1
|
Lu T, Lin W, Guo Y, Shao M, Bai Y, Tommaso DD, Wang X, Zhang X. Metal nanoparticles encapsulation within multi-shell spongy-core porous microspheres for efficient tandem catalysis. J Colloid Interface Sci 2025; 679:705-713. [PMID: 39388956 DOI: 10.1016/j.jcis.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
The "one-pot" cascade process involves multiple catalytic conversions followed by a single workup stage. This method has the capability to optimize catalytic efficiency by reducing chemical processes. The key to achieving cascade reactions lies in designing cascade catalysts with well-dispersed, stably immobilized, and accessible noble metal nanoparticles for multiple catalytic conversions. This work presents a strategy for creating long-lasting cascade catalysts by encapsulating Ru and Pd nanoparticles within multi-shell spongy-core porous microspheres (MS-SC-PMs). This cascade catalyst strategy enables the continuous hydrogenation of nitrobenzene to aniline and further to cyclohexylamine, demonstrating both high selectivity and conversion rates. Notably, this approach overcomes the typical challenges associated with noble metal nanoparticles, such as poor stability and recyclability, as it maintains its performance over ten consecutive cycles. Additionally, the MS-SC-PMs have the versatility to encapsulate various metal nanoparticles, providing catalytic versatility, scalability, and a promising avenue for designing long-lasting catalysts loaded with nanoparticles.
Collapse
Affiliation(s)
- Tao Lu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wuyang Lin
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yingchun Guo
- Huzhou Key Laboratory of Environmental Functional Materials and Pollution Control, Huzhou University, Huzhou 313000, China
| | - Mengliu Shao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuanyuan Bai
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Digital Environment Research Institute, Queen Mary University of London, Empire House, 67-75 New Road, London E1 1HH, UK.
| | - Xiaomei Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China.
| | - Xu Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, Hebei University of Technology, China.
| |
Collapse
|
2
|
Zhang L, Niu Y, Pu Y, Wang Y, Dong S, Liu ZW, Zhang B. Unravelling the Effect of Oxygen on the Sintering Mechanism of Pt/CeO 2 in the CO Oxidation Reaction. J Phys Chem Lett 2025; 16:24-30. [PMID: 39692070 DOI: 10.1021/acs.jpclett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Sintering significantly contributes to the deactivation of supported metal catalysts under reaction conditions, influenced by various factors, including temperature, atmosphere, and metal-support interactions. The sintering mechanism under the reaction conditions remains complex and ambiguous. This study delves into the sintering behavior of platinum on CeO2 under CO oxidation conditions, mainly employing transmission electron microscopy to elucidate the effects of different gas components on the sintering mechanism at elevated temperatures. An atmosphere rich in oxygen promotes the sintering of Pt via the Ostwald ripening mechanism, characterized by the growth of larger nanoparticles at the expense of smaller ones. Conversely, sintering proceeds through particle migration and coalescence in the absence of oxygen, leading to the aggregation of nanoparticles. The obtained Pt/CeO2 catalysts exhibit enhanced catalytic performance after treatment with argon and stoichiometric reaction gases, contrasting with the deactivation observed under oxygen-rich conditions, which is attributed to varied Pt valence states. These findings provide insights into understanding the sintering mechanisms and inform the design of heterogeneous catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoming Dong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
3
|
Zhang T, Xu Z, Xie Y, Dong S, Guo Z, Wang W, Chen Y, Qian X, Yu H, Bian Z. Carbon Defects as Highly Active Sites for Gold Detection and Recovery. Angew Chem Int Ed Engl 2025:e202412997. [PMID: 39749881 DOI: 10.1002/anie.202412997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as the final product. We report a highly hydrophilic carbon dot (CD) as a reductant (electron donor), in which the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity of ~1.7 mmol g-1. The reduction of gold follows a two-step dynamic model characterized by the formation of nano-gold nuclei (initial rapid electron transfer process) followed by an Ostwald ripening process (subsequent slow process). Finite element method (FEM) simulation shows that the reaction efficiency and confinement effect of AuCl4 - ions are positively correlated with defect density, indicating that the quantitative control of carbon defect density is the key to enhancing reduction activity. Combining density functional theory (DFT) with XPS and FTIR technology, we found that the electron is transferred from CD to Au(III) via hydrogen bonding. This nano carbon material can be exploited to recover gold from e-waste water directly, with the characteristics of reducing energy consumption and avoiding environmental pollution.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenmin Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ya Xie
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Shuyuan Dong
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenpeng Guo
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Wanting Wang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Yu
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Material, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
4
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Zhang Y, Du J, Shan Y, Wang F, Liu J, Wang M, Liu Z, Yan Y, Xu G, He G, Shi X, Lian Z, Yu Y, Shan W, He H. Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective. Chem Soc Rev 2024. [PMID: 39687940 DOI: 10.1039/d4cs00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols). Special attention will be given to the research advancements in catalysts, including three-way catalysts (TWCs), NOx selective catalytic reduction (SCR) catalysts, NOx storage-reduction (NSR) catalysts, diesel oxidation catalysts (DOCs), soot oxidation catalysts, ammonia slip catalysts (ASCs), methane oxidation catalysts (MOCs), N2O abatement catalysts (DeN2O), passive NOx adsorbers (PNAs), and cold start catalysts (CSCs). The main challenges for industrial applications of these catalysts, such as insufficient low-temperature activity, product selectivity, hydrothermal stability, and poisoning resistance, will be examined. In addition, the future development of synergistic control of vehicle pollutants and greenhouse gases will be discussed from a catalysis perspective.
Collapse
Affiliation(s)
- Yan Zhang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Jinpeng Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yulong Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingjing Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meng Wang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Zhi Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoyan Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhihua Lian
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wenpo Shan
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Hong He
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Gao Y, Guo C, Sui S, Wu X, Zhang Z, Remennik S, Safranchik D, Xu C. An Atomistic Investigation of the Inverse Coarsening Process by the Phase-Field Crystal Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25841-25848. [PMID: 39571074 DOI: 10.1021/acs.langmuir.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Coarsening is a very common phenomenon that has a crucial impact on the average grain size and properties of materials. However, our current understanding of coarsening is mainly based on the mean-field theories or ex situ observations, and the influence of transient process-related phenomena, such as grain rotation, inverse growth, etc., on coarsening was not considered. In this work, we simulated the coarsening process of supported nanograins by a phase-field crystal (PFC) model. Our simulations show that the inverse coarsening phenomenon might occur under the influence of the substrate, where small grains grow at the expense of the large ones. We found that the substrate-induced grain rotation has a significant effect on the appearance of inverse coarsening, and the average size growth velocity of inverse coarsening is far slower than that of normal coarsening. Furthermore, the influences of initial grain size, misorientations, pinning potential strength, and the lattice mismatch on the coarsening of biocrystal systems are discussed in detail.
Collapse
Affiliation(s)
- Ying Gao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Can Guo
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Shang Sui
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiangquan Wu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Zhongming Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Sergei Remennik
- Center for Nanoscience & Nanotechnology, Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Daniel Safranchik
- Israel Institute of Metals, Technion City, Haifa 3200003, Israel
- Institute for Machine Elements, Engineering Design and Manufacturing, Freiberg 09599, Germany
| | - Chunjie Xu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| |
Collapse
|
7
|
Ha MA, Alia SM, Norman AG, Miller EM. Fe-Doped Ni-Based Catalysts Surpass Ir-Baselines for Oxygen Evolution Due to Optimal Charge-Transfer Characteristics. ACS Catal 2024; 14:17347-17359. [PMID: 39664774 PMCID: PMC11629292 DOI: 10.1021/acscatal.4c04489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/03/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Ni-based catalysts with Co or Fe can potentially replace precious Ir-based catalysts for the rate-limiting oxygen evolution reaction (OER) in anion-exchange membrane (AEM) electrolyzers. In this study, density functional theory (DFT) calculations provide atomic- and electronic-level resolution on how the inclusion of Co or Fe can overcome the inactivity of NiO catalysts and even enable them to surpass IrO2 in activating key steps to the OER. Namely, NiO resists binding the key OH* intermediate and presents a high energetic barrier to forming the O*. Co- and Fe-substitution of Ni active sites allows for the stronger binding of OH* and preferentially activates O*/O2* formation, with Fe-substitution increasing the OER activity substantially as compared to Co-substitution. Whereas IrO2 requires an activation energy of 0.34-0.49 eV to form O2, this step is spontaneous on Fesub-NiO. Electrodeposition of polycrystalline electrodes and synthesized nanoparticles exploit the Co or Fe presence, with Fe particularly exhibiting greater activity: Tafel slopes indicate a significant change in the mechanism as compared to pure NiO, validating the theoretical predictions of OER activation at different steps. High-performing synthesized nanoparticles of 25% Fe-Ni exhibited a 4.6 times improvement over IrO2 and a 34% improvement over RuO2, showcasing that non-platinum group metal catalysts can outperform platinum group metals. High-resolution transmission electron microscopy further highlights the advantages of Fe-Ni oxide synthesized nanoparticles over commercial catalysts: small, randomly oriented nanoparticles expose greater edge sites than large nanoparticles typical of commercially available materials.
Collapse
Affiliation(s)
- Mai-Anh Ha
- Computational
Science Center, National Renewable Energy
Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Shaun M. Alia
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Andrew G. Norman
- Materials
Science Center, National Renewable Energy
Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Zhou C, Oh J, Stone ML, Richardson S, Chung PH, Osio-Norgaard J, Nhan BT, Kumar A, Chi M, Cargnello M. A General Approach for Metal Nanoparticle Encapsulation Within Porous Oxides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409710. [PMID: 39523738 DOI: 10.1002/adma.202409710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Encapsulation of metal nanoparticles within oxide materials has been shown as an effective strategy to improve activity, selectivity, and stability in several catalytic applications. Several approaches have been proposed to encapsulate nanoparticles, such as forming core-shell structures, growing ordered structures (zeolites or metal-organic frameworks) on nanoparticles, or directly depositing support materials on nanoparticles. Here, a general nanocasting method is demonstrated that can produce diverse encapsulated metal@oxide structures with different compositions (Pt, Pd, Rh) and multiple types of oxides (Al2O3, Al2O3-CeO2, ZrO2, ZnZrOx, In2O3, Mn2O3, TiO2) while controlling the size and dispersion of nanoparticles and the porous structure of the oxide. Metal@polymer structures are first prepared, and then the oxide precursor is infiltrated into such structures and the resulting material is calcined to form the metal@oxide structures. Most Pt@oxides catalysts show similar catalytic activity, demonstrating the availability of surface Pt sites in the encapsulated structures. However, the Pt@Mn2O3 sample showed much higher CO oxidation activity, while also being stable under aging conditions. This work demonstrated a robust nanocasting method to synthesize metal@oxide structures, which can be utilized in catalysis to finely tune metal-oxide interfaces.
Collapse
Affiliation(s)
- Chengshuang Zhou
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Jinwon Oh
- Department of Materials Science and Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Michael L Stone
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Sydney Richardson
- Department of Mechanical Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Pin-Hung Chung
- Department of Materials Science and Engineering, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Jorge Osio-Norgaard
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Bang T Nhan
- Department of Chemistry, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| | - Abinash Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, 443 via Ortega, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Jamma A, Vennapoosa CS, Annadata HV, Ghosh B, Govu R, Aggarwal H, Ahmadipour M, Abraham BM, Wang X, Pal U. Atomically Tailored Zn-ZIF-8 via RuNi Nanoalloy Replacement for Improved Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64681-64690. [PMID: 39535905 DOI: 10.1021/acsami.4c11732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this study, we developed a solid-state atomic replacement method for metal catalysts, enabling the exchange of metal atoms between single atoms and nanoalloys to create new combinations of nanoalloys and single atoms. We observed that partial metal interchange occurred between the RuNi nanoalloy and Zn from the zeolitic imidazolate framework-8 (ZIF-8) on a carbon-nitrogen framework (CNF) at a high temperature of 900 °C, leading to the creation of RuZn nanoparticles and single nickel atoms (Ni-CN). Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) analyses revealed that Ni is atomically dispersed within (RuZn)/Ni-CN. This finding confirms the migration of Zn and Ni during the pyrolysis of the RuNi@ZIF-8 precursor, providing definitive evidence of atomic replacement. Due to the synergistic influence of RuZn nanocrystals and Ni-CN, the resulting (RuZn)/Ni-CN multisite catalyst exhibited superior hydrogen evolution reaction (HER) ability compared to the conventional nanoalloy-based catalysts. Density functional theory calculations revealed that the integration of the (RuZn)n cluster on Ni surrounded with different N-coordinated carbon structures enhanced HER activity with the optimized (RuZn)n/NiN2C2 catalyst exhibiting a low ΔGH and improved electron charge redistribution, thereby promoting favorable hydrogen adsorption. Our findings provide valuable insights into the design and optimization of photocatalysts through atomic-level engineering, opening new avenues for efficient and sustainable energy conversion technologies.
Collapse
Affiliation(s)
- Aparna Jamma
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chandra Shobha Vennapoosa
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Harshini V Annadata
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Biplab Ghosh
- Beamline Development & Application Section, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Radha Govu
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Himanshu Aggarwal
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad 500078, India
| | - Mohsen Ahmadipour
- Institute of Power Engineering, Universiti Tenaga Nasional, Serdang 43400, Malaysia
| | - B Moses Abraham
- Departament de Ciencia de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Xuefeng Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Baek JW, Shin E, Lee J, Kim DH, Choi SJ, Kim ID. Present and Future of Emerging Catalysts in Gas Sensors for Breath Analysis. ACS Sens 2024. [PMID: 39587394 DOI: 10.1021/acssensors.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
To rationalize the noninvasive disease diagnosis by breath analysis, developing a high-performance gas sensor with exceptional sensitivity and selectivity is important to detect trace biomarkers in complex exhaled breath under harsh conditions. Among the various technological innovations, catalyst design and synthesis techniques are the foremost challenges, because gas sensing properties are predominantly determined by surface chemical reactions governed by catalytic activities. Conventional nanoparticle-based catalysts, with their simple structural features, have technical limitations in achieving the requirement for accurate breath analysis. Innovative strategies have been pursued to synthesize unconventional catalyst types with enhanced catalytic capabilities. This Perspective provides a comprehensive overview of recent advancements in catalyst technology for chemiresistive-type gas sensors used in breath analysis. It discusses various emerging catalysts, such as doping catalysts, single-atom catalysts (SACs), bimetallic alloy catalysts, high-entropy alloy (HEA) catalysts, exsolution catalysts, and catalytic filter membranes, along with their unique chemical activation mechanisms that enhance gas sensing properties for detecting target biomarkers in exhaled breath. The review also explores novel strategies for catalyst design, including computational prediction, advanced synthesis techniques, and the integration of sensor arrays with artificial intelligence (AI) to improve diagnostic reliability. By highlighting the crucial role of these emerging catalysts, this review provides valuable insights into the catalytic, synthetic, and analytical aspects that are essential for advancing breath analysis technology.
Collapse
Affiliation(s)
- Jong Won Baek
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science & Chemical Engineering, Hanyang University-ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Wang M, Zhang G, Wang H, Wang Z, Zhou Y, Nie X, Yin BH, Song C, Guo X. Understanding and Tuning the Effects of H 2O on Catalytic CO and CO 2 Hydrogenation. Chem Rev 2024; 124:12006-12085. [PMID: 39481078 DOI: 10.1021/acs.chemrev.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
Collapse
Affiliation(s)
- Mingrui Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hao Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiqun Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaowa Nie
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ben Hang Yin
- Paihau-Robinson Research Institute, the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 5010, New Zealand
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, the Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Chen X, Li C, Li B, Ying Y, Ye S, Zakharov DN, Hwang S, Fang J, Wang G, Hu YJ, Zhou G. Surface Self-Diffusion Induced Sintering of Nanoparticles. ACS NANO 2024; 18:31160-31173. [PMID: 39485068 DOI: 10.1021/acsnano.4c09056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Despite the critical role of sintering phenomena in constraining the long-term durability of nanosized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes.
Collapse
Affiliation(s)
- Xiaobo Chen
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yubin Ying
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Shuonan Ye
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sooyeon Hwang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Yong-Jie Hu
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Guangwen Zhou
- Materials Science and Engineering Program and Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
13
|
Weber ML, Jennings D, Fearn S, Cavallaro A, Prochazka M, Gutsche A, Heymann L, Guo J, Yasin L, Cooper SJ, Mayer J, Rheinheimer W, Dittmann R, Waser R, Guillon O, Lenser C, Skinner SJ, Aguadero A, Nemšák S, Gunkel F. Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces. Nat Commun 2024; 15:9724. [PMID: 39521766 PMCID: PMC11550403 DOI: 10.1038/s41467-024-54008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Exsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts' functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3-δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3-δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.
Collapse
Affiliation(s)
- Moritz L Weber
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany.
- Institute of Energy Materials and Devices, Materials Synthesis and Processing (IMD-2), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany.
- Next-Generation Fuel Cell Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Dylan Jennings
- Institute of Energy Materials and Devices, Materials Synthesis and Processing (IMD-2), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Materials Science and Technology (ER-C 2), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
- Universität Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), 70569, Stuttgart, Germany
| | - Sarah Fearn
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Andrea Cavallaro
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
- Department of Engineering and Applied Sciences, University of Bergamo, 24044, Dalmine, Italy
| | - Michal Prochazka
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- New Technologies Research Centre, University of West Bohemia, 301 00, Pilsen, Czech Republic
| | - Alexander Gutsche
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
| | - Lisa Heymann
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
| | - Jia Guo
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Liam Yasin
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
- Dyson School of Design Engineering, Imperial College London, London, SW7 2DB, United Kingdom
| | - Samuel J Cooper
- Dyson School of Design Engineering, Imperial College London, London, SW7 2DB, United Kingdom
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Materials Science and Technology (ER-C 2), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
- Central Facility for Electron Microscopy (GFE), RWTH Aachen University, 52064, Aachen, Germany
| | - Wolfgang Rheinheimer
- Institute of Energy Materials and Devices, Materials Synthesis and Processing (IMD-2), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Universität Stuttgart, Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), 70569, Stuttgart, Germany
| | - Regina Dittmann
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
| | - Rainer Waser
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany
- Institute for Electronic Materials (IWE 2), RWTH Aachen University, 52074, Aachen, Germany
| | - Olivier Guillon
- Institute of Energy Materials and Devices, Materials Synthesis and Processing (IMD-2), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
- Institute of Mineral Engineering (GHI), RWTH Aachen University, 52062, Aachen, Germany
- Juelich-Aachen Research Alliance (JARA-Energy), 52425, Juelich, Germany
| | - Christian Lenser
- Institute of Energy Materials and Devices, Materials Synthesis and Processing (IMD-2), Forschungszentrum Juelich GmbH, 52425, Jülich, Germany
| | - Stephen J Skinner
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Ainara Aguadero
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049, Madrid, Spain
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Physics and Astronomy, University of California, Davis, California, CA, 95616, USA.
| | - Felix Gunkel
- Peter Gruenberg Institute for Electronic Materials (PGI-7) and Juelich-Aachen Research Alliance (JARA-FIT), Forschungszentrum Juelich GmbH, 52425, Juelich, Germany.
| |
Collapse
|
14
|
Wang Y, Pei C, Wang X, Sun G, Zhao ZJ, Gong J. The role of pentacoordinate Al 3+ sites of Pt/Al 2O 3 catalysts in propane dehydrogenation. FUNDAMENTAL RESEARCH 2024; 4:1480-1487. [PMID: 39734525 PMCID: PMC11670724 DOI: 10.1016/j.fmre.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Pentacoordinate Al3+ (Al3+ penta) sites on alumina (Al2O3) could anchor and stabilize the active site over the catalyst surface. The paper describes the specific effect of Al3+ penta sites on the structure and the catalytic performance of Al2O3 supported Pt catalysts by modulating the quantity of Al3+ penta sites. The Al3+ penta site content of Al2O3 exhibits a volcano-type profile as a function of calcination temperature due to the structural rearrangement. The loading of Pt and subsequent calcination can consume a significant portion of Al3+ penta sites over the Al2O3 support. We further find that, when the calcination temperature of the impregnated Al2O3 is higher than the calcination temperature of Al2O3 precursor, the structural rearrangement of Al3+ penta sites could make Pt partially buried in Al2O3. Consequently, this partially buried structure leads to relatively low conversion but high stability for propane dehydrogenation. This work further elucidates the stabilization mechanism of the Al3+ penta site over Al2O3 support.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianhui Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
15
|
Ahmadi M, Bauer M, Berg J, Seiffert S. Nonuniversal Dynamics of Hyperbranched Metallo-Supramolecular Polymer Networks by the Spontaneous Formation of Nanoparticles. ACS NANO 2024; 18:29282-29293. [PMID: 39397715 DOI: 10.1021/acsnano.4c11841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Various transient and permanent bonds are commonly combined in increasingly complex hierarchical structures to achieve biomimetic functions, along with high mechanical properties. However, there is a traditional trade-off between mechanical strength and biological functions like self-healing. To fill this gap, we develop a metallo-supramolecular polymer hydrogel based on the hyperbranched poly(ethylene imine) (PEI) backbone and phenanthroline ligands, which have unexpectedly high plateau modulus at low concentrations. Rheological measurements demonstrate nonuniversal metal-ion-specific dynamics, with significantly larger plateau moduli, longer relaxation times, and stronger temperature dependencies, compared to equivalent networks based on model-type telechelic precursors, which cannot be explained by the theory of linear viscoelasticity. TEM images reveal the in situ mineralization of metal ions, which nucleate by the ligand complexation and grow thanks to the spontaneous reducing effect of the PEI backbone. Evidently, the complex lifetime works against Ostwald ripening, resulting in the formation of thermodynamically stable smaller particles. This trend is followed by time-dependent network buildup measurements and is confirmed by a kinetic model for particle formation and aggregation. The spontaneous formation of particles with complex lifetime-dependent sizes can explain the nonuniversal dynamics through the interaction of polymer segments and particles at the nanoscale. This work describes how the polymer backbone can affect the strength and stability of supramolecular bonds, promising for combining high mechanical properties and self-healing comparable to natural tissues.
Collapse
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Melanie Bauer
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Johannes Berg
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, Mainz D-55128, Germany
| |
Collapse
|
16
|
Zamudio-García J, Chiabrera F, Morin-Martínez A, Castelli IE, Losilla ER, Marrero-López D, Esposito V. Hierarchical exsolution in vertically aligned heterostructures. Nat Commun 2024; 15:8961. [PMID: 39420207 PMCID: PMC11487182 DOI: 10.1038/s41467-024-53252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Metal nanoparticle exsolution from metal oxide hosts has recently garnered great attention to improve the performance of energy conversion and storage devices. In this study, the nickel exsolution mechanisms in a vertically aligned nanostructure (VAN) thin film of heteroepitaxial (Sr0.9Pr0.1)0.9Ti0.9Ni0.1O3-δ-Ce0.9Gd0.1O1.95 with a columnar architecture was investigated for the first time. Experimental results and Density Functional Theory (DFT) calculations reveal that the multiple vertical interphases in a VAN with a hierarchical arrangement provide faster and more selective Ni diffusion pathways to the surface than traditional bulk diffusion in epitaxial films. Kinetic studies conducted at different temperatures and times indicate that the nucleation process of the exsolved metal nanoparticles primarily takes place at the surface through the phase boundaries of the columns. The vertical strain is crucial in preserving the film's microstructure, yielding a robust heteroepitaxial architecture after reduction. This innovative heteromaterial opens up new possibilities for designing efficient devices through advanced structural engineering to achieve controlled nanoparticle formation.
Collapse
Affiliation(s)
- Javier Zamudio-García
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Málaga, Spain.
| | - Francesco Chiabrera
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Armando Morin-Martínez
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Ivano E Castelli
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark
| | - Enrique R Losilla
- Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Málaga, Spain
| | | | - Vincenzo Esposito
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
17
|
Yu Z, Wang Y, Fu K, Wang J, Zhu L, Xu H, Cheng D. Real-Time Simulation of the Reaction Kinetics of Supported Metal Nanoparticles. NANO LETTERS 2024. [PMID: 39373290 DOI: 10.1021/acs.nanolett.4c03478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
A common issue with supported metal catalysts is the sintering of metal nanoparticles, resulting in catalyst deactivation. In this study, we propose a theoretical framework for realizing a real-time simulation of the reactivity of supported metal nanoparticles during the sintering process, combining density functional theory calculations, microkinetic modeling, Wulff-Kaichew construction, and sintering kinetic simulations. To validate our approach, we demonstrate its feasibility on α-Al2O3(0001)-supported Ag nanoparticles, where the simulated sintering behavior and ethylene epoxidation reaction rate as a function of time show qualitative agreement with experimental observation. Our proposed theoretical approach can be employed to screen out the promising microstructure feature of α-Al2O3 for stable supported Ag NPs, including the surface orientation and promoter species modified on it. The outlined approach of this work may be applied to a range of different thermocatalytic reactions other than ethylene epoxidation and provide guidance for the development of supported metal catalysts with long-term stability.
Collapse
Affiliation(s)
- Zuran Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kun Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiayi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haoxiang Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daojian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
18
|
King J, Lin Z, Zanca F, Luo H, Zhang L, Cullen P, Danaie M, Hirscher M, Meloni S, Elena AM, Szilágyi PÁ. Controlling nanocluster growth through nanoconfinement: the effect of the number and nature of metal-organic framework functionalities. Phys Chem Chem Phys 2024; 26:25021-25028. [PMID: 39301657 DOI: 10.1039/d4cp02422b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Controlled nanocluster growth via nanoconfinement is an attractive approach as it allows for geometry control and potential surface-chemistry modification simultaneously. However, it is still not a straight-forward method and much of its success depends on the nature and possibly concentration of functionalities on the cavity walls that surround the clusters. To independently probe the effect of the nature and number of functional groups on the controlled Pd nanocluster growth within the pores of the metal-organic frameworks, Pd-laden UiO-66 analogues with mono- and bi-functionalised linkers of amino and methyl groups were successfully prepared and studied in a combined experimental-computational approach. The nature of the functional groups determines the strength of host-guest interactions, while the number of functional groups affects the extent of Pd loading. The interplay of these two effects means that for a successful Pd embedding, mono-functionalised host matrices are more favourable. Interestingly, in the context of the present and previous research, we find that host frameworks with functional groups displaying higher Lewis basicity are more successful at controlled Pd NC growth via nanoconfinement in MOFs.
Collapse
Affiliation(s)
- James King
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Zhipeng Lin
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Federica Zanca
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Linda Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Patrick Cullen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Campus, E1 4NS, London, UK
| | - Mohsen Danaie
- electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Didcot, OX11 0DE, UK
| | - Michael Hirscher
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Hydrogen Storage Group, Max Planck Institute for Intelligent Systems, Heisenbergstrasse. 3, Stuttgart 70569, Germany
| | - Simone Meloni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via Luigi Borsari 46, Ferrara 44121, Italy
| | - Alin M Elena
- Scientific Computing Department, Science and Technologies Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, WA4 4AD, UK
| | - Petra Á Szilágyi
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway.
| |
Collapse
|
19
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Kim W, Kim K, Kim J, Lee Z. In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy. Appl Microsc 2024; 54:7. [PMID: 39284998 PMCID: PMC11405595 DOI: 10.1186/s42649-024-00100-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.
Collapse
Affiliation(s)
- Wonjun Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kangsik Kim
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jaejin Kim
- Shell International Exploration & Production, Inc, Shell Technology Center Houston, 3333 Hwy 6 S, Houston, TX, 77082-3101, USA
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
21
|
Fu W, Yu Y, Yin K, Li Z, Tang M, Tian J, Wei G, Zhou S, Sun Y, Dai Y. Engineering Asymmetric Strain within C-Shaped CeO 2 Nanofibers for Stabilizing Sub-3 nm Pt Clusters against Sintering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47513-47523. [PMID: 39136725 DOI: 10.1021/acsami.4c08126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizing sub-3 nm Pt clusters. Through precisely manipulating the asymmetry of obtained nanofibers, uneven strain was induced within C-shaped CeO2 nanofibers with tensile strain at the outer side and compressive strain at the inner side. As a result, the enriched oxygen vacancies significantly improved adhesion of Pt to CeO2, thereby boosting the sinter-resistance of ultraclose sub-3 nm Pt clusters. Notably, no aggregation was observed even after exposure to humid air at 750 °C for 12 h, which is far beyond their Tammann temperature (sintering onset temperature, below 250 °C). In situ HAADF-STEM observation revealed a unique sintering mechanism, wherein Pt clusters initially migrate toward the grain boundaries with concentrated stain and undergo slight coalescence, followed by subsequent Ostwald ripening at higher temperatures. Moreover, the sinter-resistant Pt/C-shaped CeO2 effectively catalyzed soot combustion (over 700 °C) in a durable manner. This work provides a new insight for developing sinter-resistant catalysts from the perspective of strain engineering within nano-oxides.
Collapse
Affiliation(s)
- Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 211189, P. R. China
| | - Zhihui Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jilan Tian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Guanzhao Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shiming Zhou
- Hefei National Laboratory for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
22
|
Zhang W, Zhao H, Song H, Chou L. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Chem Asian J 2024; 19:e202400503. [PMID: 38842469 DOI: 10.1002/asia.202400503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dry reforming of methane (DRM), the catalytic conversion of CH4 and CO2 into syngas (H2+CO), is an important process closely correlated to the environment and chemical industry. NiAl-based catalysts have been reported to exhibit excellent activity, low cost, and environmental friendliness. At the same time, the rapid deactivation caused by carbon deposition, Ni sintering, and phase transformation exerts great challenges for its large-scale applications. This review summarizes the recent advances in NiAl-based catalysts for DRM, particularly focusing on the strategies to construct efficient and stable NiAl-based catalysts. Firstly, the thermodynamics and elementary steps of DRM, including the activation of reactants and coke formation and elimination, are summarized. The roles of Al2O3 and its mixed oxides as the support, and the influences of the promoters employed in NiAl-based catalysts over the DRM performance, are then illustrated. Finally, the design of anti-coking and anti-sintering NiAl-based catalysts for DRM is suggested as feasible and promising by tailoring the structure and states of Ni and the modification of Al-based supports including small Ni size, high Ni dispersion, proper basicity, strong metal-support interaction (SMSI), active oxygen species as well as high phase stability.
Collapse
Affiliation(s)
- Wenzheng Zhang
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
- Wenzheng Zhang, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahua Zhao
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Huanling Song
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Lingjun Chou
- Wenzheng Zhang, Huahua Zhao, Huanling Song, Lingjun Chou, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| |
Collapse
|
23
|
Qi XC, Lang F, Li C, Liu MW, Wang YF, Pang J. Synergistic Effects of MOFs and Noble Metals in Photocatalytic Reactions: Mechanisms and Applications. Chempluschem 2024; 89:e202400158. [PMID: 38733075 DOI: 10.1002/cplu.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Photocatalytic technology can efficiently convert solar energy to chemical energy and this process is considered as one of the green and sustainable technology for practical implementation. In recent years, metal-organic frameworks (MOFs) have attracted widespread attention due to their unique advantages and have been widely applied in the field of photocatalysis. Among them, noble metals have contributed significant advances to the field as effective catalysts in photocatalytic reactions. Importantly, noble metals can also form a synergistic catalytic effect with MOFs to further improve the efficiency of photocatalytic reactions. However, how to precisely control the synergistic effect between MOFs and noble metals to improve the photocatalytic performance of materials still needs to be further studied. In this review, the synergistic effects of MOFs and noble metal catalysts in photocatalytic reactions are firstly summarized in terms of noble metal nanoparticles, noble metal monoatoms, noble metal compounds, and noble metal complexes, and focus on the mechanisms and advantages of these synergistic effects, so as to provide useful guidance for the further research and application of MOFs and contribute to the development of the field of photocatalysis.
Collapse
Affiliation(s)
- Xiao-Chen Qi
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Feifan Lang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Cha Li
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Ming-Wu Liu
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| | - Yu-Fen Wang
- Energy & Materials Engineering Center, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300350
| |
Collapse
|
24
|
Liccardo G, Cendejas MC, Mandal SC, Stone ML, Porter S, Nhan BT, Kumar A, Smith J, Plessow PN, Cegelski L, Osio-Norgaard J, Abild-Pedersen F, Chi M, Datye AK, Bent SF, Cargnello M. Unveiling the Stability of Encapsulated Pt Catalysts Using Nanocrystals and Atomic Layer Deposition. J Am Chem Soc 2024; 146:23909-23922. [PMID: 39137357 DOI: 10.1021/jacs.4c06423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Platinum exhibits desirable catalytic properties, but it is scarce and expensive. Optimizing its use in key applications such as emission control catalysis is important to reduce our reliance on such a rare element. Supported Pt nanoparticles (NPs) used in emission control systems deactivate over time because of particle growth in sintering processes. In this work, we shed light on the stability against sintering of Pt NPs supported on and encapsulated in Al2O3 using a combination of nanocrystal catalysts and atomic layer deposition (ALD) techniques. We find that small amounts of alumina overlayers created by ALD on preformed Pt NPs can stabilize supported Pt catalysts, significantly reducing deactivation caused by sintering, as previously observed by others. Combining theoretical and experimental insights, we correlate this behavior to the decreased propensity of oxidized Pt species to undergo Ostwald ripening phenomena because of the physical barrier imposed by the alumina overlayers. Furthermore, we find that highly stable catalysts can present an abundance of under-coordinated Pt sites after restructuring of both Pt particles and alumina overlayers at a high temperature (800 °C) in C3H6 oxidation conditions. The enhanced stability significantly improves the Pt utilization efficiency after accelerated aging treatments, with encapsulated Pt catalysts reaching reaction rates more than two times greater than those of a control supported Pt catalyst.
Collapse
Affiliation(s)
- Gennaro Liccardo
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Melissa C Cendejas
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shyama C Mandal
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael L Stone
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Stephen Porter
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bang T Nhan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Abinash Kumar
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jacob Smith
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Philipp N Plessow
- Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jorge Osio-Norgaard
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
| | - Frank Abild-Pedersen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Miaofang Chi
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Abhaya K Datye
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stacey F Bent
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
- Department of Energy Sciences Engineering, Stanford University, Stanford, California 94305, United States
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
25
|
Huang J, Zhang Y, Chen J, Zhang Z, Zhang C, Huang C, Fei L. Surface topology of MXene flakes induces the selection of the sintering mechanism for supported Pt nanoparticles. Chem Sci 2024:d4sc03284e. [PMID: 39170721 PMCID: PMC11333939 DOI: 10.1039/d4sc03284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
Sintering of metal nanocatalysts leading to particle growth and subsequent performance deactivation is a primary issue that hinders their practical applications. While metal-support interaction (MSI) is considered as the critical factor which influences the sintering behavior, the underlying microscopic mechanism and kinetics remain incompletely understood. Here, by using in situ scanning transmission electron microscopy (STEM) and theoretical analysis, we reveal the selection rule of the sintering mechanism for Pt nanoparticles on a two-dimensional (2D) MXene (Ti3C2T x ) support, which relies on the surface topology of MXene flakes. It is demonstrated that the sintering of Pt nanoparticles proceeds via Ostwald ripening (OR) in the surface defect (such as steps and pore edges) regions of MXene flakes due to strong MSI on the Pt/MXene interface; conversely, weak MSI between Pt nanoparticles and the planar surface of MXene leads to prevalent particle migration and coalescence (PMC) for sintering. Furthermore, our quantitative analysis shows a significant divergence in sintering rates for PMC and OR processes. These microscopic observations suggest a clear "sintering mechanism-MSI" relationship for Pt/MXene nanocatalysts and may shed light on the design of novel nanocatalysts.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Yucheng Zhang
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Jiaqi Chen
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| | - Zhouyang Zhang
- School of Materials and New Energy, Ningxia University Yinchuan 750021 China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Linfeng Fei
- School of Physics and Materials Science, Nanchang University Nanchang 330031 China
| |
Collapse
|
26
|
Lee S, Gadelrab K, Cheng L, Braaten JP, Wu H, Ross FM. Simultaneous 2D Projection and 3D Topographic Imaging of Gas-Dependent Dynamics of Catalytic Nanoparticles. ACS NANO 2024. [PMID: 39101356 DOI: 10.1021/acsnano.4c04903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Catalyst deactivation through pathways such as sintering of nanoparticles and degradation of the support is a critical factor when designing high-performance catalysts. Here, structural changes of supported nanoparticle catalysts are investigated in controlled gas environments (O2, H2O, and H2) at different temperatures by imaging simultaneously the nanoparticle structures in 2D projection and the 3D surface-sensitive topography. Platinum nanoparticles on carbon support as a model system are imaged in an environmental transmission electron microscope (ETEM), with concurrent acquisition of high-angle annular dark field scanning TEM (HAADF-STEM) and secondary electron (SE) images. Particle migration and coalescence occurs and shows gas-dependent kinetics, with nanoparticles moving across and through the support during and after coalescence. The temperature required for motion is lower in O2 than in H2O and H2, explained through the nature of the gas/nanoparticle interactions. In O2 and H2, the carbon support degrades by trench formation along migration pathways, and the particles move continuously, indicating a chemical reaction between gas and support. In H2O gas, motion is more discontinuous and oriented particle attachment occurs, as expected from theoretical predictions. These results suggest that multimodal imaging in ETEM that combines HAADF-STEM and SE data provides comprehensive information regarding catalyst dynamics and degradation mechanisms.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Karim Gadelrab
- Robert Bosch LLC, Watertown, Massachusetts 02472, United States
| | - Lei Cheng
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Jonathan P Braaten
- Bosch Research Center and Technology Center North America, Sunnyvale, California 94085, United States
| | - Hanglong Wu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Chen Z, Chen Y, Shi L, Li X, Xu G, Zeng X, Zheng X, Qi Z, Zhang K, Li J, Zhang S, Zhao Z, Zhang Y. Directional Construction of the Highly Stable Active-Site Ensembles at Sub-2 nm to Enhance Catalytic Activity and Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405733. [PMID: 39003615 DOI: 10.1002/adma.202405733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/04/2024] [Indexed: 07/15/2024]
Abstract
Precise control over the size, species, and breakthrough of the activity-selectivity trade-off are great challenges for sub-nano non-noble metal catalysts. Here, for the first time, a "multiheteroatom induced SMSI + in situ P activation" strategy that enables high stability and effective construction of sub-2 nm metal sites for optimizing selective hydrogenation performance is developed. It is synthesized the smallest metal phosphide clusters (<2 nm) including from unary to ternary non-noble metal systems, accompanied by unprecedented thermal stability. In the proof-of-concept demonstration, further modulation of size and species results in the creation of a sub-2 nm site platform, directionally achieving single atom (Ni1), Ni1+metal cluster (Ni1+Nin), or novel Ni1+metal phosphide cluster synergistic sites (Ni1+Ni2Pn), respectively. Based on thorough structure and mechanism investigation, it is found the Ni1+Ni2Pn site is motivated to achieve electronic structure self-optimizing through synergistic SMSI and site coupling effect. Therefore, it speeds up the substrate adsorption-desorption kinetics in semihydrogenation of alkyne and achieves superior catalytic activity that is 56 times higher than the Ni1 site under mild conditions. Compared to traditional active sites, this may represent the highly effective integration of atom utilization, thermal stability, and favorable site requirements for chemisorption properties and reactivities of substrates.
Collapse
Affiliation(s)
- Zemin Chen
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Lei Shi
- The Instruments Center for Physical Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guangyue Xu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Zeng
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Kaihang Zhang
- Brook Byers Institute of Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Shuo Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Zhijian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ying Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
28
|
Boyes ED, Gai PL. Visualizing Dynamic Single Atom Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314121. [PMID: 38757873 DOI: 10.1002/adma.202314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Many industrial chemical processes, including for producing fuels, foods, pharmaceuticals, chemicals and environmental controls, employ heterogeneous solid state catalysts at elevated temperatures in gas or liquid environments. Dynamic reactions at the atomic level play a critical role in catalyst stability and functionality. In situ visualization and analysis of atomic-scale processes in real time under controlled reaction environments can provide important insights into practical frameworks to improve catalytic processes and materials. This review focuses on innovative real time in situ electron microscopy (EM) methods, including recent progress in analytical in situ environmental (scanning) transmission EM (E(STEM), incorporating environmental scanning TEM (ESTEM) and environmental transmission EM (ETEM), with single atom resolution for visualizing and analysing dynamic single atom catalysis under controlled flowing gas reaction environments. ESTEM studies of single atom dynamics of reactions, and of sintering deactivation, contribute to a better-informed understanding of the yield and stability of catalyst operations. Advances in in situ technologies, including gas and liquid sample holders, nanotomography, and higher voltages, as well as challenges and opportunities in tracking reacting atoms, are highlighted. The findings show that the understanding and application of fundamental processes in catalysis can be improved, with valuable economic, environmental, and societal benefits.
Collapse
Affiliation(s)
- Edward D Boyes
- The York Nanocentre, Department of Physics, University of York, York, YO10 5DD, UK
| | - Pratibha L Gai
- The York Nanocentre, Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
29
|
Turner SJ, Visser NL, Dalebout R, Wezendonk DFL, de Jongh PE, de Jong KP. An In Situ TEM Study of the Influence of Water Vapor on Reduction of Nickel Phyllosilicate - Retarded Growth of Metal Nanoparticles at Higher Rates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401009. [PMID: 38552229 DOI: 10.1002/smll.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Indexed: 08/09/2024]
Abstract
Unavoidable water formation during the reduction of solid catalyst precursors has long been known to influence the nanoparticle size and dispersion in the active catalyst. This in situ transmission electron microscopy study provides insight into the influence of water vapor at the nanoscale on the nucleation and growth of the nanoparticles (2-16 nm) during the reduction of a nickel phyllosilicate catalyst precursor under H2/Ar gas at 700 °C. Water suppresses and delays nucleation, but counterintuitively increases the rate of particle growth. After full reduction is achieved, water vapor significantly enhances Ostwald ripening which in turn increases the likelihood of particle coalescence. This study proposes that water leads to formation of mobile nickel hydroxide species, leading to faster rates of particle growth during and after reduction.
Collapse
|
30
|
Carrillo AJ, López-García A, Delgado-Galicia B, Serra JM. New trends in nanoparticle exsolution. Chem Commun (Camb) 2024; 60:7987-8007. [PMID: 38899785 DOI: 10.1039/d4cc01983k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Many relevant high-temperature chemical processes require the use of oxide-supported metallic nanocatalysts. The harsh conditions under which these processes operate can trigger catalyst degradation via nanoparticle sintering, carbon depositions or poisoning, among others. This primarily affects metallic nanoparticles created via deposition methods with low metal-support interaction. In this respect, nanoparticle exsolution has emerged as a promising method for fabricating oxide-supported nanocatalysts with high interaction between the metal and the oxide support. This is due to the mechanism involved in nanoparticle exsolution, which is based on the migration of metal cations in the oxide support to its surface, where they nucleate and grow as metallic nanoparticles partially embedded in the oxide. This anchorage confers high robustness against sintering or coking-related problems. For these reasons, exsolution has attracted great interest in the last few years. Multiple works have been devoted to proving the high catalytic stability of exsolved metallic nanoparticles in several applications for high-temperature energy storage and conversion. Additionally, considerable attention has been directed towards understanding the underlying mechanism of metallic nanoparticle exsolution. However, this growing field has not been limited to these types of studies and recent discoveries at the forefront of materials design have opened new research avenues. In this work, we define six new trends in nanoparticle exsolution, taking a tour through the most important advances that have been recently reported.
Collapse
Affiliation(s)
- Alfonso J Carrillo
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Andrés López-García
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Blanca Delgado-Galicia
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Jose M Serra
- Instituto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
31
|
Baek JW, Han S, Lee SE, Ahn J, Park C, Nam JS, Kim YH, Shin E, Kim M, Jang JS, Kim J, Park HJ, Kim ID. Cobalt-Doped Ceria Sensitizer Effects on Metal Oxide Nanofibers: Heightened Surface Reactivity for High-Performing Chemiresistive Sensors. ACS NANO 2024; 18. [PMID: 39012788 PMCID: PMC11295259 DOI: 10.1021/acsnano.4c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Chemiresistive gas sensors based on semiconducting metal oxides typically rely on noble metal catalysts to enhance their sensitivity and selectivity. However, noble metal catalysts have several drawbacks for practical utilization, including their high cost, their propensity for spontaneous agglomeration, and poisoning effects with certain types of gases. As such, in the interest of commercializing the chemiresistive gas sensor technology, we propose an alternative design for a noble-metal-free sensing material through the case study of Co-doped ceria (Co-CeO2) catalysts embedded in a SnO2 matrix. In this investigation, we utilized electrospinning and subsequent calcination to prepare Co-CeO2 catalyst nanoparticles integrated with SnO2 nanofibers (NFs) with uniform particle distribution and particle size regulation down to the sub-2 nm regime. The resulting Co-CeO2@SnO2 NFs exhibited superior gas sensing characteristics toward isoprene (C5H8) gas, a significant biomarker for monitoring the onset of various diseases through breath diagnostics. In particular, we identified that the Co-CeO2 catalysts, owing to the transition metal doping, facilitated the spillover of chemisorbed oxygen species to the SnO2 sensing body. This resulting in the sensor having a 27.4-fold higher response toward 5 ppm of C5H8 (compared to pristine SnO2), exceptionally high selectivity, and a low detection limit of 100 ppb. The sensor also exhibited high stability for prolonged response-recovery cycles, attesting to the strong anchoring of Co-CeO2 catalysts in the SnO2 matrix. Based on our findings, the transition metal-doped metal oxide catalysts, such as Co-CeO2, demonstrate strong potential to completely replace noble metal catalysts, thereby advancing the development of the commercially viable chemiresistive gas sensors free from noble metals, capable of detecting target gases at sub-ppm levels.
Collapse
Affiliation(s)
- Jong Won Baek
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seunghee Han
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Eun Lee
- Department
of Materials Science and Engineering, Dankook
University, 119 Dandea-ro, Cheonan 31116, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Seok Nam
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yoon Hwa Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Euichul Shin
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minhyun Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Electronic
Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihan Kim
- Department
of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee Jung Park
- Department
of Materials Science and Engineering, Dankook
University, 119 Dandea-ro, Cheonan 31116, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
32
|
Guo M, Li X, Wang L, Xue Z, Xu J. Redispersing Ir Nanoparticles via a Carbon-Assisted Pyrolysis Process to Break the Activity-Stability Trade-Off of H 2 Sensors. ACS Sens 2024; 9:3327-3337. [PMID: 38863381 DOI: 10.1021/acssensors.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Oxide semiconductor-supported metal nanoparticles often suffer from a high-temperature gas sensing process, resulting in agglomeration and coalescence, which significantly decrease their surface activity and stability. Here, we develop an in situ pyrolysis strategy to redisperse commercial Ir particles (∼15.6 nm) into monodisperse Ir species (∼5.4 nm) on ZnO supports, exhibiting excellent sintering-resistant properties and H2 sensing. We find that large-size Ir nanoparticles can undergo an unexpected splitting decomposition process and spontaneously migrate along the encapsulated carbon layer surface during high-temperature pyrolysis of ZIF-8. This resultant monodisperse status can be integrally reserved, accompanying further oxidation sintering. The final Irred/ZnO-450-based sensor exhibits outstanding stability, H2 response (10-2000 ppm), fast response/recovery capability (7/9.7 s@100 ppm), and good moisture resistance. In situ Raman and ex situ XPS further experimentally verify that highly dispersive Ir species can promote the electron transfer process during the gas sensing process. Our strategy thus provides important insights into the design of agglomeration-resistant gas sensing materials for highly effective H2 detection.
Collapse
Affiliation(s)
- Mengmeng Guo
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaojie Li
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lingli Wang
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Zhenggang Xue
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Jiaqiang Xu
- NEST Laboratory, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
33
|
Zhou S, Zeng A, Lu C, Wang M, Zhou C, Li Q, Dong L, Wang A, Tan L. Bi-modified Cu-Based Catalysts for Acetylene Hydrogenation: Leveraging Dispersion and Hydrogen Spillover. Inorg Chem 2024; 63:11802-11811. [PMID: 38861686 DOI: 10.1021/acs.inorgchem.4c01492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Removing trace acetylene from the ethylene stream through selective hydrogenation is a crucial process in the production of polymer-grade ethylene. However, achieving high selectivity while maintaining high activity remains a significant challenge, especially for nonprecious metal catalysts. Herein, the trade-off between activity and selectivity is solved by synergizing enhanced dispersion and hydrogen spillover. Specifically, a bubbling method is proposed for preparing SiO2-supported copper and/or bismuth carbonate with high dispersion, which is then employed to synthesize highly dispersed Bi-modified CuxC-Cu catalyst. The catalyst displays outstanding catalytic performance for acetylene selective hydrogenation, achieving acetylene conversion of 100% and ethylene selectivity of 91.1% at 100 °C. The high activity originates from the enhanced dispersion, and the exceptional selectivity is due to the enhanced spillover capacity of active hydrogen from CuxC to Cu, which is promoted by the Bi addition. The results offer an avenue to design efficient catalysts for selective hydrogenation from nonprecious metals.
Collapse
Affiliation(s)
- Shihong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Mengxin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
34
|
Hashimoto N, Mori K, Yoshida H, Kamiuchi N, Kitaura R, Hirasawa R, Yamashita H. Thermal Stability of High-Entropy Alloy Nanoparticles Evaluated by In Situ TEM Observations. NANO LETTERS 2024; 24:7063-7068. [PMID: 38805318 DOI: 10.1021/acs.nanolett.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
High-entropy alloy (HEA) nanoparticles (NPs) have attracted attention in several fields because of their fascinating properties. The high mechanical strength, good thermal stability, and superior corrosion resistance of HEAs, which are derived from their high configurational entropy, are attractive features. Herein, we investigated the thermal stability of FeCoNiCuPd HEA NPs on reduced graphene oxide via in situ transmission electron microscopy observations at elevated temperatures. The HEA NPs maintained their structure, size, and composition at 700 °C, and their size gradually decreased accompanied by the preferential sublimation of Cu. On the contrary, the deterioration of the monometallic Pd NPs begins at temperatures greater than 700 °C according to Ostwald ripening, which involves the migration of adatoms or mobile molecular species. Theoretical calculations revealed that the detachment of adatoms from clusters (i.e., the first step of Ostwald ripening) was suppressed in the case of HEA NPs because of the high-configuration-entropy effect.
Collapse
Affiliation(s)
- Naoki Hashimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideto Yoshida
- SANKEN, Osaka University, 8-1Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Naoto Kamiuchi
- SANKEN, Osaka University, 8-1Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ryota Kitaura
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryota Hirasawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Wu W, Luo L, Li Z, Luo J, Zhao J, Wang M, Ma X, Hu S, Chen Y, Chen W, Wang Z, Ma C, Li H, Zeng J. The Importance of Sintering-Induced Grain Boundaries in Copper Catalysis to Improve Carbon-Carbon Coupling. Angew Chem Int Ed Engl 2024; 63:e202404983. [PMID: 38563622 DOI: 10.1002/anie.202404983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Syngas conversion serves as a gas-to-liquid technology to produce liquid fuels and valuable chemicals from coal, natural gas, or biomass. During syngas conversion, sintering is known to deactivate the catalyst owing to the loss of active surface area. However, the growth of nanoparticles might induce the formation of new active sites such as grain boundaries (GBs) which perform differently from the original nanoparticles. Herein, we reported a unique Cu-based catalyst, Cu nanoparticles with in situ generated GBs confined in zeolite Y (denoted as activated Cu/Y), which exhibited a high selectivity for C5+ hydrocarbons (65.3 C%) during syngas conversion. Such high selectivity for long-chain products distinguished activated Cu/Y from typical copper-based catalysts which mainly catalyze methanol synthesis. This unique performance was attributed to the GBs, while the zeolite assisted the stabilization through spatial confinement. Specifically, the GBs enabled H-assisted dissociation of CO and subsequent hydrogenation into CHx*. CHx* species not only serve as the initiator but also directly polymerize on Cu GBs, known as the carbide mechanism. Meanwhile, the synergy of GBs and their vicinal low-index facets led to the CO insertion where non-dissociative adsorbed CO on low-index facets migrated to GBs and inserted into the metal-alkyl bond for the chain growth.
Collapse
Affiliation(s)
- Wenlong Wu
- Deep Space Exploration Laboratory, Hefei, 230088, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- Deep Space Exploration Laboratory, Hefei, 230088, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhongling Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiahua Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Menglin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xinlong Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Sunpei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Weiye Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- Deep Space Exploration Laboratory, Hefei, 230088, P. R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
36
|
Feng B, Jiang W, Deng R, Lu J, Tsiakaras P, Yin S. Agglomeration inhibition engineering of nickel-cobalt alloys by a sacrificial template for efficient urea electrolysis. J Colloid Interface Sci 2024; 663:1019-1027. [PMID: 38452543 DOI: 10.1016/j.jcis.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Designing efficient non-precious metal-based catalysts for urea oxidation reaction (UOR) is essential for achieving energy-saving hydrogen production and the treatment of wastewater containing ammonia. In this study, sodium dodecyl sulfate (SDS) is employed as a sacrificial template to synthesize NiCo alloy nanowires (NiCo(SDS)/CC), and the instinct formation mechanism is investigated. It is found that SDS can inhibit the Ostwald ripening during hydrothermal and calcination processes, which could release abundant active cobalt, thereby modulating the electronic structure to promote the catalytic reaction. Moreover, SDS as a sacrificial template can induce the deposition of metal atoms and increase the specific surface area of the catalyst, providing abundant active sites to accelerate the reaction kinetics. As expected, the NiCo(SDS)/CC exhibits good activity for both UOR and hydrogen evolution reactions (HER) and it requires only 1.31 V and -86 mV to obtain a current density of ±10 mA cm-2, respectively. This work provides a new strategy for reducing the agglomeration of transition metals to design high-performance composite catalysts for urea oxidation.
Collapse
Affiliation(s)
- Boyao Feng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Rui Deng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jiali Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
37
|
Bi G, Ding R, Song J, Luo M, Zhang H, Liu M, Huang D, Mu Y. Discriminating the Active Ru Species Towards the Selective Generation of Singlet Oxygen from Peroxymonosulfate: Nanoparticles Surpass Single-Atom Catalysts. Angew Chem Int Ed Engl 2024; 63:e202401551. [PMID: 38403815 DOI: 10.1002/anie.202401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
Singlet oxygen (1O2) is an exceptional reactive oxygen species in advanced oxidation processes for environmental remediation. Despite single-atom catalysts (SACs) representing the promising candidate for the selective generation of 1O2 from peroxymonosulfate (PMS), the necessity to meticulously regulate the coordination environment of metal centers poses a significant challenge in the precisely-controlled synthetic method. Another dilemma to SACs is their high surface free energy, which results in an inherent tendency for the surface migration and aggregation of metal atoms. We here for the first time reported that Ru nanoparticles (NPs) synthesized by the facile pyrolysis method behave as robust Fenton-like catalysts, outperforming Ru SACs, towards efficient activation of PMS to produce 1O2 with nearly 100 % selectivity, remarkably improving the degradation efficiency for target pollutants. Density functional theory calculations have unveiled that the boosted PMS activation can be attributed to two aspects: (i) enhanced adsorption of PMS molecules onto Ru NPs, and (ii) decreased energy barriers by offering adjacent sites for promoted dimerization of *O intermediates into adsorbed 1O2. This study deepens the current understanding of PMS chemistry, and sheds light on the design and optimization of Fenton-like catalysts.
Collapse
Affiliation(s)
| | - Rongrong Ding
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junsheng Song
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Mengjie Luo
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haotian Zhang
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Meng Liu
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dahong Huang
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Activation, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
38
|
Yang L, Zhang C, Xiao J, Tu P, Wang Y, Wang Y, Tang S, Tang W. In Situ Reconstruction of Active Heterointerface for Hydrocarbon Combustion through Thermal Aging over Strontium-Modified Co 3O 4 Nanocatalyst with Good Sintering Resistance. Inorg Chem 2024; 63:6854-6870. [PMID: 38564370 DOI: 10.1021/acs.inorgchem.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The issue of catalyst deactivation due to sintering has gained significant attention alongside the rapid advancement of thermal catalysts. In this work, a simple Sr modification strategy was applied to achieve highly active Co3O4-based nanocatalyst for catalytic combustion of hydrocarbons with excellent antisintering feature. With the Co1Sr0.3 catalyst achieving a 90% propane conversion temperature (T90) of only 289 °C at a w8 hly space velocity of 60,000 mL·g-1·h-1, 24 °C lower than that of pure Co3O4. Moreover, the sintering resistance of Co3O4 catalysts was greatly improved by SrCO3 modification, and the T90 over Co1Sr0.3 just increased from 289 to 337 °C after thermal aging at 750 °C for 100 h, while that over pure Co3O4 catalysts increased from 313 to 412 °C. Through strontium modification, a certain amount of SrCO3 was introduced on the Co3O4 catalyst, which can serve as a physical barrier during the thermal aging process and further formation of Sr-Co perovskite nanocrystals, thus preventing the aggregation growth of Co3O4 nanocrystals and generating new active SrCoO2.52-Co3O4 heterointerface. In addition, propane durability tests of the Co1Sr0.3 catalysts showed strong water vapor resistance and stability, as well as excellent low-temperature activity and resistance to sintering in the oxidation reactions of other typical hydrocarbons such as toluene and propylene. This study provides a general strategy for achieving thermal catalysts by perfectly combining both highly low-temperature activity and sintering resistance, which will have great significance in practical applications for replacing precious materials with comparative features.
Collapse
Affiliation(s)
- Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yulong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ye Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
39
|
Purdy SC, Collinge G, Zhang J, Borate SN, Unocic KA, Wu Q, Wegener EC, Kropf AJ, Samad NR, Yuk SF, Zhang D, Habas S, Krause TR, Harris JW, Lee MS, Glezakou VA, Rousseau R, Sutton AD, Li Z. Dynamic Copper Site Redispersion through Atom Trapping in Zeolite Defects. J Am Chem Soc 2024; 146:8280-8297. [PMID: 38467029 DOI: 10.1021/jacs.3c13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Single-site copper-based catalysts have shown remarkable activity and selectivity for a variety of reactions. However, deactivation by sintering in high-temperature reducing environments remains a challenge and often limits their use due to irreversible structural changes to the catalyst. Here, we report zeolite-based copper catalysts in which copper oxide agglomerates formed after reaction can be repeatedly redispersed back to single sites using an oxidative treatment in air at 550 °C. Under different environments, single-site copper in Cu-Zn-Y/deAlBeta undergoes dynamic changes in structure and oxidation state that can be tuned to promote the formation of key active sites while minimizing deactivation through Cu sintering. For example, single-site Cu2+ reduces to Cu1+ after catalyst pretreatment (270 °C, 101 kPa H2) and further to Cu0 nanoparticles under reaction conditions (270-350 °C, 7 kPa EtOH, 94 kPa H2) or accelerated aging (400-450 °C, 101 kPa H2). After regeneration at 550 °C in air, agglomerated CuO was dispersed back to single sites in the presence and absence of Zn and Y, which was verified by imaging, in situ spectroscopy, and catalytic rate measurements. Ab initio molecular dynamics simulations show that solvation of CuO monomers by water facilitates their transport through the zeolite pore, and condensation of the CuO monomer with a fully protonated silanol nest entraps copper and reforms the single-site structure. The capability of silanol nests to trap and stabilize copper single sites under oxidizing conditions could extend the use of single-site copper catalysts to a wider variety of reactions and allows for a simple regeneration strategy for copper single-site catalysts.
Collapse
Affiliation(s)
- Stephen C Purdy
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Gregory Collinge
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Junyan Zhang
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Shivangi N Borate
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kinga A Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Qiyuan Wu
- Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Evan C Wegener
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - A Jeremy Kropf
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nohor River Samad
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Simuck F Yuk
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Difan Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Susan Habas
- Catalytic Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Theodore R Krause
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - James W Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mal-Soon Lee
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Roger Rousseau
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Andrew D Sutton
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zhenglong Li
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
40
|
Zhang Z, Filez M, Solano E, Poonkottil N, Li J, Minjauw MM, Poelman H, Rosenthal M, Brüner P, Galvita VV, Detavernier C, Dendooven J. Controlling Pt nanoparticle sintering by sub-monolayer MgO ALD thin films. NANOSCALE 2024; 16:5362-5373. [PMID: 38375669 DOI: 10.1039/d3nr05884k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Metal nanoparticle (NP) sintering is a major cause of catalyst deactivation, as NP growth reduces the surface area available for reaction. A promising route to halt sintering is to deposit a protective overcoat on the catalyst surface, followed by annealing to generate overlayer porosity for gas transport to the NPs. Yet, such a combined deposition-annealing approach lacks structural control over the cracked protection layer and the number of NP surface atoms available for reaction. Herein, we exploit the tailoring capabilities of atomic layer deposition (ALD) to deposit MgO overcoats on archetypal Pt NP catalysts with thicknesses ranging from sub-monolayers to nm-range thin films. Two different ALD processes are studied for the growth of MgO overcoats on Pt NPs anchored on a SiO2 support, using Mg(EtCp)2 and H2O, and Mg(TMHD)2 and O3, respectively. Spectroscopic ellipsometry and X-ray photoelectron spectroscopy measurements reveal significant growth on both SiO2 and Pt for the former process, while the latter exhibits a drastically lower growth per cycle with an initial chemical selectivity towards Pt. These differences in MgO growth characteristics have implications for the availability of uncoated Pt surface atoms at different stages of the ALD process, as probed by low energy ion scattering, and for the sintering behavior during O2 annealing, as monitored in situ with grazing incidence small angle X-ray scattering (in situ GISAXS). The Mg(TMHD)2-O3 ALD process enables exquisite coverage control allowing a balance between physically blocking the Pt surface to prevent sintering and keeping Pt surface atoms free for reaction. This approach avoids the need for post-annealing, hence also safeguarding the structural integrity of the as-deposited overcoat.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Matthias Filez
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
- Centre for Membrane Separations Adsorption Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Nithin Poonkottil
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Jin Li
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Matthias M Minjauw
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Hilde Poelman
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Martin Rosenthal
- DUBBLE beamline, ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Philipp Brüner
- IONTOF Technologies GmbH, Heisenbergstr. 15, 48149 Muenster, Germany
| | - Vladimir V Galvita
- Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Christophe Detavernier
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| | - Jolien Dendooven
- Conformal Coating of Nanomaterials (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Chen W, Wu J, Li Z, Chen Y, Ao H, Zheng X, Zhang Y, Rong J, Qiu F. High-Density CoSe 2 Sites Embedded within 2D Porous N-Doped Carbon for High-Performance Oxygen Reduction Reaction Electrocatalysis. Inorg Chem 2024; 63:4429-4437. [PMID: 38377564 DOI: 10.1021/acs.inorgchem.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Designing and fabricating efficient and stable nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts is a pressing and challenging task for the pursuit of sustainable new energy devices. Herein, porous P-CoSe2@NC electrocatalysts with high-density carbon-coated CoSe2 sites were successfully fabricated based on a pyridyl-porphyrinic metal-organic framework (Co-TPyP MOF) via a molten salt-assisted synthesis method. The hierarchical pore and N-doping carbon substrate of P-CoSe2@NC promotes mass transfer and electron-transfer efficiency, which is beneficial to maximize CoSe2 site utilization. Well-designed P-CoSe2@NC exhibits efficient ORR catalytic activity with a high half-wave potential of 0.863 V and excellent catalytic stability. Meanwhile, rechargeable aqueous primary/quasi-solid-state ZABs based on a P-CoSe2@NC air cathode show a high peak power density and exceptional operating stability, catering to the demands of practical applications. The qualified performance and structure stability of the electrocatalytic system may be mainly attributed to the protection of the CoSe2 nanoparticle by the coated carbon layer. Given the rational design of the structure and the component of the electrocatalyst with enhanced ORR activity, we believe that this work has provided a reliable pathway to the development of high-performance transition-metal chalcogenides for energy-storage and -conversion devices.
Collapse
Affiliation(s)
- Wangyi Chen
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jing Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Yu Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Huaisheng Ao
- School of Petrochemical Engineering, Changzhou University, Changzhou 213614, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213614, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
42
|
Niu Y, Kang K, Wang B, Wang L, Li C, Gao X, Zhao Z, Ji X. Ultrasensitive electrochemical sensing of catechol and hydroquinone via single-atom nanozyme anchored on MOF-derived porous carbon. Talanta 2024; 268:125349. [PMID: 37922817 DOI: 10.1016/j.talanta.2023.125349] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Single-atom nanozymes (SANs) can significantly enhance the sensitivity and selectivity of electrochemical sensing platforms due to the homogeneity of their active sites, full atom utilization, and high catalytic activity. In this study, we demonstrate the synthesis and characterization of a high-density Co-based single-atom nanozyme anchored on activated MOF-derived porous carbon (Co-AcNC-3) via a cascade anchoring strategy for ultrasensitive, simultaneous electrochemical detection of catechol (CC) and hydroquinone (HQ). The Co-AcNC-3 displays a large specific surface area, high defectivity, and abundant oxygen-containing groups, with Co atoms being atomically dispersed throughout the carbon support via Co-N bonds. The Co-AcNC-3 biosensor exhibits superior electrochemical signals for CC and HQ, with linear ranges of 4.0 μM-300.0 μM. and detection limits of 0.072 μM and 0.034 μM, respectively. Moreover, the Co-AcNC-3 biosensor has shown excellent performance in accurately detecting CC and HQ in actual samples. Our findings highlight the potential of the proposed Co-AcNC-3 biosensor as a reliable and promising sensing platform for determining CC and HQ.
Collapse
Affiliation(s)
- Yongzhe Niu
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kai Kang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Beibei Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Lanyue Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Congwei Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiang Gao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhenzhen Zhao
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xueping Ji
- School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, 050017, China.
| |
Collapse
|
43
|
Su R, Han Q, Xu C, Ouyang J, Meng F, Zhou Y, Zhang X, Gu Z, Zhang W, Huo F, Zhang S. Synthesis of Pd/Carbon Hollow Spheres by the Microwave Discharge Method for Catalytic Debenzylation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:576-583. [PMID: 38011694 DOI: 10.1021/acsami.3c13944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Pd/C catalysts have been widely applied in the debenzylation process due to their excellent ability of hydrogenolysis. However, they have been suffering from the problems of agglomeration and loss of active components, which lead to decreased and unstable activity. Thus, it is still a challenge to achieve Pd/C catalysts with high activity and stability. Herein, we propose a strategy for preparing Pd/C catalysts on porous carbon hollow spheres by a microwave discharge method. Due to the high-temperature property and reducibility of microwave discharge, Pd precursors can be rapidly reduced, resulting in well-dispersed Pd nanoparticles with a small size on the carbon carrier. Besides, the matched mesopores in the carbon hollow spheres can anchor Pd nanoparticles and effectively reduce the agglomeration and loss of Pd nanoparticles during the catalytic reaction. As a result, the as-prepared Pd/mesoporous carbon hollow spheres exhibit high and stable activity in the debenzylation reaction.
Collapse
Affiliation(s)
- Ruifa Su
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Qianqian Han
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Cheng Xu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Junchen Ouyang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Fanchen Meng
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yingyu Zhou
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhida Gu
- College of Science, Northeastern University, Shenyang 100819, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
44
|
Liu L, Lu J, Yang Y, Ruettinger W, Gao X, Wang M, Lou H, Wang Z, Liu Y, Tao X, Li L, Wang Y, Li H, Zhou H, Wang C, Luo Q, Wu H, Zhang K, Ma J, Cao X, Wang L, Xiao FS. Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science 2024; 383:94-101. [PMID: 38127809 DOI: 10.1126/science.adj1962] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Copper nanoparticle-based catalysts have been extensively applied in industry, but the nanoparticles tend to sinter into larger ones in the chemical atmospheres, which is detrimental to catalyst performance. In this work, we used dealuminated Beta zeolite to support copper nanoparticles (Cu/Beta-deAl) and showed that these particles become smaller in methanol vapor at 200°C, decreasing from ~5.6 to ~2.4 nanometers in diameter, which is opposite to the general sintering phenomenon. A reverse ripening process was discovered, whereby migratable copper sites activated by methanol were trapped by silanol nests and the copper species in the nests acted as new nucleation sites for the formation of small nanoparticles. This feature reversed the general sintering channel, resulting in robust catalysts for dimethyl oxalate hydrogenation performed with supported copper nanoparticles for use in industry.
Collapse
Affiliation(s)
- Lujie Liu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiaye Lu
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yahui Yang
- BASF Advanced Chemicals Co., Ltd., Shanghai 200137, China
| | | | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ming Wang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Lou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Yifeng Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Tao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lina Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjie Li
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hang Zhou
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengtao Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qingsong Luo
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huixin Wu
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Kaidi Zhang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiabi Ma
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoming Cao
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
45
|
Zhang L, Niu Y, Pu Y, Wang Y, Dong S, Liu Y, Zhang B, Liu ZW. In Situ Visualization and Mechanistic Understandings on Facet-Dependent Atomic Redispersion of Platinum on CeO 2. NANO LETTERS 2023; 23:11999-12005. [PMID: 38100577 DOI: 10.1021/acs.nanolett.3c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Redispersion is an effective method for regeneration of sintered metal-supported catalysts. However, the ambiguous mechanistic understanding hinders the delicate controlling of active metals at the atomic level. Herein, the redispersion mechanism of atomically dispersed Pt on CeO2 is revealed and manipulated by in situ techniques combining well-designed model catalysts. Pt nanoparticles (NPs) sintered on CeO2 nano-octahedra under reduction and oxidation conditions, while redispersed on CeO2 nanocubes above ∼500 °C in an oxidizing atmosphere. The dynamic shrinkage and disappearance of Pt NPs on CeO2 (100) facets was directly visualized by in situ TEM. The generated atomically dispersed Pt with the square-planar [PtO4]2+ structure on CeO2 (100) facets was also confirmed by combining Cs-corrected STEM and spectroscopy techniques. The redispersion and atomic control were ascribed to the high mobility of PtO2 at high temperatures and its strong binding with square-planar O4 sites over CeO2 (100). These understandings are important for the regulation of atomically dispersed platinum catalysts.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yiming Niu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yinghui Pu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yongzhao Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Shaoming Dong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhong-Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
46
|
Liu P, Klyushin A, Chandramathy Surendran P, Fedorov A, Xie W, Zeng C, Huang X. Carbon Encapsulation of Supported Metallic Iridium Nanoparticles: An in Situ Transmission Electron Microscopy Study and Implications for Hydrogen Evolution Reaction. ACS NANO 2023. [PMID: 38047675 DOI: 10.1021/acsnano.3c10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Carbon-supported metal nanoparticles (NPs) comprise an important class of heterogeneous catalysts. The interaction between the metal and carbon support influences the overall material properties, viz., the catalytic performance. Herein we use in situ and ex situ transmission electron microscopy (TEM) in combination with in situ X-ray spectroscopy (XPS) to investigate the encapsulation of metallic iridium NPs by carbon in an Ir/C catalyst. Real-time atomic-scale imaging visualizes particle reshaping and increased graphitization of the carbon support upon heating of Ir/C in vacuum. According to in situ TEM results, carbon overcoating grows over Ir NPs during the heating process, starting from ca. 550 °C. With the carbon overlayers formed, no sintering and migration of Ir NPs is observed at 800 °C, yet the initial Ir NPs sinter at or below 550 °C, i.e., at a temperature associated with an incomplete particle encapsulation. The carbon overlayer corrugates when the temperature is decreased from 800 to 200 °C and this process is associated with the particle surface reconstruction and is reversible, such that the corrugated carbon overlayer can be smoothed out by increasing the temperature back to 800 °C. The catalytic performance (activity and stability) of the encapsulated Ir NPs in the hydrogen evolution reaction (HER) is higher than that of the initial (nonencapsulated) state of Ir/C. Overall, this work highlights microscopic details of the currently understudied phenomenon of the carbon encapsulation of supported noble metal NPs and demonstrates additionally that the encapsulation by carbon is an effective measure for tuning the catalytic performance.
Collapse
Affiliation(s)
- Panpan Liu
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Alexander Klyushin
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
- Research Group Catalysis for Energy, Helmholtz-Zentrum Berlin for Materials and Energy (BESSY II), Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Wangjing Xie
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Chaobin Zeng
- Hitachi High-Tech Scientific Solutions (Beijing) Co., Ltd., 100015 Beijing, P. R. China
| | - Xing Huang
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
47
|
Gao J, Zhao M, Xu Z, Liu K, Zhong H, Tsang DCW. Mechanochemical synthesis of calcium-biochar for decontamination of arsenic-containing acid mine drainage. BIORESOURCE TECHNOLOGY 2023; 390:129892. [PMID: 37863337 DOI: 10.1016/j.biortech.2023.129892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Ca-biochar is an efficient material for As(III)-containing acid mine drainage (AMD) decontamination, while it is challenging to fabricate Ca-biochar with oyster shell waste as the Ca source due to its complex structure. Herein, a mechanochemical method was proposed to activate oyster shell waste and wood waste for Ca-biochar design and production, and its efficacy and relevant mechanisms for AMD detoxification were evaluated. The smaller size Ca-biochar produced by the medium-speed ball milling showed a higher As(III) removal (74.0 %) compared to high-speed ball milling (60.9 %), attributed to the formation of finer Ca(OH)2 while avoiding particle aggregation, which could release more Ca (89.0 mg/g) and alkalinity for the co-precipitation of As. Meanwhile, wood-based biochar substrate served as a platform for co-precipitation, and its surface functionality supported the oxidative immobilization of As. This study presents a promising route for upcycling food and wood waste to produce Ca-biochar for AMD decontamination.
Collapse
Affiliation(s)
- Jingyi Gao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - Mengdi Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kang Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hua Zhong
- EIT Institute for Advanced Study, Ningbo, Zhejiang, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
48
|
Yoon Y, Kim B, Cho M. Mineral transformation of poorly crystalline ferrihydrite to hematite and goethite facilitated by an acclimated microbial consortium in electrodes of soil microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166414. [PMID: 37604374 DOI: 10.1016/j.scitotenv.2023.166414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/13/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
In this study, we investigated the biogenic mineral transformation of poorly crystalline ferrihydrite in the presence of an acclimated microbial consortium after confirming successful soil microbial fuel cell optimization. The acclimated microbial consortia in the electrodes distinctly transformed amorphous ferrihydrite into crystallized hematite (cathode) and goethite (anode) under ambient culture conditions (30 °C). Serial analysis, including transmission/scanning electron microscopy and X-ray/selected area electron diffraction, confirmed that the biogenically synthesized nanostructures were iron nanospheres (~100 nm) for hematite and nanostars (~300 nm) for goethite. Fe(II) ion production with acetate oxidation via anaerobic respiration was much higher in the anode electrode sample (3.2- to 17.8-fold) than for the cathode electrode or soil samples. Regarding the culturable bacteria from the acclimated microbial consortium, the microbial isolates were more abundant and diverse at the anode. These results provide new insights into the biogeochemistry of iron minerals and microbial fuel cells in a soil environment, along with physiological characters of microbes (i.e., iron-reducing bacteria), for in situ applications in sustainable energy research.
Collapse
Affiliation(s)
- Younggun Yoon
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Bongkyu Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
49
|
Kong X, Garg S, Mortazavi M, Ma J, Waite TD. Heterogenous Iron Oxide Assemblages for Use in Catalytic Ozonation: Reactivity, Kinetics, and Reaction Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18636-18646. [PMID: 36648439 DOI: 10.1021/acs.est.2c07319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) has gained increasing attention as an effective process to remove refractory organic pollutants from industrial effluents. However, widespread application of HCO is still limited due to the typically low efficacy of catalysts used and matrix passivation effects. To this end, we prepared an Al2O3-supported Fe catalyst with high reactivity via a facile urea-based heterogeneous precipitation method. Due to the nonsintering nature of the preparation method, a heterogeneous catalytic layer comprised of γ-FeOOH and α-Fe2O3 is formed on the Al2O3 support (termed NS-Fe-Al2O3). On treatment of a real industrial effluent by HCO, the presence of NS-Fe-Al2O3 increased the removal of organics by ∼100% compared to that achieved with a control catalyst (i.e., α-Fe2O3/Al2O3 or γ-FeOOH/Al2O3) that was prepared by a conventional impregnation and calcination method. Furthermore, our results confirmed that the novel NS-Fe-Al2O3 catalyst demonstrated resistance to the inhibitory effect of high concentration of chloride and sulfate ions usually present in industrial effluent. A mathematical kinetic model was developed that adequately describes the mechanism of HCO process in the presence of NS-Fe-Al2O3. Overall, the results presented here provide valuable guidance for the synthesis of effective and robust catalysts that will facilitate the wider industrial application of HCO.
Collapse
Affiliation(s)
- Xiangtong Kong
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Shikha Garg
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Mahshid Mortazavi
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou510006, P.R. China
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province214206, P.R. China
| |
Collapse
|
50
|
Lai KC, Campbell CT, Evans JW. Size-dependent diffusion of supported metal nanoclusters: mean-field-type treatments and beyond for faceted clusters. NANOSCALE HORIZONS 2023; 8:1556-1567. [PMID: 37574918 DOI: 10.1039/d3nh00140g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nanostructured systems are intrinsically metastable and subject to coarsening. For supported 3D metal nanoclusters (NCs), coarsening can involve NC diffusion across the support and subsequent coalescence (as an alternative to Ostwald ripening). When used as catalysts, this leads to deactivation. The dependence of diffusivity, DN, on NC size, N (in atoms), controls coarsening kinetics. Traditional mean-field (MF) theory for DNversus N assumes that NC diffusion is mediated by independent random hopping of surface adatoms with low coordination, and predicts that DN ∼ hN-4/3neq. Here, h = ν exp[-Ed/(kBT)] denotes the hop rate, and neq = exp[-Eform/(kBT)] the density of those adatoms. The adatom formation energy, Eform, approaches a finite large-N limit, as does the effective barrier, Eeff = Ed + Eform, for NC diffusion. This MF theory is critically assessed for a realistic stochastic atomistic model for diffusion of faceted fcc metal NCs with a {100} facet epitaxially attached to a (100) support surface. First, the MF formulation is refined to account for distinct densities and hop rates for surface adatoms on different facets and along the base contact line, and to incorporate the exact values of Eform and neqversus N for our model. MF theory then captures the occurrence of local minima in DNversus N at closed-shell sizes, as shown by KMC simulation. However, the MF treatment also displays fundamental shortcomings due to the feature that diffusion of faceted NCs is actually dominated by a cooperative multi-step process involving disassembling and reforming of outer layers on side facets. This mechanism leads to an Eeff which is well above MF values, and which increases with N, features captured by a beyond-MF treatment.
Collapse
Affiliation(s)
- King C Lai
- Division of Chemical & Biological Sciences, Ames National Laboratory - USDOE, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Charles T Campbell
- Chemistry Department, University of Washington, Seattle, Washington 98195, USA
| | - James W Evans
- Division of Chemical & Biological Sciences, Ames National Laboratory - USDOE, Ames, Iowa 50011, USA.
- Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|