1
|
Cvrtila I, Otto S. Emergent Behavior of a Photoswitchable Solute in a Biphasic Solvent System. Chemistry 2024; 30:e202403157. [PMID: 39429129 DOI: 10.1002/chem.202403157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Due to thermal E/Z isomerization, hydrazones in solution typically exist in thermodynamic equilibria between their isomers. Irradiation of such solutions leads to photostationary states that may differ from the equilibrium distribution. Operating such switchable hydrazones in a biphasic system of two immiscible solvents introduces three new degrees of freedom: the E/Z equilibrium in the second solvent and two equilibria for distribution of each of the isomers between the solvents. Irradiation of such a system can be performed in three different ways - the first solvent only, the second solvent only, and both solvents at once - all yielding distinct outcomes. Depending on the choice of materials and the mode of irradiation, such setup may lead to different emergent behaviors that are not immediately intuitive, including net cyclic transport or the accumulation of one photoswitched product in one of the phases, beyond what is reachable by irradiating a simple solution of the same photoswitch.
Collapse
Affiliation(s)
- Ivica Cvrtila
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| | - Sijbren Otto
- Centre for Systems Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
2
|
Tashiro S, Yamada Y, Kringe LA, Okajima Y, Shionoya M. Intricate Low-Symmetry Ag 6L4 Capsules Formed by Anion-Templated Self-Assembly of the Stereoisomers of an Unsymmetric Ligand. J Am Chem Soc 2024; 146:34501-34509. [PMID: 39616534 DOI: 10.1021/jacs.4c11583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic cages and capsules exhibit space-specific functions based on their discrete hollow structures. To acquire enzyme-like asymmetric or intricate structures, they have been modified by desymmetrization with two or more different ligands. There is a need to establish new strategies that can desymmetrize structures in a simple way using only one type of ligand, which is different from the mixed-ligand approach. In this study, a strategy was developed to form interconvertible stereoisomers using the unsymmetric macrocyclic ligand benzimidazole[3]arene. Single-crystal X-ray diffraction analysis revealed that the isomers assembled with silver tetrafluoroborate afforded a conformationally heteroleptic Ag6L4 capsule with an intricate structure. The six Ag ions in the capsule were desymmetrized, resulting in significantly different coordination geometries. Remarkably, the capsule encapsulates a single tetrafluoroborate anion via multipoint C-H···F-B hydrogen bonds in both the solid and solution states, suggesting that anions of appropriate size and shape can act as a template for the capsule formation. These results demonstrate that the use of isomerizable and unsymmetric ligands is the effectiveness of constructing highly dissymmetric supramolecular structures from a single ligand.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshihiko Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Lea Antonia Kringe
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Okajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Zhao C, Li Z, Ji L, Wang H, Ouyang G, Liu M. Aggregate-state-dependent photochromism and circularly polarized luminescence of a chiral biquinoline amphiphile. Chem Commun (Camb) 2024; 60:6047-6050. [PMID: 38775836 DOI: 10.1039/d4cc01810a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The photophysical and chiroptical properties of a chiral biquinoline amphiphile were found to be closely related to its aggregate states. Photochromism through photo-induced radical and circularly polarized luminescence were realized in its gel state and thin film state, respectively.
Collapse
Affiliation(s)
- Chenyang Zhao
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lukang Ji
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kumar Bandela A, Sadihov‐Hanoch H, Cohen‐Luria R, Gordon C, Blake A, Poppitz G, Lynn DG, Ashkenasy G. The Systems Chemistry of Nucleic‐acid‐Peptide Networks. Isr J Chem 2022. [DOI: 10.1002/ijch.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anil Kumar Bandela
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Hava Sadihov‐Hanoch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Rivka Cohen‐Luria
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Christella Gordon
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Alexis Blake
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - George Poppitz
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - David G. Lynn
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Gonen Ashkenasy
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
5
|
Laurent Q, Sakai N, Matile S. An Orthogonal Dynamic Covalent Chemistry Tool for Ring-Opening Polymerization of Cyclic Oligochalcogenides on Detachable Helical Peptide Templates. Chemistry 2022; 28:e202200785. [PMID: 35416345 PMCID: PMC9324982 DOI: 10.1002/chem.202200785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/13/2022]
Abstract
A model system is introduced as a general tool to elaborate on orthogonal templation of dynamic covalent ring-opening polymerization (ODC-TROP). The tool consists of 310 helical peptides as unprecedented templates and semicarbazones as orthogonal dynamic covalent linkers. With difficult-to-control 1,2-dithiolanes, ODC-TROP on the level of short model oligomers occurs with high templation efficiency, increasing and diminishing upon helix stabilization and denaturation, respectively. Further, an anti-templated conjugate with mispositioned monomers gave reduced templation upon helix twisting. Even with the "unpolymerizable" 1,2-diselenolanes, initial studies already afford mild templation efficiency. These proof-of-principle results promise that the here introduced tool, recyclable and enabling late-stage side chain modification, will be useful to realize ODC-TROP of intractable or unknown cyclic dynamic covalent monomers for dynamer materials as well as cellular uptake and signaling applications.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
6
|
Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. J Med Chem 2022; 65:4865-4877. [PMID: 35235323 PMCID: PMC8958503 DOI: 10.1021/acs.jmedchem.1c02054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heparin-like macromolecules
are widely used in clinics as anticoagulant,
antiviral, and anticancer drugs. However, the search of heparin antidotes
based on small synthetic molecules to control blood coagulation still
remains a challenging task due to the physicochemical properties of
this anionic polysaccharide. Here, we use a dynamic combinatorial
chemistry approach to optimize heparin binders with submicromolar
affinity. The recognition of heparin by the most amplified members
of the dynamic library has been studied with different experimental
(SPR, fluorescence, NMR) and theoretical approaches, rendering a detailed
interaction model. The enzymatic assays with selected library members
confirm the correlation between the dynamic covalent screening and
the in vitro heparin inhibition. Moreover, both ex vivo and in vivo blood coagulation assays
with mice show that the optimized molecules are potent antidotes with
potential use as heparin reversal drugs. Overall, these results underscore
the power of dynamic combinatorial chemistry targeting complex and
elusive biopolymers.
Collapse
Affiliation(s)
| | | | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | |
Collapse
|
7
|
Hai Y, Ye H, Li Z, Zou H, Lu H, You L. Light-Induced Formation/Scission of C-N, C-O, and C-S Bonds Enables Switchable Stability/Degradability in Covalent Systems. J Am Chem Soc 2021; 143:20368-20376. [PMID: 34797658 DOI: 10.1021/jacs.1c09958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The manipulation of covalent bonds could be directed toward degradable, recyclable, and sustainable materials. However, there is an intrinsic conflict between properties of stability and degradability. Here we report light-controlled formation/scission of three types of covalent bonds (C-N, C-O, and C-S) through photoswitching between equilibrium and nonequilibrium states of dynamic covalent systems, achieving dual benefits of photoaddressable stability and cleavability. The photocyclization of dithienylethene fused aldehyde ring-chain tautomers turns on the reactivity, incorporating/releasing amines, alcohols, and thiols reversibly with high efficiency, respectively. Upon photocycloreversion the system is shifted to kinetically locked out-of-equilibrium form, enabling remarkable robustness of covalent assemblies. Reaction coupling allows remote and directional control of a diverse range of equilibria and further broadens the scope. Through locking and unlocking covalent linkages with light when needed, the utility is demonstrated with capture/release of bioactive molecules, modification of surfaces, and creation of polymers exhibiting tailored stability and degradability/recyclability. The versatile toolbox for photoswitchable dynamic covalent reactions to toggle matters on and off should be appealing to many endeavors.
Collapse
Affiliation(s)
- Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Ziyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
8
|
Martinent R, Tawffik S, López-Andarias J, Moreau D, Laurent Q, Matile S. Dithiolane quartets: thiol-mediated uptake enables cytosolic delivery in deep tissue. Chem Sci 2021; 12:13922-13929. [PMID: 34760179 PMCID: PMC8549803 DOI: 10.1039/d1sc04828g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The cytosolic delivery of various substrates in 3D multicellular spheroids by thiol-mediated uptake is reported. This is important because most orthodox systems, including polycationic cell-penetrating peptides, fail to deliver efficiently into deep tissue. The grand principles of supramolecular chemistry, that is the pH dependence of dynamic covalent disulfide exchange with known thiols on the transferrin receptor, are proposed to account for transcytosis into deep tissue, while the known but elusive exchange cascades along the same or other partners assure cytosolic delivery in kinetic competition. For quantitative detection in the cytosol, the 2D chloroalkane penetration assay (CAPA) is translated to 3D deep tissue. The targeted delivery of quantum dots, otherwise already troublesome in 2D culture, and the controlled release of mechanophores are realized to exemplify the power of thiol-mediated uptake into spheroids. As transporters, dithiolane quartets on streptavidin templates are introduced as modular motifs. Built from two amino acids only, the varied stereochemistry and peptide sequence are shown to cover maximal functional space with minimal structural change, i.e., constitutional isomers. Reviving a classic in peptide chemistry, this templated assembly of β quartets promises to expand streptavidin biotechnology in new directions, while the discovery of general cytosolic delivery in deep tissue as an intrinsic advantage further enhances the significance and usefulness of thiol-mediated uptake.
Collapse
Affiliation(s)
- Rémi Martinent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Salman Tawffik
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Javier López-Andarias
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Dimitri Moreau
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Quentin Laurent
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva Geneva Switzerland https://www.unige.ch/sciences/chiorg/matile/ +41 22 379 6523
| |
Collapse
|
9
|
Bäumer N, Matern J, Fernández G. Recent progress and future challenges in the supramolecular polymerization of metal-containing monomers. Chem Sci 2021; 12:12248-12265. [PMID: 34603655 PMCID: PMC8480320 DOI: 10.1039/d1sc03388c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of discrete molecular entities into functional nanomaterials has become a major research area in the past decades. The library of investigated compounds has diversified significantly, while the field as a whole has matured. The incorporation of metal ions in the molecular design of the (supra-)molecular building blocks greatly expands the potential applications, while also offering a promising approach to control molecular recognition and attractive and/or repulsive intermolecular binding events. Hence, supramolecular polymerization of metal-containing monomers has emerged as a major research focus in the field. In this perspective article, we highlight recent significant advances in supramolecular polymerization of metal-containing monomers and discuss their implications for future research. Additionally, we also outline some major challenges that metallosupramolecular chemists (will) have to face to produce metallosupramolecular polymers (MSPs) with advanced applications and functionalities.
Collapse
Affiliation(s)
- Nils Bäumer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Jonas Matern
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| | - Gustavo Fernández
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
10
|
Hao X, Li TR, Chen H, Gini A, Zhang X, Rosset S, Mazet C, Tiefenbacher K, Matile S. Bioinspired Ether Cyclizations within a π-Basic Capsule Compared to Autocatalysis on π-Acidic Surfaces and Pnictogen-Bonding Catalysts. Chemistry 2021; 27:12215-12223. [PMID: 34060672 PMCID: PMC8456975 DOI: 10.1002/chem.202101548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/15/2022]
Abstract
While the integration of supramolecular principles in catalysis attracts increasing attention, a direct comparative assessment of the resulting systems catalysts to work out distinct characteristics is often difficult. Herein is reported how the broad responsiveness of ether cyclizations to diverse inputs promises to fill this gap. Cyclizations in the confined, π-basic and Brønsted acidic interior of supramolecular capsules, for instance, are found to excel with speed (exceeding general Brønsted acid and hydrogen-bonding catalysts by far) and selective violations of the Baldwin rules (as extreme as the so far unique pnictogen-bonding catalysts). The complementary cyclization on π-acidic aromatic surfaces remains unique with regard to autocatalysis, which is shown to be chemo- and diastereoselective with regard to product-like co-catalysts but, so far, not enantioselective.
Collapse
Affiliation(s)
- Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, 1 Dongsan Road Erxianqiao, Chengdu, 610059, P.R. China
| | - Tian-Ren Li
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Hao Chen
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Andrea Gini
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Xiang Zhang
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Science, Northwest A&F University, Xianyang Shi, Yangling, 712100, P. R. China
| | - Stéphane Rosset
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, CH-1121, Geneva, Switzerland.,NCCR Molecular Systems Engineering BPR 1095, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
11
|
Li D, Ma C, Xiang J, Zhang K, Yang L, Gan Q. A Disulfide Switch Providing Absolute Handedness Control in Double Helices via Conversion from the Antiparallel to Parallel Helical Pattern. Chemistry 2021; 27:11663-11669. [PMID: 34014575 DOI: 10.1002/chem.202101221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/09/2022]
Abstract
A strategy to reversibly switch the parallel/antiparallel helical conformation of aromatic double helices through the formation/breakage of a disulfide bond is presented. Single-crystal X-ray structures, NMR, and circular dichroism spectroscopy demonstrate that the double helices with terminal thiol groups favor an antiparallel helical arrangement both in the solid state and in solution, while the P/M bias of helicity induced by chiral segments from another extremity of the sequence is weak in this structural motif. The antiparallel helices can be rearranged to parallel helices through the disulfide connection of the sequences. This change enhances the bias of helical handedness and results in absolute chirality control of the double helices. The handedness-mediated process can be governed by the oxidation-reduction cycle, thereby switching the structural arrangement and the enhancement of chiral bias. In addition, we find that the sequences can dimerize into an intermolecular double helix with the disulfide connection. And the helical handedness is also fully controlled due to the head-to-head structural motif.
Collapse
Affiliation(s)
- Dongyao Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chunmiao Ma
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Junfeng Xiang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ling Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
12
|
Jin J, Miao J, Cheng C. Mono-mercapto-functionalized pillar[5]arene: a host-guest complexation accelerated reversible redox dimerization. Chem Commun (Camb) 2021; 57:7950-7953. [PMID: 34286743 DOI: 10.1039/d1cc03010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mono-mercapto-functionalized pillar[5]arene and its dimer, capable of being reversibly interconverted, were successfully synthesized. Fascinatingly, a faster reversible redox conversion involving a dynamic disulfide bond was observed between their host-guest complexes compared with the hosts themselves.
Collapse
Affiliation(s)
- Jianbing Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
13
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
14
|
Goren E, Avram L, Bar-Shir A. Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands. Nat Commun 2021; 12:3072. [PMID: 34031377 PMCID: PMC8144181 DOI: 10.1038/s41467-021-23179-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/19/2021] [Indexed: 01/05/2023] Open
Abstract
Multicolor luminescent portrayal of complexed arrays is indispensable for many aspects of science and technology. Nevertheless, challenges such as inaccessible readouts from opaque objects, a limited visible-light spectrum and restricted spectral resolution call for alternative approaches for multicolor representation. Here, we present a strategy for spatial COlor Display by Exploiting Host-guest Dynamics (CODE-HD), comprising a paramagnetic cavitand library and various guests. First, a set of lanthanide-cradled α-cyclodextrins (Ln-CDs) is designed to induce pseudo-contact shifts in the 19F-NMR spectrum of Ln-CD-bound guest. Then, capitalizing on reversible host-guest binding dynamics and using magnetization-transfer 19F-MRI, pseudo-colored maps of complexed arrays are acquired and applied in molecular-steganography scenarios, showing CODE-HD’s ability to generate versatile outputs for information encoding. By exploiting the widely shifted resonances induced by Ln-CDs, the guest versatility and supramolecular systems' reversibility, CODE-HD provides a switchable, polychromatic palette, as an advanced strategy for light-free, multicolor-mapping. Host-guest supramolecular chemistry can be used as a tool to develop multicolor displays. Here, the authors present a system based on lanthanide-cradled cyclodextrins that allows to construct MRI-readable and erasable artificial non-luminescent color palettes.
Collapse
Affiliation(s)
- Elad Goren
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Avram
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Gentile S, Del Grosso E, Prins LJ, Ricci F. Reorganization of Self‐Assembled DNA‐Based Polymers using Orthogonally Addressable Building Blocks**. Angew Chem Int Ed Engl 2021; 60:12911-12917. [DOI: 10.1002/anie.202101378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Serena Gentile
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Erica Del Grosso
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome, Tor Vergata Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
16
|
Ameta S, Matsubara YJ, Chakraborty N, Krishna S, Thutupalli S. Self-Reproduction and Darwinian Evolution in Autocatalytic Chemical Reaction Systems. Life (Basel) 2021; 11:308. [PMID: 33916135 PMCID: PMC8066523 DOI: 10.3390/life11040308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 11/18/2022] Open
Abstract
Understanding the emergence of life from (primitive) abiotic components has arguably been one of the deepest and yet one of the most elusive scientific questions. Notwithstanding the lack of a clear definition for a living system, it is widely argued that heredity (involving self-reproduction) along with compartmentalization and metabolism are key features that contrast living systems from their non-living counterparts. A minimal living system may be viewed as "a self-sustaining chemical system capable of Darwinian evolution". It has been proposed that autocatalytic sets of chemical reactions (ACSs) could serve as a mechanism to establish chemical compositional identity, heritable self-reproduction, and evolution in a minimal chemical system. Following years of theoretical work, autocatalytic chemical systems have been constructed experimentally using a wide variety of substrates, and most studies, thus far, have focused on the demonstration of chemical self-reproduction under specific conditions. While several recent experimental studies have raised the possibility of carrying out some aspects of experimental evolution using autocatalytic reaction networks, there remain many open challenges. In this review, we start by evaluating theoretical studies of ACSs specifically with a view to establish the conditions required for such chemical systems to exhibit self-reproduction and Darwinian evolution. Then, we follow with an extensive overview of experimental ACS systems and use the theoretically established conditions to critically evaluate these empirical systems for their potential to exhibit Darwinian evolution. We identify various technical and conceptual challenges limiting experimental progress and, finally, conclude with some remarks about open questions.
Collapse
Affiliation(s)
- Sandeep Ameta
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Yoshiya J. Matsubara
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Nayan Chakraborty
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Sandeep Krishna
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
| |
Collapse
|
17
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary-Bobo M, Bettache N, Ulrich S. Cell-Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self-Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021; 60:5783-5787. [PMID: 33289957 DOI: 10.1002/anie.202014066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.
Collapse
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, 21561, Alexandria, Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
18
|
Laroui N, Coste M, Su D, Ali LMA, Bessin Y, Barboiu M, Gary‐Bobo M, Bettache N, Ulrich S. Cell‐Selective siRNA Delivery Using Glycosylated Dynamic Covalent Polymers Self‐Assembled In Situ by RNA Templating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Dandan Su
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
- Department of Biochemistry Medical Research Institute University of Alexandria 21561 Alexandria Egypt
| | - Yannick Bessin
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Mihail Barboiu
- Institut Européen des Membranes Adaptive Supramolecular Nanosystems Group Université de Montpellier ENSCM CNRS Place Eugène Bataillon, CC 047 34095 Montpellier France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM) CNRS Université de Montpellier ENSCM Montpellier France
| |
Collapse
|
19
|
Yue L, Wang S, Zhou Z, Willner I. Nucleic Acid Based Constitutional Dynamic Networks: From Basic Principles to Applications. J Am Chem Soc 2020; 142:21577-21594. [DOI: 10.1021/jacs.0c09891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liang Yue
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shan Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
20
|
Reppe T, Poppe S, Tschierske C. Controlling Mirror Symmetry Breaking and Network Formation in Liquid Crystalline Cubic, Isotropic Liquid and Crystalline Phases of Benzil-Based Polycatenars. Chemistry 2020; 26:16066-16079. [PMID: 32652801 PMCID: PMC7756378 DOI: 10.1002/chem.202002869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 12/25/2022]
Abstract
Spontaneous development of chirality in systems composed of achiral molecules is important for new routes to asymmetric synthesis, chiral superstructures and materials, as well as for the understanding of the mechanisms of emergence of prebiotic chirality. Herein, it is shown that the 4,4'-diphenylbenzil unit is a universal transiently chiral bent building block for the design of multi-chained (polycatenar) rod-like molecules capable of forming a wide variety of helically twisted network structures in the liquid, the liquid crystalline (LC) and the crystalline state. Single polar substituents at the apex of tricatenar molecules support the formation of the achiral (racemic) cubic double network phase with Ia 3 ‾ d symmetry and relatively small twist along the networks. The combination of an alkyl chain with fluorine substitution leads to the homogeneously chiral triple network phase with I23 space group, and in addition, provides a mirror symmetry broken liquid. Replacing F by Cl or Br further increases the twist, leading to a short pitch double gyroid Ia 3 ‾ d phase, which is achiral again. The effects of the structural variations on the network structures, either leading to achiral phases or chiral conglomerates are analyzed.
Collapse
Affiliation(s)
- Tino Reppe
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Silvio Poppe
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Carsten Tschierske
- Institute of ChemistryMartin Luther University Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| |
Collapse
|
21
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide-Selective Templated Self-Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020; 59:22223-22229. [PMID: 32833254 DOI: 10.1002/anie.202010199] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Nature adopts complex chemical networks to finely tune biochemical processes. Indeed, small biomolecules play a key role in regulating the flux of metabolic pathways. Chemistry, which was traditionally focused on reactions in simple mixtures, is dedicating increasing attention to the network reactivity of highly complex synthetic systems, able to display new kinetic phenomena. Herein, we show that the addition of monophosphate nucleosides to a mixture of amphiphiles and reagents leads to the selective templated formation of self-assembled structures, which can accelerate a reaction between two hydrophobic reactants. The correct matching between nucleotide and the amphiphile head group is fundamental for the selective formation of the assemblies and for the consequent up-regulation of the chemical reaction. Transient stability of the nanoreactors is obtained under dissipative conditions, driven by enzymatic dephosphorylation of the templating nucleotides. These results show that small molecules can play a key role in modulating network reactivity, by selectively templating self-assembled structures that are able to up-regulate chemical reaction pathways.
Collapse
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali Knowledge City, Manauli, 140306, India
| | - Ilaria Fortunati
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Camilla Ferrante
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Luca Gabrielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
22
|
Chandrabhas S, Maiti S, Fortunati I, Ferrante C, Gabrielli L, Prins LJ. Nucleotide‐Selective Templated Self‐Assembly of Nanoreactors under Dissipative Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sushmitha Chandrabhas
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Subhabrata Maiti
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Manauli 140306 India
| | - Ilaria Fortunati
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Camilla Ferrante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
23
|
van Ravensteijn BGP, Voets IK, Kegel WK, Eelkema R. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10639-10656. [PMID: 32787015 PMCID: PMC7497707 DOI: 10.1021/acs.langmuir.0c01763] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/08/2020] [Indexed: 05/20/2023]
Abstract
Transient assembled structures play an indispensable role in a wide variety of processes fundamental to living organisms including cellular transport, cell motility, and proliferation. Typically, the formation of these transient structures is driven by the consumption of molecular fuels via dissipative reaction networks. In these networks, building blocks are converted from inactive precursor states to active (assembling) states by (a set of) irreversible chemical reactions. Since the activated state is intrinsically unstable and can be maintained only in the presence of sufficient fuel, fuel depletion results in the spontaneous disintegration of the formed superstructures. Consequently, the properties and behavior of these assembled structures are governed by the kinetics of fuel consumption rather than by their thermodynamic stability. This fuel dependency endows biological systems with unprecedented spatiotemporal adaptability and inherent self-healing capabilities. Fascinated by these unique material characteristics, coupling the assembly behavior to molecular fuel or light-driven reaction networks was recently implemented in synthetic (supra)molecular systems. In this invited feature article, we discuss recent studies demonstrating that dissipative assembly is not limited to the molecular world but can also be translated to building blocks of colloidal dimensions. We highlight crucial guiding principles for the successful design of dissipative colloidal systems and illustrate these with the current state of the art. Finally, we present our vision on the future of the field and how marrying nonequilibrium self-assembly with the functional properties associated with colloidal building blocks presents a promising route for the development of next-generation materials.
Collapse
Affiliation(s)
- Bas G. P. van Ravensteijn
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Willem K. Kegel
- Van
’t Hoff Laboratory for Physical and Colloid Chemistry, Debye
Institute for NanoMaterials Science, Utrecht
University, 3584 CH Utrecht, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π-Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020; 59:15093-15097. [PMID: 32181559 DOI: 10.1002/anie.202000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/03/2023]
Abstract
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion-π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto /kcat >104 m-1 ). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.
Collapse
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
25
|
Paraja M, Hao X, Matile S. Polyether Natural Product Inspired Cascade Cyclizations: Autocatalysis on π‐Acidic Aromatic Surfaces. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miguel Paraja
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Xiaoyu Hao
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Geneva Switzerland
| |
Collapse
|
26
|
Bravin C, Hunter CA. Template effects of vesicles in dynamic covalent chemistry. Chem Sci 2020; 11:9122-9125. [PMID: 34123161 PMCID: PMC8163447 DOI: 10.1039/d0sc03185b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.
Collapse
Affiliation(s)
- Carlo Bravin
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
27
|
Xu H, Suzuki N, Takahashi A, Ohishi T, Goseki R, Xie XM, Otsuka H. Structural reorganization and crack-healing properties of hydrogels based on dynamic diselenide linkages. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:450-460. [PMID: 32939170 PMCID: PMC7476519 DOI: 10.1080/14686996.2020.1783967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
We report the dynamic behavior of diselenide-containing hydrophilic polyurethanes and hydrogels based on diselenide exchange reactions in an aqueous media. Diselenide-containing linear and cross-linked polyurethanes were synthesized via polyaddition reactions using diselenide-containing diol in combination with pyridinium diol that enhances the hydrophilicity of the polymer chains. The obtained linear polyurethanes underwent photo-induced diselenide exchange reactions with small diselenide compounds and degraded to smaller fragments, confirming the dynamicity of the obtained hydrophilic polyurethanes. The prepared hydrogels displayed characteristic large swelling behavior based on the structural reorganization through diselenide exchange either under photo-irradiation at 365 nm or even in the dark at room temperature. The diselenide-containing hydrogels also showed crack-healing behavior under the same exchanging conditions, presenting the utility of diselenide linkages as simple and useful units to offer high dynamicity to hydrogels.
Collapse
Affiliation(s)
- Hao Xu
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Nao Suzuki
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
| | - Akira Takahashi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
| | - Tomoyuki Ohishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
| | - Raita Goseki
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Xu-Ming Xie
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Hideyuki Otsuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
28
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020; 59:13807-13813. [PMID: 32384209 DOI: 10.1002/anie.202001523] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/18/2020] [Indexed: 12/20/2022]
Abstract
Dissipative assembly has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single short-lived covalent bond. Herein, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycles are assembled efficiently as a consequence of both fuel-dependent and fuel-independent mechanisms; they undergo slower decomposition, building up as the fuel recycles the components, and are a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.
Collapse
Affiliation(s)
| | - Joshua L Atkinson
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
29
|
Hossain MM, Atkinson JL, Hartley CS. Dissipative Assembly of Macrocycles Comprising Multiple Transient Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Joshua L. Atkinson
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
30
|
Carbajo D, Pérez Y, Bujons J, Alfonso I. Live‐Cell‐Templated Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2020; 59:17202-17206. [DOI: 10.1002/anie.202004745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
31
|
Carbajo D, Pérez Y, Bujons J, Alfonso I. Live‐Cell‐Templated Dynamic Combinatorial Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry Institute of Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
32
|
Mao J, Hai Y, Ye H, You L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J Org Chem 2020; 85:5351-5361. [PMID: 32250630 DOI: 10.1021/acs.joc.0c00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adaptive chemistry allows transformation and selection within molecular networks, and adaptive systems composed of different types of dynamic covalent reactions (DCRs) are challenging. Herein, we demonstrate dual reactivity-based covalent networks encompassing the regulation of and switching between C-N- and C-S-based reversible covalent assemblies. The creation and exchange of C-N- or C-S-derived assemblies exhibiting diverse architectures, including linear structures, macrocycles, and cages, were achieved. The shift of reactivity then permitted the interconversion between C-N- and C-S-containing assemblies. Moreover, the adaption of intramolecular and intermolecular scaffolds was feasible via linker design. The latent hemiaminal chirality center offered a pathway for the induction of chirality within assemblies. Finally, switchable structural change and controlled extraction of ions were realized with Hg2+ as a guest for macrocycles. The remarkable complexity of networks described herein could open the door for the utility in sophisticated functional systems.
Collapse
Affiliation(s)
- Jialin Mao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Rieux C, Goffinont S, Coste F, Tber Z, Cros J, Roy V, Guérin M, Gaudon V, Bourg S, Biela A, Aucagne V, Agrofoglio L, Garnier N, Castaing B. Thiopurine Derivative-Induced Fpg/Nei DNA Glycosylase Inhibition: Structural, Dynamic and Functional Insights. Int J Mol Sci 2020; 21:ijms21062058. [PMID: 32192183 PMCID: PMC7139703 DOI: 10.3390/ijms21062058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Charlotte Rieux
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Goffinont
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Franck Coste
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Zahira Tber
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Julien Cros
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Roy
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Martine Guérin
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Virginie Gaudon
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Stéphane Bourg
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
| | - Artur Biela
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
| | - Luigi Agrofoglio
- Institut de Chimie Organique et Analytique, UMR7311 CNRS-Orleans University, Université d’Orléans, Pôle de Chimie, rue de Chartres, F-45100 Orléans, France; (Z.T.); (S.B.); (L.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Université d’Orléans, UFR Sciences et Techniques, rue de Chartres, 45100 Orléans, France
- Correspondence: (V.R.); (N.G.); (B.C.)
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071 Orléans, France; (C.R.); (S.G.); (F.C.); (J.C.); (M.G.); (V.G.); (A.B.); (V.A.)
- Correspondence: (V.R.); (N.G.); (B.C.)
| |
Collapse
|
34
|
Orenha RP, Cintra CH, Peixoto LB, da Silva ÉH, Caramori GF, Ortolan AO, Piotrowski MJ, Parreira RLT. The anionic recognition mechanism based on polyol and boronic acid receptors. NEW J CHEM 2020. [DOI: 10.1039/c9nj06200a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chloride, fluoride, dihydrogen phosphate, acetate, bromide, and hydrogen sulfate recognition from polyol and boronic acid receptors is elucidated.
Collapse
Affiliation(s)
- Renato Pereira Orenha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | - Claudia Haber Cintra
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas
- Universidade de Franca
- Franca
- Brazil
| | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Zou H, Hai Y, Ye H, You L. Dynamic Covalent Switches and Communicating Networks for Tunable Multicolor Luminescent Systems and Vapor-Responsive Materials. J Am Chem Soc 2019; 141:16344-16353. [PMID: 31547653 DOI: 10.1021/jacs.9b07175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular switches are an intensive area of research, and in particular, the control of multistate switching is challenging. Herein we introduce a general and versatile strategy of dynamic covalent switches and communicating networks, wherein distinct states of reversible covalent systems can induce addressable fluorescence switching. The regulation of intramolecular ring/chain equilibrium, intermolecular dynamic covalent reactions (DCRs) with amines, and both permitted the activation of optical switches. The variation in electron-withdrawing competition between the fluorophore and 2-formylbenzenesulfonyl unit afforded diverse signaling patterns. The combination of switches in situ further enabled the creation of communicating networks for multistate color switching, including white emission, through the delicate control of DCRs in complex mixtures. Finally, reversible and recyclable multiresponsive luminescent materials were achieved with molecular networks on the solid support, allowing visualization of different types of vapors and quantification of primary amine vapors with high sensitivity and wide detection range. The results reported herein should be appealing for future studies of dynamic assemblies, molecular sensing, intelligent materials, and biological labeling.
Collapse
Affiliation(s)
- Hanxun Zou
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Lei You
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
37
|
Martinez-Amezaga M, Orrillo AG, Furlan RLE. Engineering multilayer chemical networks. Chem Sci 2019; 10:8338-8347. [PMID: 31803411 PMCID: PMC6844274 DOI: 10.1039/c9sc02166c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022] Open
Abstract
Dynamic multilevel systems emerged in the last few years as new platforms to study thermodynamic systems. In this work, unprecedented fully communicated three-level systems are studied. First, different conditions were screened to selectively activate thiol/dithioacetal, thiol/thioester, and thiol/disulfide exchanges, individually or in pairs. Some of those conditions were applied, sequentially, to build multilayer dynamic systems wherein information, in the form of relative amounts of building blocks, can be directionally transmitted between different exchange pools. As far as we know, this is the first report of one synthetic dynamic chemical system where relationships between layers can be changed through network operations.
Collapse
Affiliation(s)
- Maitena Martinez-Amezaga
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - A Gastón Orrillo
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| | - Ricardo L E Furlan
- Farmacognosia , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario - CONICET , Suipacha 531 , Rosario , S2002SLRK , Argentina .
| |
Collapse
|
38
|
Yin Y, Yun M, Wu L, Duan H, Jiang X, Zhan T, Cui J, Liu L, Zhang K. A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019; 58:12705-12710. [PMID: 31297923 DOI: 10.1002/anie.201906761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Yong‐Fei Yin
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Meng‐Yan Yun
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Lin Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Hong‐Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Xia‐Min Jiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Tian‐Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Jiecheng Cui
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Li‐Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| | - Kang‐Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsCollege of Chemistry and Life ScienceZhejiang Normal University 688 Yingbin Road Jinhua 321004 P. R. China
| |
Collapse
|
39
|
A Visible‐Light‐Induced Dynamic Mechanical Bond as a Linkage for Dynamic Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Parida A, Choudhuri K, Mal P. Unsymmetrical Disulfides Synthesis via Sulfenium Ion. Chem Asian J 2019; 14:2579-2583. [PMID: 31136094 DOI: 10.1002/asia.201900620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Indexed: 12/15/2022]
Abstract
An umpolung approach for the synthesis of unsymmetrical disulfides via sulfenium ion is reported. In situ generated electrophilic sulfenium ion from electron-rich thiols reacted with second thiols to yield unsymmetrical disulfides. Using an iodine catalyst and 4-dimethylaminopyridine (DMAP)/water as promoter, the target syntheses were achieved in one pot under aerobic condition.
Collapse
Affiliation(s)
- Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Khokan Choudhuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
41
|
Konopka M, Cecot P, Ulrich S, Stefankiewicz AR. Tuning the Solubility of Self-Assembled Fluorescent Aromatic Cages Using Functionalized Amino Acid Building Blocks. Front Chem 2019; 7:503. [PMID: 31380348 PMCID: PMC6647868 DOI: 10.3389/fchem.2019.00503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/03/2023] Open
Abstract
We previously reported novel fluorescent aromatic cages that are self-produced using a set of orthogonal dynamic covalent reactions, operating simultaneously in one-pot, to assemble up to 10 components through 12 reactions into a single cage-type structure. We now introduce N-functionalized amino acids as new building blocks that enable tuning the solubility and analysis of the resulting cages. A convenient divergent synthetic approach was developed to tether different side chains on the N-terminal of a cysteine-derived building block. Our studies show that this chemical functionalization does not prevent the subsequent self-assembly and effective formation of desired cages. While the originally described cages required 94% DMSO, the new ones bearing hydrophobic side chains were found soluble in organic solvents (up to 75% CHCl3), and those grafted with hydrophilic side chains were soluble in water (up to 75% H2O). Fluorescence studies confirmed that despite cage functionalization the aggregation-induced emission properties of those architectures are retained. Thus, this work significantly expands the range of solvents in which these self-assembled cage compounds can be generated, which in turn should enable new applications, possibly as fluorescent sensors.
Collapse
Affiliation(s)
- Marcin Konopka
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Cecot
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, France
| | - Artur R. Stefankiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
42
|
Fan X, Zhang D, Jiang S, Wang H, Lin LT, Zheng B, Xu WH, Zhao Y, Hay BP, Chan YT, Yang XJ, Li X, Wu B. Construction and interconversion of anion-coordination-based ('aniono') grids and double helicates modulated by counter-cations. Chem Sci 2019; 10:6278-6284. [PMID: 31341580 PMCID: PMC6598520 DOI: 10.1039/c9sc02012h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023] Open
Abstract
‘Aniono’ double helicates and grids were constructed using PO43– anions and a bis–tris(urea) ligand and interconverted by changing the counter-cation.
Supramolecular assembly of well-defined discrete architectures has been of great interest due to the tunable properties of these structures in functional materials and bio-mimicking. While metal-coordination-driven assembly has been extensively studied, anion-coordination-driven assembly (ACDA) is just emerging for constructing complex supramolecular structures. Herein two A2nL2n (A = anion, L = ligand; n = 1 or 2) ‘aniono’-supramolecular assemblies, i.e. double helicates and the first anion grid, have been constructed based on the coordination between phosphate (PO43–) anion and a bis–tris(urea) ligand. Moreover, the aniono-grid and double helicate motifs can be readily interconverted under ambient conditions by simply changing the counter-cation. These results redefine the power and scope of ACDA, which may represent a new approach in the assembly of well-defined architectures in parallel with the metal coordination-driven assembly of metallo-supramolecules.
Collapse
Affiliation(s)
- Xiaoxia Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Shiyu Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Heng Wang
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA
| | - Lin-Ting Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Wen-Hua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Yanxia Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Benjamin P Hay
- Supramolecular Design Institute , Oak Ridge , TN 37830 , USA
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Xiao-Juan Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , FL 33620 , USA
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education , College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China . ;
| |
Collapse
|
43
|
Francesconi O, Roelens S. Biomimetic Carbohydrate‐Binding Agents (CBAs): Binding Affinities and Biological Activities. Chembiochem 2019; 20:1329-1346. [DOI: 10.1002/cbic.201800742] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Oscar Francesconi
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| | - Stefano Roelens
- Department of Chemistry and INSTMUniversity of Florence Polo Scientifico e Tecnologico 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
44
|
Roszak R, Bajczyk MD, Gajewska EP, Hołyst R, Grzybowski BA. Propagation of Oscillating Chemical Signals through Reaction Networks. Angew Chem Int Ed Engl 2019; 58:4520-4525. [PMID: 30397988 DOI: 10.1002/anie.201808821] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/20/2022]
Abstract
Akin to electronic systems that can tune to and process signals of select frequencies, systems/networks of chemical reactions also "propagate" time-varying concentration inputs in a frequency-dependent manner. Whereas signals of low frequencies are transmitted, higher frequency inputs are dampened and converted into steady-concentration outputs. Such behavior is observed in both idealized reaction chains as well as realistic signaling cascades, in the latter case explaining the experimentally observed responses of such cascades to input calcium oscillations. These and other results are supported by numerical simulations within the freely available Kinetix web application we developed to study chemical systems of arbitrary architectures, reaction kinetics, and boundary conditions.
Collapse
Affiliation(s)
- Rafał Roszak
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw, 02-224, Poland
| | - Michał D Bajczyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw, 02-224, Poland
| | - Ewa P Gajewska
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw, 02-224, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw, 02-224, Poland
| | - Bartosz A Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Ul. Kasprzaka 44/52, Warsaw, 02-224, Poland.,IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
| |
Collapse
|
45
|
Roszak R, Bajczyk MD, Gajewska EP, Hołyst R, Grzybowski BA. Propagation of Oscillating Chemical Signals through Reaction Networks. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rafał Roszak
- Institute of Organic Chemistry Polish Academy of Sciences Ul. Kasprzaka 44/52 Warsaw 02-224 Poland
| | - Michał D. Bajczyk
- Institute of Organic Chemistry Polish Academy of Sciences Ul. Kasprzaka 44/52 Warsaw 02-224 Poland
| | - Ewa P. Gajewska
- Institute of Organic Chemistry Polish Academy of Sciences Ul. Kasprzaka 44/52 Warsaw 02-224 Poland
| | - Robert Hołyst
- Institute of Physical Chemistry Polish Academy of Sciences Ul. Kasprzaka 44/52 Warsaw 02-224 Poland
| | - Bartosz A. Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Ul. Kasprzaka 44/52 Warsaw 02-224 Poland
- IBS Center for Soft and Living Matter and Department of Chemistry UNIST 50, UNIST-gil, Eonyang-eup, Ulju-gun Ulsan South Korea
| |
Collapse
|
46
|
Affiliation(s)
- Shinji Yamada
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
47
|
Orrillo AG, Escalante AM, Martinez-Amezaga M, Cabezudo I, Furlan RLE. Molecular Networks in Dynamic Multilevel Systems. Chemistry 2018; 25:1118-1127. [DOI: 10.1002/chem.201804143] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/17/2018] [Indexed: 11/07/2022]
Affiliation(s)
- A. Gastón Orrillo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Andrea M. Escalante
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Maitena Martinez-Amezaga
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| | - Ricardo L. E. Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario-CONICET; S2002LRK Rosario Argentina
| |
Collapse
|
48
|
Corredor M, Carbajo D, Domingo C, Pérez Y, Bujons J, Messeguer A, Alfonso I. Dynamic Covalent Identification of an Efficient Heparin Ligand. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miriam Corredor
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Cecilia Domingo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility, Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Angel Messeguer
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
49
|
Corredor M, Carbajo D, Domingo C, Pérez Y, Bujons J, Messeguer A, Alfonso I. Dynamic Covalent Identification of an Efficient Heparin Ligand. Angew Chem Int Ed Engl 2018; 57:11973-11977. [DOI: 10.1002/anie.201806770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Miriam Corredor
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Daniel Carbajo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Cecilia Domingo
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Yolanda Pérez
- NMR Facility, Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Jordi Bujons
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Angel Messeguer
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry; Institute of Advanced Chemistry of Catalonia; IQAC-CSIC; Jordi Girona 18-26 08034 Barcelona Spain
| |
Collapse
|
50
|
Kovaříček P, Cebecauer M, Neburková J, Bartoň J, Fridrichová M, Drogowska KA, Cigler P, Lehn JM, Kalbac M. Proton-Gradient-Driven Oriented Motion of Nanodiamonds Grafted to Graphene by Dynamic Covalent Bonds. ACS NANO 2018; 12:7141-7147. [PMID: 29889492 DOI: 10.1021/acsnano.8b03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manipulating nanoscopic objects by external stimuli is the cornerstone of nanoscience. Here, we report the implementation of dynamic covalent chemistry in the reversible binding and directional motion of fluorescent nanodiamond particles at a functionalized graphene surface via imine linkages. The dynamic connections allow for controlling the formation and rupture of these linkages by external stimuli. By introduction of pH gradients, the nanoparticles are driven to move along the gradient due to the different rates of the imine condensation and hydrolysis in the two environments. The multivalent nature of the particle-to-surface connection ensures that particles remain attached to the surface, whereas its dynamic character allows for exchange reaction, thus leading to displacement yet bound behavior in two-dimensional space. These results open a pathway for thermodynamically controlled manipulation of objects on the nanoscale.
Collapse
Affiliation(s)
- Petr Kovaříček
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Marek Cebecauer
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Jitka Neburková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
- First Faculty of Medicine , Charles University , Kateřinská 32 , 121 08 Prague , Czech Republic
| | - Jan Bartoň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
- Department of Inorganic Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2, Czech Republic
| | - Michaela Fridrichová
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Karolina A Drogowska
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo náměstí 2 , 166 10 Prague , Czech Republic
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires , Université de Strasbourg , 8 allée Gaspard Monge , 670 00 Strasbourg , France
| | - Martin Kalbac
- J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences , Dolejškova 2155/3 , 182 23 Prague , Czech Republic
| |
Collapse
|