1
|
Wu R, Wang Z, Jia Z, Li C, Wang J, Liu L, Dong M. Identification of hybrid amyloid strains assembled from amyloid- βand human islet amyloid polypeptide. NANOTECHNOLOGY 2023; 34:505101. [PMID: 37625382 DOI: 10.1088/1361-6528/acf3ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Cross-fibrillation of amyloid-β(Aβ) peptides and human islet amyloid polypeptides (hIAPP) has revealed a close correlation between Alzheimer's disease and type 2 diabetes (T2D). Importantly, different amyloid strains are likely to lead to the clinical pathological heterogeneity of degenerative diseases due to toxicity. However, given the complicated cross-interactions between different amyloid peptides, it is still challenging to identify the polymorphism of the hybrid amyloid strains and reveal mechanistic insights into aggregation, but highly anticipated due to their significance. In this study, we investigated the cross-fibrillation of Aβpeptides and different hIAPP species (monomers, oligomers, and fibrils) using combined experimental and simulation approaches. Cross-seeding and propagation of different amyloid peptides monitored by experimental techniques proved that the three species of hIAPP aggregates have successively enhanced Aβfibrillation, especially for hIAPP fibrils. Moreover, the polymorphism of these morphologically similar hybrid amyloid strains could be distinguished by testing their mechanical properties using quantitative nanomechanical mapping, where the assemblies of Aβ-hIAPP fibrils exhibited the high Young's modulus. Furthermore, the enhanced internal molecular interactions andβ-sheet structural transformation were proved by exploring the conformational ensembles of Aβ-hIAPP heterodimer and Aβ-hIAPP decamer using molecular dynamic simulations. Our findings pave the way for identifying different hybrid amyloid strains by quantitative nanomechanical mapping and molecular dynamic simulations, which is important not only for the precise classification of neurodegenerative disease subtypes but also for future molecular diagnosis and therapeutic treatment of multiple interrelated degenerative diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zengkai Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zili Jia
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Chenglong Li
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jie Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mingdong Dong
- Aarhus University, Interdisciplinary Nanoscience Center (iNANO) Aarhus C DK-8000, Denmark
| |
Collapse
|
2
|
Shamir Y, Goldbourt A. Atomic-Resolution Structure of the Protein Encoded by Gene V of fd Bacteriophage in Complex with Viral ssDNA Determined by Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2022; 145:300-310. [PMID: 36542094 PMCID: PMC9837838 DOI: 10.1021/jacs.2c09957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.
Collapse
|
3
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
4
|
Spenner JM, Berg JM. Exploring the use of cobalt(II) dipolar shifts in refining the structure of a zinc finger peptide. J Inorg Biochem 2022; 235:111912. [PMID: 35850025 DOI: 10.1016/j.jinorgbio.2022.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
The uses of dipolar shifts due to cobalt(II) substituted for zinc(II) in a consensus zinc finger peptide for refining the NMR-determined structure were examined. Substantial differences between the calculated and observed chemical shift differences between the cobalt(II) and zinc(II) complexes were observed when these dipolar shifts were not used as constraints in the structure refinement. However, inclusion of these constraints resulted in excellent agreement with minor adjustments in the structure and a slight improvement in the precision of the structure determination. Other calculations revealed that the dipolar shifts were not adequate to determine the overall folded structure by themselves, but were useful in increasing the accuracy and precision of a structure determined based only on nuclear Overhauser effects constraints involving only backbone atoms.
Collapse
Affiliation(s)
- Jonathan M Spenner
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy M Berg
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
5
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
6
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
7
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
8
|
Zehnder J, Cadalbert R, Yulikov M, Künze G, Wiegand T. Paramagnetic spin labeling of a bacterial DnaB helicase for solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 332:107075. [PMID: 34597956 DOI: 10.1016/j.jmr.2021.107075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Labeling of biomolecules with a paramagnetic probe for nuclear magnetic resonance (NMR) spectroscopy enables determining long-range distance restraints, which are otherwise not accessible by classically used dipolar coupling-based NMR approaches. Distance restraints derived from paramagnetic relaxation enhancements (PREs) can facilitate the structure determination of large proteins and protein complexes. We herein present the site-directed labeling of the large oligomeric bacterial DnaB helicase from Helicobacter pylori with cysteine-reactive maleimide tags carrying either a nitroxide radical or a lanthanide ion. The success of the labeling reaction was followed by quantitative continuous-wave electron paramagnetic resonance (EPR) experiments performed on the nitroxide-labeled protein. PREs were extracted site-specifically from 2D and 3D solid-state NMR spectra. A good agreement with predicted PRE values, derived by computational modeling of nitroxide and Gd3+ tags in the low-resolution DnaB crystal structure, was found. Comparison of experimental PREs and model-predicted spin label-nucleus distances indicated that the size of the "blind sphere" around the paramagnetic center, in which NMR resonances are not detected, is slightly larger for Gd3+ (∼14 Å) than for nitroxide (∼11 Å) in 13C-detected 2D spectra of DnaB. We also present Gd3+-Gd3+ dipolar electron-electron resonance EPR experiments on DnaB supporting the conclusion that DnaB was present as a hexameric assembly.
Collapse
Affiliation(s)
| | | | - Maxim Yulikov
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Georg Künze
- Institute for Drug Discovery, Medical School, Leipzig University, 04103 Leipzig, Germany.
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Max-Planck-Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Gauto D, Dakhlaoui O, Marin-Montesinos I, Hediger S, De Paëpe G. Targeted DNP for biomolecular solid-state NMR. Chem Sci 2021; 12:6223-6237. [PMID: 34084422 PMCID: PMC8115112 DOI: 10.1039/d0sc06959k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
High-field dynamic nuclear polarization is revolutionizing the scope of solid-state NMR with new applications in surface chemistry, materials science and structural biology. In this perspective article, we focus on a specific DNP approach, called targeted DNP, in which the paramagnets introduced to polarize are not uniformly distributed in the sample but site-specifically located on the biomolecular system. After reviewing the various targeting strategies reported to date, including a bio-orthogonal chemistry-based approach, we discuss the potential of targeted DNP to improve the overall NMR sensitivity while avoiding the use of glass-forming DNP matrix. This is especially relevant to the study of diluted biomolecular systems such as, for instance, membrane proteins within their lipidic environment. We also discuss routes towards extracting structural information from paramagnetic relaxation enhancement (PRE) induced by targeted DNP at cryogenic temperature, and the possibility to recover site-specific information in the vicinity of the paramagnetic moieties using high-resolution selective DNP spectra. Finally, we review the potential of targeted DNP for in-cell NMR studies and how it can be used to extract a given protein NMR signal from a complex cellular background.
Collapse
Affiliation(s)
- Diego Gauto
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- Univ. Grenoble Alpes, CNRS, CERMAV Grenoble France
| | - Ildefonso Marin-Montesinos
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
- University of Aveiro, CICECO Chem. Dept. Aveiro Portugal
| | - Sabine Hediger
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| | - Gaël De Paëpe
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-MEM Grenoble France
| |
Collapse
|
11
|
Jirasko V, Lends A, Lakomek N, Fogeron M, Weber ME, Malär AA, Penzel S, Bartenschlager R, Meier BH, Böckmann A. Dimer Organization of Membrane‐Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive
1
H‐Detected Solid‐State NMR. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alons Lends
- Physical Chemistry ETH Zurich 8093 Zurich Switzerland
| | | | - Marie‐Laure Fogeron
- Molecular Microbiology and Structural Biochemistry Labex Ecofect UMR 5086 CNRS Université de Lyon 1 7 passage du Vercors 69367 Lyon France
| | | | | | | | - Ralf Bartenschlager
- Department of Infectious Diseases Molecular Virology Heidelberg University Im Neuenheimer Feld 345 69120 Heidelberg Germany
- German Centre for Infection Research (DZIF) Heidelberg partner site Heidelberg Germany
| | - Beat H. Meier
- Physical Chemistry ETH Zurich 8093 Zurich Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry Labex Ecofect UMR 5086 CNRS Université de Lyon 1 7 passage du Vercors 69367 Lyon France
| |
Collapse
|
12
|
Jirasko V, Lends A, Lakomek N, Fogeron M, Weber ME, Malär AA, Penzel S, Bartenschlager R, Meier BH, Böckmann A. Dimer Organization of Membrane-Associated NS5A of Hepatitis C Virus as Determined by Highly Sensitive 1 H-Detected Solid-State NMR. Angew Chem Int Ed Engl 2021; 60:5339-5347. [PMID: 33205864 PMCID: PMC7986703 DOI: 10.1002/anie.202013296] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/17/2020] [Indexed: 12/17/2022]
Abstract
The Hepatitis C virus nonstructural protein 5A (NS5A) is a membrane-associated protein involved in multiple steps of the viral life cycle. Direct-acting antivirals (DAAs) targeting NS5A are a cornerstone of antiviral therapy, but the mode-of-action of these drugs is poorly understood. This is due to the lack of information on the membrane-bound NS5A structure. Herein, we present the structural model of an NS5A AH-linker-D1 protein reconstituted as proteoliposomes. We use highly sensitive proton-detected solid-state NMR methods suitable to study samples generated through synthetic biology approaches. Spectra analyses disclose that both the AH membrane anchor and the linker are highly flexible. Paramagnetic relaxation enhancements (PRE) reveal that the dimer organization in lipids requires a new type of NS5A self-interaction not reflected in previous crystal structures. In conclusion, we provide the first characterization of NS5A AH-linker-D1 in a lipidic environment shedding light onto the mode-of-action of clinically used NS5A inhibitors.
Collapse
Affiliation(s)
| | - Alons Lends
- Physical ChemistryETH Zurich8093ZurichSwitzerland
| | | | - Marie‐Laure Fogeron
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRSUniversité de Lyon 17 passage du Vercors69367LyonFrance
| | | | | | | | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityIm Neuenheimer Feld 34569120HeidelbergGermany
- German Centre for Infection Research (DZIF)Heidelberg partner siteHeidelbergGermany
| | | | - Anja Böckmann
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRSUniversité de Lyon 17 passage du Vercors69367LyonFrance
| |
Collapse
|
13
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
14
|
Chakraborty A, Deligey F, Quach J, Mentink-Vigier F, Wang P, Wang T. Biomolecular complex viewed by dynamic nuclear polarization solid-state NMR spectroscopy. Biochem Soc Trans 2020; 48:1089-1099. [PMID: 32379300 PMCID: PMC7565284 DOI: 10.1042/bst20191084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/07/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is an indispensable tool for elucidating the structure and dynamics of insoluble and non-crystalline biomolecules. The recent advances in the sensitivity-enhancing technique magic-angle spinning dynamic nuclear polarization (MAS-DNP) have substantially expanded the territory of ssNMR investigations and enabled the detection of polymer interfaces in a cellular environment. This article highlights the emerging MAS-DNP approaches and their applications to the analysis of biomolecular composites and intact cells to determine the folding pathway and ligand binding of proteins, the structural polymorphism of low-populated biopolymers, as well as the physical interactions between carbohydrates, proteins, and lignin. These structural features provide an atomic-level understanding of many cellular processes, promoting the development of better biomaterials and inhibitors. It is anticipated that the capabilities of MAS-DNP in biomolecular and biomaterial research will be further enlarged by the rapid development of instrumentation and methodology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jenny Quach
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Kocman V, Di Mauro GM, Veglia G, Ramamoorthy A. Use of paramagnetic systems to speed-up NMR data acquisition and for structural and dynamic studies. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 102:36-46. [PMID: 31325686 PMCID: PMC6698407 DOI: 10.1016/j.ssnmr.2019.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/05/2023]
Abstract
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T1) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra. Consequently, most of the experimental time is "wasted" in waiting for the magnetization to recover between successive scans. In this review, we discuss how to set up an optimal paramagnetic relaxation enhancement (PRE) system to effectively reduce the T1 relaxation times avoiding significant broadening of NMR signals. Additionally, we describe how PRE-agents can be used to provide structural and dynamic information and can even be used to follow the intermediates of chemical reactions and to speed-up data acquisition. We also describe the unique challenges and benefits associated with the application of PRE to solid-state NMR spectroscopy, explaining how the use of PREs is more complex for membrane mimetic systems as PREs can also be exploited to change the alignment of oriented membrane systems. Functionalization of membrane mimetics, such as bicelles, can provide a controlled region of paramagnetic effect that has the potential, together with the desired alignment, to provide crucial biologically relevant structural information. And finally, we discuss how paramagnetic metals can be utilized to further increase the dynamic nuclear polarization (DNP) effects and how to preserve the enhancements when dissolution DNP is implemented.
Collapse
Affiliation(s)
- Vojč Kocman
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA; Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:211-236. [PMID: 31779881 DOI: 10.1016/j.pnmrs.2019.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 05/18/2023]
Abstract
The magnetic interactions between the nuclear magnetic moment and the magnetic moment of unpaired electron(s) depend on the structure and dynamics of the molecules where the paramagnetic center is located and of their partners. The long-range nature of the magnetic interactions is thus a reporter of invaluable information for structural biology studies, when other techniques often do not provide enough data for the atomic-level characterization of the system. This precious information explains the flourishing of paramagnetism-assisted NMR studies in recent years. Many paramagnetic effects are related to the magnetic susceptibility of the paramagnetic metal. Although these effects have been known for more than half a century, different theoretical models and new approaches have been proposed in the last decade. In this review, we have summarized the consequences for NMR spectroscopy of magnetic interactions between nuclear and electron magnetic moments, and thus of the presence of a magnetic susceptibility due to metals, and we do so using a unified notation.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
18
|
Öster C, Kosol S, Lewandowski JR. Quantifying Microsecond Exchange in Large Protein Complexes with Accelerated Relaxation Dispersion Experiments in the Solid State. Sci Rep 2019; 9:11082. [PMID: 31366983 PMCID: PMC6668460 DOI: 10.1038/s41598-019-47507-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/16/2019] [Indexed: 01/20/2023] Open
Abstract
Solid state NMR is a powerful method to obtain information on the structure and dynamics of protein complexes that, due to solubility and size limitations, cannot be achieved by other methods. Here, we present an approach that allows the quantification of microsecond conformational exchange in large protein complexes by using a paramagnetic agent to accelerate 15N R1ρ relaxation dispersion measurements and overcome sensitivity limitations. The method is validated on crystalline GB1 and then applied to a >300 kDa precipitated complex of GB1 with full length human immunoglobulin G (IgG). The addition of a paramagnetic agent increased the signal to noise ratio per time unit by a factor of 5, which allowed full relaxation dispersion curves to be recorded on a sample containing less than 50 μg of labelled material in 5 and 10 days on 850 and 700 MHz spectrometers, respectively. We discover a similar exchange process across the β-sheet in GB1 in crystals and in complex with IgG. However, the slow motion observed for a number of residues in the α-helix of crystalline GB1 is not detected in the complex.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Simone Kosol
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
19
|
|
20
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
21
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
22
|
Metal centers in biomolecular solid-state NMR. J Struct Biol 2018; 206:99-109. [PMID: 30502494 DOI: 10.1016/j.jsb.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 01/03/2023]
Abstract
Solid state NMR (SSNMR) has earned a substantial success in the characterization of paramagnetic systems over the last decades. Nowadays, the resolution and sensitivity of solid state NMR in biological molecules has improved significantly and these advancements can be translated into the study of paramagnetic biomolecules. However, the electronic properties of different metal centers affect the quality of their SSNMR spectra differently, and not all systems turn out to be equally easy to approach by this technique. In this review we will try to give an overview of the properties of different paramagnetic centers and how they can be used to increase the chances of experimental success.
Collapse
|
23
|
Theint T, Xia Y, Nadaud PS, Mukhopadhyay D, Schwieters CD, Surewicz K, Surewicz WK, Jaroniec CP. Structural Studies of Amyloid Fibrils by Paramagnetic Solid-State Nuclear Magnetic Resonance Spectroscopy. J Am Chem Soc 2018; 140:13161-13166. [PMID: 30295029 DOI: 10.1021/jacs.8b06758] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Application of paramagnetic solid-state NMR to amyloids is demonstrated, using Y145Stop human prion protein modified with nitroxide spin-label or EDTA-Cu2+ tags as a model. By using sample preparation protocols based on seeding with preformed fibrils, we show that paramagnetic protein analogs can be induced into adopting the wild-type amyloid structure. Measurements of residue-specific intramolecular and intermolecular paramagnetic relaxation enhancements enable determination of protein fold within the fibril core and protofilament assembly. These methods are expected to be widely applicable to other amyloids and protein assemblies.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Yongjie Xia
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Dwaipayan Mukhopadhyay
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Charles D Schwieters
- Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Witold K Surewicz
- Department of Physiology and Biophysics , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
24
|
Vasa SK, Rovó P, Linser R. Protons as Versatile Reporters in Solid-State NMR Spectroscopy. Acc Chem Res 2018; 51:1386-1395. [PMID: 29763290 DOI: 10.1021/acs.accounts.8b00055] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopic technique that is used for characterization of molecular properties in the solid phase at atomic resolution. In particular, using the approach of magic-angle spinning (MAS), ssNMR has seen widespread applications for topics ranging from material sciences to catalysis, metabolomics, and structural biology, where both isotropic and anisotropic parameters can be exploited for a detailed assessment of molecular properties. High-resolution detection of protons long represented the holy grail of the field. With its high natural abundance and high gyromagnetic ratio, 1H has naturally been the most important nucleus type for the solution counterpart of NMR spectroscopy. In the solid state, similar benefits are obtained over detection of heteronuclei, however, a rocky road led to its success as their high gyromagnetic ratio has also been associated with various detrimental effects. Two exciting approaches have been developed in recent years that enable proton detection: After partial deuteration of the sample to reduce the proton spin density, the exploitation of protons could begin. Also, faster MAS, nowadays using tiny rotors with frequencies up to 130 kHz, has relieved the need for expensive deuteration. Apart from the sheer gain in sensitivity from choosing protons as the detection nucleus, the proton chemical shift and several other useful aspects of protons have revolutionized the field. In this Account, we are describing the fundamentals of proton detection as well as the arising possibilities for characterization of biomolecules as associated with the developments in our own lab. In particular, we focus on facilitated chemical-shift assignment, structure calculation based on protons, and on assessment of dynamics in solid proteins. For example, the proton chemical-shift dimension adds additional information for resonance assignments in the protein backbone and side chains. Chemical shifts and high gyromagnetic ratio of protons enable direct readout of spatial information over large distances. Dynamics in the protein backbone or side chains can be characterized efficiently using protons as reporters. For all of this, the sample amounts necessary for a given signal-to-noise have drastically shrunk, and new methodology enables assessment of molecules with increasing monomer molecular weight and complexity. Taken together, protons are able to overcome previous limitations, by speeding up processes, enhancing accuracies, and increasing the accessible ranges of ssNMR spectroscopy, as we shall discuss in detail in the following. In particular, these methodological developments have been pushing solid-state NMR into a new regime of biological topics as they realistically allow access to complex cellular molecules, elucidating their functions and interactions in a multitude of ways.
Collapse
Affiliation(s)
- Suresh K. Vasa
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Petra Rovó
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Rasmus Linser
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| |
Collapse
|
25
|
Nerli S, McShan AC, Sgourakis NG. Chemical shift-based methods in NMR structure determination. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:1-25. [PMID: 31047599 PMCID: PMC6788782 DOI: 10.1016/j.pnmrs.2018.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 05/08/2023]
Abstract
Chemical shifts are highly sensitive probes harnessed by NMR spectroscopists and structural biologists as conformational parameters to characterize a range of biological molecules. Traditionally, assignment of chemical shifts has been a labor-intensive process requiring numerous samples and a suite of multidimensional experiments. Over the past two decades, the development of complementary computational approaches has bolstered the analysis, interpretation and utilization of chemical shifts for elucidation of high resolution protein and nucleic acid structures. Here, we review the development and application of chemical shift-based methods for structure determination with a focus on ab initio fragment assembly, comparative modeling, oligomeric systems, and automated assignment methods. Throughout our discussion, we point out practical uses, as well as advantages and caveats, of using chemical shifts in structure modeling. We additionally highlight (i) hybrid methods that employ chemical shifts with other types of NMR restraints (residual dipolar couplings, paramagnetic relaxation enhancements and pseudocontact shifts) that allow for improved accuracy and resolution of generated 3D structures, (ii) the utilization of chemical shifts to model the structures of sparsely populated excited states, and (iii) modeling of sidechain conformations. Finally, we briefly discuss the advantages of contemporary methods that employ sparse NMR data recorded using site-specific isotope labeling schemes for chemical shift-driven structure determination of larger molecules. With this review, we aim to emphasize the accessibility and versatility of chemical shifts for structure determination of challenging biological systems, and to point out emerging areas of development that lead us towards the next generation of tools.
Collapse
Affiliation(s)
- Santrupti Nerli
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States; Department of Computer Science, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Andrew C McShan
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nikolaos G Sgourakis
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
26
|
Gaalswyk K, Muniyat MI, MacCallum JL. The emerging role of physical modeling in the future of structure determination. Curr Opin Struct Biol 2018; 49:145-153. [DOI: 10.1016/j.sbi.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 10/17/2022]
|
27
|
DasGupta D, Mandalaparthy V, Jayaram B. A component analysis of the free energies of folding of 35 proteins: A consensus view on the thermodynamics of folding at the molecular level. J Comput Chem 2017; 38:2791-2801. [PMID: 28940242 DOI: 10.1002/jcc.25072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023]
Abstract
What factors favor protein folding? This is a textbook question. Parsing the experimental free energies of folding/unfolding into diverse enthalpic and entropic components of solute and solvent favoring or disfavoring folding is not an easy task. In this study, we present a computational protocol for estimating the free energy contributors to protein folding semi-quantitatively using ensembles of unfolded and native states generated via molecular dynamics simulations. We tested the methodology on 35 proteins with diverse structural motifs and sizes and found that the calculated free energies correlate well with experiment (correlation coefficient ∼ 0.85), enabling us to develop a consensus view of the energetics of folding. As a more sensitive test of the methodology, we also investigated the free energies of folding of an additional 33 single point mutants and obtained a correlation coefficient of 0.8. A notable observation is that the folding free energy components appear to carry signatures of the fold (SCOP classification) of the protein. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Debarati DasGupta
- Department of Chemistry, Indian Institute of Technology, New Delhi, 110016, India.,Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, New Delhi, 110016, India
| | - Varun Mandalaparthy
- Department of Chemistry, Indian Institute of Technology, New Delhi, 110016, India
| | - Bhyravabhotla Jayaram
- Department of Chemistry, Indian Institute of Technology, New Delhi, 110016, India.,Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, New Delhi, 110016, India.,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| |
Collapse
|
28
|
Öster C, Kosol S, Hartlmüller C, Lamley JM, Iuga D, Oss A, Org ML, Vanatalu K, Samoson A, Madl T, Lewandowski JR. Characterization of Protein-Protein Interfaces in Large Complexes by Solid-State NMR Solvent Paramagnetic Relaxation Enhancements. J Am Chem Soc 2017; 139:12165-12174. [PMID: 28780861 PMCID: PMC5590091 DOI: 10.1021/jacs.7b03875] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Solid-state NMR is becoming a viable
alternative for obtaining
information about structures and dynamics of large biomolecular complexes,
including ones that are not accessible to other high-resolution biophysical
techniques. In this context, methods for probing protein–protein
interfaces at atomic resolution are highly desirable. Solvent paramagnetic
relaxation enhancements (sPREs) proved to be a powerful method for
probing protein–protein interfaces in large complexes in solution
but have not been employed toward this goal in the solid state. We
demonstrate that 1H and 15N relaxation-based
sPREs provide a powerful tool for characterizing intermolecular interactions
in large assemblies in the solid state. We present approaches for
measuring sPREs in practically the entire range of magic angle spinning
frequencies used for biomolecular studies and discuss their benefits
and limitations. We validate the approach on crystalline GB1, with
our experimental results in good agreement with theoretical predictions.
Finally, we use sPREs to characterize protein–protein interfaces
in the GB1 complex with immunoglobulin G (IgG). Our results suggest
the potential existence of an additional binding site and provide
new insights into GB1:IgG complex structure that amend and revise
the current model available from studies with IgG fragments. We demonstrate
sPREs as a practical, widely applicable, robust, and very sensitive
technique for determining intermolecular interaction interfaces in
large biomolecular complexes in the solid state.
Collapse
Affiliation(s)
- Carl Öster
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Simone Kosol
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Christoph Hartlmüller
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jonathan M Lamley
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Dinu Iuga
- Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| | - Andres Oss
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Mai-Liis Org
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Kalju Vanatalu
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Ago Samoson
- Institute of Health Technologies, Tallinn University of Technology , Akadeemia tee 15a, 19086 Tallinn, Estonia
| | - Tobias Madl
- Center for Integrated Protein Science, Department of Chemistry, Munich Technische Universität München , Lichtenbergstrasse 4, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München , Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.,Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz , Harrachgasse 21, 8010 Graz, Austria
| | - Józef R Lewandowski
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, U.K
| |
Collapse
|
29
|
Pilla KB, Gaalswyk K, MacCallum JL. Molecular modeling of biomolecules by paramagnetic NMR and computational hybrid methods. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28648524 DOI: 10.1016/j.bbapap.2017.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The 3D atomic structures of biomolecules and their complexes are key to our understanding of biomolecular function, recognition, and mechanism. However, it is often difficult to obtain structures, particularly for systems that are complex, dynamic, disordered, or exist in environments like cell membranes. In such cases sparse data from a variety of paramagnetic NMR experiments offers one possible source of structural information. These restraints can be incorporated in computer modeling algorithms that can accurately translate the sparse experimental data into full 3D atomic structures. In this review, we discuss various types of paramagnetic NMR/computational hybrid modeling techniques that can be applied to successful modeling of not only the atomic structure of proteins but also their interacting partners. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
| | - Kari Gaalswyk
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
30
|
Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 2017; 12:764-782. [PMID: 28277547 DOI: 10.1038/nprot.2016.190] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
Collapse
|
31
|
Nitsche C, Otting G. Pseudocontact shifts in biomolecular NMR using paramagnetic metal tags. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 98-99:20-49. [PMID: 28283085 DOI: 10.1016/j.pnmrs.2016.11.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 05/14/2023]
Affiliation(s)
- Christoph Nitsche
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia. http://www.rsc.anu.edu.au/~go/index.html
| |
Collapse
|
32
|
Tian Y, Schwieters CD, Opella SJ, Marassi FM. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH. JOURNAL OF BIOMOLECULAR NMR 2017; 67:35-49. [PMID: 28035651 PMCID: PMC5487259 DOI: 10.1007/s10858-016-0082-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.
Collapse
Affiliation(s)
- Ye Tian
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0307, USA
| | - Francesca M Marassi
- Sanford-Burnham-Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
33
|
Affiliation(s)
- Benjamin J. Wylie
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Hoa Q. Do
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Collin G. Borcik
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Emily P. Hardy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
34
|
Palamara J, Seidel K, Moini A, Prasad S. Ion distribution in copper exchanged zeolites by using Si-29 spin lattice relaxation analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:9-14. [PMID: 27055207 DOI: 10.1016/j.jmr.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.
Collapse
|
35
|
Zhou L, Li S, Li J, Wang Q, Deng F. Valence state alternation of copper species doped in HY zeolite as revealed by paramagnetic relaxation enhancement NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 74-75:10-15. [PMID: 26970200 DOI: 10.1016/j.ssnmr.2016.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Paramagnetic relaxation enhancement (PRE) solid-state NMR (ssNMR) was used to monitor the valence state alternation of copper species doped in HY zeolite during catalytic reaction processes. The combination of PRE ssNMR and in-situ NMR spectroscopy facilitates the detection of copper species as well as the monitoring of evolution from reactants, intermediates to products in heterogeneously catalyzed processes, which is of great importance for elucidating the detailed catalytic reaction mechanism.
Collapse
Affiliation(s)
- Lei Zhou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jing Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
36
|
Habenstein B, Loquet A. Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem 2016; 210:14-26. [DOI: 10.1016/j.bpc.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
|
37
|
Smith AN, Long JR. Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2016; 88:122-32. [PMID: 26594903 PMCID: PMC5704910 DOI: 10.1021/acs.analchem.5b04376] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adam N Smith
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611-7200, United States
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida , P. O. Box 100245, Gainesville, Florida 32610-0245, United States
| |
Collapse
|
38
|
Wong ZC, Fan WY, Chwee TS, Sullivan MB. Modelling fluorescence lifetimes with TD-DFT: a case study with syn-bimanes. RSC Adv 2016. [DOI: 10.1039/c6ra11495d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Syn-bimanes are a class of fluorophores that are widely used for labelling thiol containing biological systems. We used TD-DFT to study their absorption, emission, solvatochromism, and fluorescence lifetimes.
Collapse
Affiliation(s)
- Z. C. Wong
- Institute of High Performance Computing
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| | - W. Y. Fan
- Department of Chemistry
- National University of Singapore
- Singapore
| | - T. S. Chwee
- Institute of High Performance Computing
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| | - M. B. Sullivan
- Institute of High Performance Computing
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
- Department of Chemistry
| |
Collapse
|
39
|
Martelli T, Ravera E, Louka A, Cerofolini L, Hafner M, Fragai M, Becker CFW, Luchinat C. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry 2015; 22:425-32. [DOI: 10.1002/chem.201503613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/23/2022]
|
40
|
Hansen MR, Graf R, Spiess HW. Interplay of Structure and Dynamics in Functional Macromolecular and Supramolecular Systems As Revealed by Magnetic Resonance Spectroscopy. Chem Rev 2015; 116:1272-308. [DOI: 10.1021/acs.chemrev.5b00258] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Ryan Hansen
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, P.O. Box 3148, 55021 Mainz, Germany
| | | |
Collapse
|
41
|
Ravera E, Fragai M, Parigi G, Luchinat C. Differences in Dynamics between Crosslinked and Non-Crosslinked Hyaluronates Measured by using Fast Field-Cycling Relaxometry. Chemphyschem 2015; 16:2803-2809. [PMID: 26263906 DOI: 10.1002/cphc.201500446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 11/11/2022]
Abstract
The dynamic properties of water molecules in gels containing linear and crosslinked hyaluronic acid polymers are investigated by using an integrated approach that includes relaxometry, solid-state NMR spectroscopy, and scanning electron microscopy. A model-free analysis of field-dependent nuclear relaxation is applied to obtain information on mobility and the population of different pools of water molecules in the gels. Differences between linear and crosslinked hyaluronic acid polymers are observed, indicating that crosslinking increases both the fraction and the correlation time of water molecules with slow dynamics.
Collapse
Affiliation(s)
- Enrico Ravera
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Marco Fragai
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Giacomo Parigi
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| | - Claudio Luchinat
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Italy)
| |
Collapse
|
42
|
Abstract
Our understanding of the molecular structures of amyloid fibrils that are associated with neurodegenerative diseases, of mechanisms by which disease-associated peptides and proteins aggregate into fibrils, and of structural properties of aggregation intermediates has advanced considerably in recent years. Detailed molecular structural models for certain fibrils and aggregation intermediates are now available. It is now well established that amyloid fibrils are generally polymorphic at the molecular level, with a given peptide or protein being capable of forming a variety of distinct, self-propagating fibril structures. Recent results from structural studies and from studies involving cell cultures, transgenic animals, and human tissue provide initial evidence that molecular structural variations in amyloid fibrils and related aggregates may correlate with or even produce variations in disease development. This article reviews our current knowledge of the structural and mechanistic aspects of amyloid formation, as well as current evidence for the biological relevance of structural variations.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
43
|
Abstract
The energy landscapes of proteins are highly complex and can be influenced by changes in physical and chemical conditions under which the protein is studied. The redox enzyme cytochrome P450cam undergoes a multistep catalytic cycle wherein two electrons are transferred to the heme group and the enzyme visits several conformational states. Using paramagnetic NMR spectroscopy with a lanthanoid tag, we show that the enzyme bound to its redox partner, putidaredoxin, is in a closed state at ambient temperature in solution. This result contrasts with recent crystal structures of the complex, which suggest that the enzyme opens up when bound to its partner. The closed state supports a model of catalysis in which the substrate is locked in the active site pocket and the enzyme acts as an insulator for the reactive intermediates of the reaction.
Collapse
|
44
|
Polenova T, Gupta R, Goldbourt A. Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem 2015; 87:5458-69. [PMID: 25794311 PMCID: PMC4890703 DOI: 10.1021/ac504288u] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Magic Angle Spinning (MAS) NMR spectroscopy is a powerful method for analysis of a broad range of systems, including inorganic materials, pharmaceuticals, and biomacromolecules. The recent developments in MAS NMR instrumentation and methodologies opened new vistas to atomic-level characterization of a plethora of chemical environments previously inaccessible to analysis, with unprecedented sensitivity and resolution.
Collapse
Affiliation(s)
- Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| |
Collapse
|
45
|
Opella SJ. Solid-state NMR and membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:129-37. [PMID: 25681966 PMCID: PMC4372479 DOI: 10.1016/j.jmr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/15/2023]
Abstract
The native environment for a membrane protein is a phospholipid bilayer. Because the protein is immobilized on NMR timescales by the interactions within a bilayer membrane, solid-state NMR methods are essential to obtain high-resolution spectra. Approaches have been developed for both unoriented and oriented samples, however, they all rest on the foundation of the most fundamental aspects of solid-state NMR, and the chemical shift and homo- and hetero-nuclear dipole-dipole interactions. Solid-state NMR has advanced sufficiently to enable the structures of membrane proteins to be determined under near-native conditions in phospholipid bilayers.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
46
|
Zhou L, Li S, Su Y, Li B, Deng F. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 66-67:29-32. [PMID: 25616847 DOI: 10.1016/j.ssnmr.2014.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants.
Collapse
Affiliation(s)
- Lei Zhou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bojie Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
47
|
Park SH, Wang V, Radoicic J, De Angelis AA, Berkamp S, Opella SJ. Paramagnetic relaxation enhancement of membrane proteins by incorporation of the metal-chelating unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA). JOURNAL OF BIOMOLECULAR NMR 2015; 61:185-96. [PMID: 25430059 PMCID: PMC4398598 DOI: 10.1007/s10858-014-9884-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/20/2014] [Indexed: 05/16/2023]
Abstract
The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.
Collapse
|
48
|
Jaroniec CP. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:50-9. [PMID: 25797004 PMCID: PMC4371136 DOI: 10.1016/j.jmr.2014.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 05/03/2023]
Abstract
Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
49
|
Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:60-70. [PMID: 25797005 DOI: 10.1016/j.jmr.2014.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Resolution and sensitivity in solid state NMR (SSNMR) can rival the results achieved by solution NMR, and even outperform them in the case of large systems. However, several factors affect the spectral quality in SSNMR samples, and not all systems turn out to be equally amenable for this methodology. In this review we attempt at analyzing the causes of this variable behavior and at providing hints to increase the chances of experimental success.
Collapse
Affiliation(s)
- Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tobias Schubeis
- Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tommaso Martelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
50
|
Su Y, Andreas L, Griffin RG. Magic angle spinning NMR of proteins: high-frequency dynamic nuclear polarization and (1)H detection. Annu Rev Biochem 2015; 84:465-97. [PMID: 25839340 DOI: 10.1146/annurev-biochem-060614-034206] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magic angle spinning (MAS) NMR studies of amyloid and membrane proteins and large macromolecular complexes are an important new approach to structural biology. However, the applicability of these experiments, which are based on (13)C- and (15)N-detected spectra, would be enhanced if the sensitivity were improved. Here we discuss two advances that address this problem: high-frequency dynamic nuclear polarization (DNP) and (1)H-detected MAS techniques. DNP is a sensitivity enhancement technique that transfers the high polarization of exogenous unpaired electrons to nuclear spins via microwave irradiation of electron-nuclear transitions. DNP boosts NMR signal intensities by factors of 10(2) to 10(3), thereby overcoming NMR's inherent low sensitivity. Alternatively, it permits structural investigations at the nanomolar scale. In addition, (1)H detection is feasible primarily because of the development of MAS rotors that spin at frequencies of 40 to 60 kHz or higher and the preparation of extensively (2)H-labeled proteins.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | | | | |
Collapse
|