed to date. However, the development of ALP-sensitive probes for living cells, especially for the detection of bacterial ALP, remains challenging because of the complex and dynamic context. In this study, we constructed the first fluorescent probe (TPEPy-pY) for sensing bacterial ALP activity. TPEPy-pY is an AIEgen-peptide conjugate with property of aggregation-induced emission (AIE) and could turn on its fluorescence by ALP-catalyzed in situ self-assembly of the probe. The probe shows excellent selectivity and sensitivity for ALP activity, with a detection limit of 6.6 × 10-3 U mL-1. TPEPy-pY performs well in detection and in situ imaging of bacterial ALP activity against E. coli. Also, the detection does not require tedious washing steps and takes approximately 1 h, which is advantageous over commercial ALP kits. Therefore, the proposed strategy paved a new avenue for bacterial ALP detection, and we envision that more self-assembling fluorescent probes will be designed with higher sensitivity in the near future.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huiqiang Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
33
|
Saez Talens V, Arias-Alpizar G, Makurat DMM, Davis J, Bussmann J, Kros A, Kieltyka RE. Stab2-Mediated Clearance of Supramolecular Polymer Nanoparticles in Zebrafish Embryos. Biomacromolecules 2020; 21:1060-1068. [DOI: 10.1021/acs.biomac.9b01318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Victorio Saez Talens
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gabriela Arias-Alpizar
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - D. M. M. Makurat
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Joyal Davis
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen Bussmann
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Roxanne E. Kieltyka
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
34
|
Restu WK, Yamamoto S, Nishida Y, Ienaga H, Aoi T, Maruyama T. Hydrogel formation by short D-peptide for cell-culture scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110746. [PMID: 32279773 DOI: 10.1016/j.msec.2020.110746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/27/2020] [Accepted: 02/14/2020] [Indexed: 10/25/2022]
Abstract
The present study reports that a short oligopeptide D-P1, consisting of only five D-amino acids, self-assembled into entangled nanofibers to form a hydrogel that functioned as a scaffold for cell cultures. D-P1 (Ac-D-Phe-D-Phe-D-Phe-Gly-D-Lys) gelated aqueous buffer solution and water at a minimum gelation concentration of 0.5 wt%. The circular dichroism (CD) measurements demonstrated the formation of a β-sheet structure in the self-assembly of D-P1. We investigated the gelation properties and CD spectra of both the D- and L-forms of the oligopeptide, and found only a minimal difference between them. The D-P1 hydrogel was resistant to a protease, whereas the L-P1 hydrogel was rapidly degraded. Both oligopeptides exhibited nontoxic properties to human cancer cells and embryoid bodies (EBs) derived from human-induced pluripotent stem cells. Additionally, we succeeded in forming spheroids of HeLa cells on the D-P1 hydrogel, which indicates the potential of this hydrogel for 3-dimensional cell culture.
Collapse
Affiliation(s)
- Witta Kartika Restu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan; Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan Puspiptek Serpong, Tangerang Selatan, Banten 15314, Indonesia
| | - Shota Yamamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Nishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan
| | - Hirotoshi Ienaga
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Aoi
- Department of iPS cell Applications, Graduate School of Medicine, Kobe University, 7-5-1 Kusunokicho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
35
|
Liu X, Li C, Lv J, Huang F, An Y, Shi L, Ma R. Glucose and H2O2 Dual-Responsive Polymeric Micelles for the Self-Regulated Release of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:1598-1606. [DOI: 10.1021/acsabm.9b01185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Juan Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center1 of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Rujiang Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Jeena MT, Jeong K, Go EM, Cho Y, Lee S, Jin S, Hwang SW, Jang JH, Kang CS, Bang WY, Lee E, Kwak SK, Kim S, Ryu JH. Heterochiral Assembly of Amphiphilic Peptides Inside the Mitochondria for Supramolecular Cancer Therapeutics. ACS NANO 2019; 13:11022-11033. [PMID: 31508938 DOI: 10.1021/acsnano.9b02522] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of peptides containing both l- and d-isomers often results in nanostructures with enhanced properties compared to their enantiomeric analogues, such as faster kinetics of formation, higher mechanical strength, and enzymatic stability. However, occurrence and consequences of the heterochiral assembly in the cellular microenvironment are unknown. In this study, we monitored heterochiral assembly of amphiphilic peptides inside the cell, specifically mitochondria of cancer cells, resulting in nanostructures with refined morphological and biological properties owing to the superior interaction between the backbones of opposite chirality. We have designed a mitochondria penetrating tripeptide containing a diphenyl alanine building unit, named as Mito-FF due to their mitochondria targeting ability. The short peptide amphiphile, Mito-FF co-assembled with its mirror pair, Mito-ff, induced superfibrils of around 100 nm in diameter and 0.5-1 μm in length, while enantiomers formed only narrow fibers of 10 nm in diameter. The co-administration of Mito-FF and Mito-ff in the cell induced drastic mitochondrial disruption both in vitro and in vivo. The experimental and theoretical analyses revealed that pyrene capping played a major role in inducing superfibril morphology upon the co-assembly of racemic peptides. This work shows the impact of chirality control over the peptide self-assembly inside the biological system, thus showing a potent strategy for fabricating promising peptide biomaterials by considering chirality as a design modality.
Collapse
Affiliation(s)
| | - Keunsoo Jeong
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Yuri Cho
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
| | | | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | - Joo Hee Jang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Chi Soo Kang
- Division of Applied RI , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | - Woo-Young Bang
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | | | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul 02841 , Republic of Korea
| | | |
Collapse
|
37
|
Ren C, Gao Y, Guan Y, Wang Z, Yang L, Gao J, Fan H, Liu J. Carrier-Free Supramolecular Hydrogel Composed of Dual Drugs for Conquering Drug Resistance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33706-33715. [PMID: 31466443 DOI: 10.1021/acsami.9b12530] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The resistance of tumor cells to anticancer drugs has become one of the principal causes of the failure in clinical chemotherapy. To overcome this issue, developing feasible drug delivery systems for effective cancer therapy is urgently needed. In this work, we construct an amphiphilic drug self-delivery system consisting of Taxol and tyroservatide (YSV) to overcome drug resistance. The carrier-free supramolecular hydrogel composed of nanofibers is formed by the involved ester bond self-hydrolysis process, which has high drug loading efficiency and facilitates the delivery of both the hydrophobic Taxol and hydrophilic YSV. Because of the dual inhibitory function of YSV on histone deacetylase and P-glycoprotein, an improved combinational anticancer effect of the molecule against drug-resistant tumor cells in vitro is achieved. Furthermore, the designed drug self-delivery system exhibited enhanced antitumor efficiency and favorable biocompatibility in vivo when administered by tail vein injection. Our study provides a new strategy for fabricating a carrier-free supramolecular hydrogel to overcome drug resistance, which might open up an alternative avenue for the tumor combinational therapy.
Collapse
Affiliation(s)
- Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Yong Guan
- Department of Pediatric Urology , Tianjin Children's Hospital , Tianjin 300134 , China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Jie Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Huirong Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| |
Collapse
|
38
|
Li C, Liu X, Liu Y, Huang F, Wu G, Liu Y, Zhang Z, Ding Y, Lv J, Ma R, An Y, Shi L. Glucose and H 2O 2 dual-sensitive nanogels for enhanced glucose-responsive insulin delivery. NANOSCALE 2019; 11:9163-9175. [PMID: 31038150 DOI: 10.1039/c9nr01554j] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diabetes is a chronic metabolic disorder disease characterized by high blood glucose levels and has become one of the most serious threats to human health. In recent decades, a number of insulin delivery systems, including bulk gels, nanogels, and polymeric micelles, have been developed for the treatment of diabetes. Herein, a kind of glucose and H2O2 dual-responsive polymeric nanogel was designed for enhanced glucose-responsive insulin delivery. The polymeric nanogels composed of poly(ethylene glycol) and poly(cyclic phenylboronic ester) (glucose and H2O2 dual-sensitive groups) were synthesized by a one-pot thiol-ene click chemistry approach. The nanogels displayed glucose-responsive release of insulin and the release rate could be promoted by the incorporation of glucose oxidase (GOx), which generated H2O2 at high glucose levels and H2O2 further oxidizes and hydrolyzes the phenylboronic ester group. The nanogels have characteristics of long blood circulation time, a fast response to glucose, and excellent biocompatibility. Moreover, subcutaneous delivery of insulin to diabetic mice with the insulin/GOx-loaded nanogels presented an effective hypoglycemic effect compared to that of injection of insulin or insulin-loaded nanogels. This kind of nanogel would be a promising candidate for the delivery of insulin in the future.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Huang F, Ren C, Liu J, Yang L, Chen S, Chang J, Yang C, Wang W, Zhang C, Liu Q, Liang X, Liu J. Enhanced Radiosensitization by Gold Nanoparticles with Acid-Triggered Aggregation in Cancer Radiotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801806. [PMID: 31016110 PMCID: PMC6469241 DOI: 10.1002/advs.201801806] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/21/2018] [Indexed: 05/05/2023]
Abstract
An ideal radiosensitizer holding an enhanced tumor retention can play an incredible role in enhancing tumor radiotherapy. Herein, a strategy of acid-triggered aggregation of small-sized gold nanoparticles (GNPs) system within tumor is proposed and the resulting GNPs aggregates are applied as a radiosensitizer in vitro and in vivo. The GNPs system with the acid-triggered aggregation achieves an enhanced GNPs accumulation and retention in cancer cells and tumors in the form of the resulted GNPs aggregates. As a consequence, the radiosensitization effect shows significant improvement in cancer radiotherapy, which is shown in the studies of DNA breakage and the comet assay, and the sensitizer enhancement ratio (SER) value of the GNPs system (1.730) with MCF-7 cancer cells is much larger than that of the single GNPs (1.16). In vivo antitumor studies reveal that the GNPs system also enhances the sensitivity of MCF-7 tumor xenograft to radiotherapy. Furthermore, the GNPs aggregates improve the signal of small GNPs in vivo photoacoustic imaging. This study provides a new strategy and insights into fabricating nanoaggregates to magnify the radiosensitive efficiency of nanosystems in cancer radiotherapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Shizhu Chen
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
| | - Jinglin Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Science and Peking Union Medical CollegeTianjin300192P. R. China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial ResearchInstitute of Biomedical EngineeringChinese Academy of Medical Science and Peking Union Medical CollegeTianjin300192P. R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Xing‐Jie Liang
- CAS Center for Excellence in NanoscienceCAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyChinese Academy of Sciences and National Center for Nanoscience and Technology of ChinaBeijing100190China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| |
Collapse
|
40
|
Abid S, Hussain T, Raza ZA, Nazir A. Current applications of electrospun polymeric nanofibers in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:966-977. [DOI: 10.1016/j.msec.2018.12.105] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/03/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
41
|
Wang H, Feng Z, Yang C, Liu J, Medina JE, Aghvami SA, Dinulescu DM, Liu J, Fraden S, Xu B. Unraveling the Cellular Mechanism of Assembling Cholesterols for Selective Cancer Cell Death. Mol Cancer Res 2018; 17:907-917. [PMID: 30552234 DOI: 10.1158/1541-7786.mcr-18-0931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Acquired drug resistance remains a challenge in chemotherapy. Here we show enzymatic, in situ assembling of cholesterol derivatives to act as polypharmaceuticals for selectively inducing death of cancer cells via multiple pathways and without inducing acquired drug resistance. A conjugate of tyrosine and cholesterol (TC), formed by enzyme-catalyzed dephosphorylation of phosphorylate TC, self-assembles selectively on or in cancer cells. Acting as polypharmaceuticals, the assemblies of TC augment lipid rafts, aggregate extrinsic cell death receptors (e.g., DR5, CD95, or TRAILR), modulate the expression of oncoproteins (e.g., Src and Akt), disrupt the dynamics of cytoskeletons (e.g., actin filaments or microtubules), induce endoplasmic reticulum stress, and increase the production of reactive oxygen species, thus resulting in cell death and preventing acquired drug resistance. Moreover, the assemblies inhibit the growth of platinum-resistant ovarian cancer tumor in a murine model. This work illustrates the use of instructed assembly (iA) in cellular environment to form polypharmaceuticals in situ that not only interact with multiple proteins, but also modulate membrane dynamics for developing novel anticancer therapeutics. IMPLICATIONS: As a multifaceted strategy for controlling cancer cell death, iA minimized acquired resistance of cancer cells, which is a new strategy to amplify the genetic difference between cancer and normal cells and provides a promise for overcoming drug resistance in cancer therapy.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/4/907/F1.large.jpg.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts
| | - Cuihong Yang
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jinjian Liu
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jamie E Medina
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Ali Aghvami
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Daniela M Dinulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jianfeng Liu
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, Massachusetts
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, Massachusetts.
| |
Collapse
|
42
|
Cong Y, Qiao ZY, Wang H. Molecular Self-Assembly Constructed in Physiological Conditions for Cancer Diagnosis and Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Cong
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Zeng-Ying Qiao
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; National Center for Nanoscience and Technology; No. 11 Beiyitiao, Zhongguancun Beijing 100190 China
| |
Collapse
|
43
|
Yang S, Meng Z, Kang Z, Sun C, Wang T, Feng S, Meng Q, Liu K. The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency. RSC Adv 2018; 8:28356-28366. [PMID: 35542475 PMCID: PMC9084241 DOI: 10.1039/c8ra04101f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
We designed a series of peptide vectors that contain functional fragments with the goal of enhancing cellular internalization and gene transfection efficiency. The functional fragments included a cell-penetrating peptide (R9), a cationic amphiphilic α-helical peptide [(LLKK)3-H6 or (LLHH)3], a stearyl moiety, and cysteine residues. Vectors were also synthesized with D-type amino acids to improve their proteolytic stability. The conformations, particle sizes, and zeta potentials for complexes of these peptides with pGL3 plasmid DNA were characterized by circular dichroism and dynamic light scattering. In addition, cellular uptake of the peptide/DNA complexes and gene transfection efficiency were investigated with fluorescence-activated cell sorting and confocal laser-scanning microscopy. Greater transfection efficiency was achieved with the vectors containing the R9 segment, and the efficiency was greater than Lipo2000. In addition, the D-type C18-c(llkk)3ch6-r9 had about 7 times and 5.5 times the transfection efficiency of Lipo2000 in 293T cells and NIH-3T3 cells at the N/P ratio of 6, respectively. Overall, the multifunctional peptide gene vectors containing the R9 segment exhibited enhanced cellular internalization, a high gene transfection efficiency, and low cytotoxicity. The R9 containing peptide vectors can improve the gene transfection efficiency.![]()
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
44
|
Yu X, Zhang Z, Yu J, Chen H, Li X. Self-assembly of a ibuprofen-peptide conjugate to suppress ocular inflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:185-193. [DOI: 10.1016/j.nano.2017.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
|
45
|
Wang L, Yan L, Liu J, Chen C, Zhao Y. Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Anal Chem 2017; 90:589-614. [DOI: 10.1021/acs.analchem.7b04765] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Liming Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- The
College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Yuliang Zhao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| |
Collapse
|
46
|
Liang C, Zheng D, Shi F, Xu T, Yang C, Liu J, Wang L, Yang Z. Enzyme-assisted peptide folding, assembly and anti-cancer properties. NANOSCALE 2017; 9:11987-11993. [PMID: 28792044 DOI: 10.1039/c7nr04370h] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The α-helix is the most prevalent conformation in proteins. However, formation of the α-helical conformation remains a challenge for short peptides with less than 5 amino acids. We demonstrated in this study that enzyme-instructed self-assembly (EISA) provides a unique pathway to assist the self-assembly of peptides into the α-helical conformation, while a heating-cooling process leads to a conformation more similar to a β-sheet. The same peptide with different conformations self-assembled into different nanostructures. The peptide with α-helical conformation self-assembled into stable nanofibers and hydrogels, while the other one assembled into an unstable nanoparticle suspension. The nanofiber solution exhibited better stability against proteinase K digestion and an enhanced cellular uptake compared to the nanoparticle solution. Therefore, the nanomedicine formed by the α-helical peptide showed a better inhibition capacity against cancer cells in vitro and significantly inhibited tumor growth in vivo compared to the one formed by the β-sheet peptide. Our study demonstrates the unique advantages of EISA to assist peptide folding and self-assembly into biofunctional nanomaterials.
Collapse
Affiliation(s)
- Chunhui Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lin S, Qin J, Li Y, Li B, Yang Y. Chirality-Driven Parallel and Antiparallel β-Sheet Secondary Structures of Phe-Ala Lipodipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8246-8252. [PMID: 28763619 DOI: 10.1021/acs.langmuir.7b01942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four Phe-Ala lipodipeptides with different stereochemical structures are observed to self-assemble into twisted nanoribbons in water. The handedness of the twisted nanoribbons is controlled by the chirality of the phenylalanine near the alkyl chain, while the stacking handedness of the phenyl and carbonyl groups is determined by the alanine at the C-terminal. The homochiral and heterochiral lipodipeptides self-assemble into parallel and antiparallel β-sheet structures, respectively. The 1H NMR, FTIR, X-ray diffraction, and circular dichroism characterizations indicate that these phenomena are mainly driven by the interaction between neighboring phenyl groups and H-bonding among the amide groups.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jiaming Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
48
|
Colquhoun C, Draper ER, Schweins R, Marcello M, Vadukul D, Serpell LC, Adams DJ. Controlling the network type in self-assembled dipeptide hydrogels. SOFT MATTER 2017; 13:1914-1919. [PMID: 28186211 DOI: 10.1039/c6sm02666d] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We show that the same low molecular weight gelator can form gels using three different methods. Gels were formed from a high pH solution either by adding a salt or by adding an acid; gels were also formed by adding water to a solution of the gelator in an organic solvent. The mechanical properties for the gels formed by the different methods are different from one another. We link this to the network type that is formed, as well as the fibrous structures that are formed. The salt-triggered gels show a significant number of fibres that tend to align. The acid-triggered gels contain many thin fibres, which form an entangled network. The solvent-triggered gels show the presence of spherulitic domains. We show that it is tractable to vary the trigger mechanism for an established, robust gelator to prepare gels with targeted properties as opposed to synthesising new gelators.
Collapse
Affiliation(s)
- Catherine Colquhoun
- Institute of Medical and Biological Engineering - School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Emily R Draper
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Ralf Schweins
- Institut Laue-Langevin, Large Scale Structures Group, 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble CEDEX 9, France
| | - Marco Marcello
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Devkee Vadukul
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG, UK
| | - Dave J Adams
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
49
|
Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Concepts 2017; 7:179-87. [PMID: 27159920 DOI: 10.1515/bmc-2015-0035] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023] Open
Abstract
D-amino acids, the enantiomers of naturally abundant L-amino acids, bear unique stereochemistry properties that lead to the resistance towards most of the endogenous enzymes. Previous works have demonstrated applications of D-amino acids in therapeutic development with the aid of mirror-image phage display and retro-inverso peptide synthesis. In this review, we highlight the recent progress and challenges in the exploration of D-amino acids at the interface of chemistry and life science. First, we will introduce some progress made in traditional application of D-amino acids to enhance biostability of peptide therapeutics. Then, we discuss some works that explore the relatively underexplored interactions between the enzyme and D-amino acids and enzymatic reactions of D-amino acids. To highlight the enzymatic reactions of D-amino acids, we will describe several emerging works on the enzyme-instructed self-assembly (EISA) and their potential application in selective anti-inflammatory or anticancer therapies. At the end, we briefly mention the challenges and possible future directions.
Collapse
|
50
|
Wang H, Feng Z, Xu B. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Adv Drug Deliv Rev 2017; 110-111:102-111. [PMID: 27102943 PMCID: PMC5071117 DOI: 10.1016/j.addr.2016.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/19/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|