1
|
Semwal M, Vashistha N, Rau S, Dietzek-Ivanšić B. An Increase in the Rigidity of the Environment Favors MLCT over the MC State in [Ru(bpy) 2(Nicotine) 2](Cl) 2: A Case Study of Photolabile Ligands. J Phys Chem A 2024. [PMID: 39496280 DOI: 10.1021/acs.jpca.4c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Ru(II)-complexes with photolabile ligands find a wide range of applications, e.g., in drug release and in the design of light-responsive interfaces. While light-driven ligand loss has been studied mechanistically in detail for complexes in solution, comparably few studies are present that investigate the process in a material context, i.e., in a rigid environment and in the absence of solvent. This paper adds to this underrepresented perspective by studying the excited-state dynamics of [Ru(bpy)2(nicotine)2] (Cl)2 (Ru-nico) as a model system in poly(methyl methacrylate) (PMMA) and polyacrylonitrile (PAN) matrices. Femtosecond transient absorption spectroscopy and time-resolved emission spectroscopy are employed to monitor the photodissociation of labile nicotine ligands in polymer environments. Photoexcitation within the metal-to-ligand charge transfer (MLCT) band leads to transient dissociation of the nicotine ligand when the complex is dissolved in water. However, optical excitation of the 1MLCT transition of the complexes embedded in polymer matrices does not result in photodissociation, likely due to the rigidity of the environment, which cannot solvate the undercoordinated complex after ligand dissociation and the dissociated ligand. These insights shed light on the role of the local environment when considering the photophysics of ligand loss from Ru(II)-polypyridyl complexes and, hence, their use in the light-activation of reactive molecular components in materials.
Collapse
Affiliation(s)
- Mohini Semwal
- Institute of Physical Chemistry,Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Nikita Vashistha
- Institute of Physical Chemistry,Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| | - Sven Rau
- Institute for Inorganic Chemistry I, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry,Friedrich Schiller University Jena, Helmholtzweg 4, Jena 07743, Germany
- Research Department Functional Interfaces, Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, Jena 07745, Germany
| |
Collapse
|
2
|
Wertz AE, Marguet SC, Turro C, Shafaat HS. Targeted Modulation of Photocatalytic Hydrogen Evolution Activity by Nickel-Substituted Rubredoxin through Functionalized Ruthenium Phototriggers. Inorg Chem 2024; 63:20438-20447. [PMID: 39423027 DOI: 10.1021/acs.inorgchem.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Light-driven hydrogen evolution is a promising means of sustainable energy production to meet global energy demand. This study investigates the photocatalytic hydrogen evolution activity of nickel-substituted rubredoxin (NiRd), an artificial hydrogenase mimic, covalently attached to a ruthenium phototrigger (RuNiRd). By systematically modifying the para-substituents on Ru(II) polypyridyl complexes, we sought to optimize the intramolecular electron transfer processes within the RuNiRd system. A series of electron-donating and electron-withdrawing groups were introduced to tune the photophysical, photochemical, and electrochemical properties of the ruthenium complexes. Our findings reveal that electron-donating substituents can increase the hydrogen evolution capabilities of the artificial enzyme to a point; however, the complexes with the most electron-donating substituents suffer from short lifetimes and inefficient reductive quenching, rendering them inactive. The present work highlights the intricate balance required between driving force, lifetime, and quenching efficiency for effective light-driven catalysis, providing valuable insights into the design of artificial enzyme-photosensitizer constructs.
Collapse
Affiliation(s)
- Ashlee E Wertz
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University; 100 W 18th Avenue, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
3
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
4
|
Utschig LM, Mulfort KL. Photosynthetic biohybrid systems for solar fuels catalysis. Chem Commun (Camb) 2024; 60:10642-10654. [PMID: 39229971 DOI: 10.1039/d4cc00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Photosynthetic reaction center (RC) proteins are finely tuned molecular systems optimized for solar energy conversion. RCs effectively capture and convert sunlight with near unity quantum efficiency utilizing light-induced directional electron transfer through a series of molecular cofactors embedded within the protein core to generate a long-lived charge separated state with a useable electrochemical potential. Of current interest are new strategies that couple RC chemistry to the direct synthesis of energy-rich compounds. This Feature Article highlights recent work from our lab on RC and RC-inspired hybrid systems that capture the Sun's energy and convert it to chemical energy in the form of H2, a carbon-neutral energy source derived from water. Biohybrids made from the Photosystem I (PSI) RC are among the best photocatalytic H2-producing protein hybrids to date. Targeted self-assembly strategies that couple abiotic catalysts to PSI translate to catalyst incorporation at intrinsic PSI sites within thylakoid membranes to achieve complete solar water-splitting systems. RC-inspired biohybrids interface synthetic photosensitizers and molecular catalysts with small proteins to create photocatalytic systems and enable the spectroscopic discernment of the structural features and electron transfer processes that underpin solar-driven proton reduction. In total, these studies showcase the incredible scientific opportunities photosynthetic biohybrid research provides for harnessing the optimal qualities of both artificial and natural photosynthetic systems and developing materials that capture, convert, and store solar energy as a fuel.
Collapse
Affiliation(s)
- Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
5
|
Fukuzumi S, Lee YM, Nam W. Functional molecular models of photosynthesis. iScience 2024; 27:110694. [PMID: 39286498 PMCID: PMC11404225 DOI: 10.1016/j.isci.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This perspective focuses on functional models of photosynthesis to achieve molecular photocatalytic systems that mimic photosystems I and II (PSI and PSII). A long-lived and high-energy electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes) has been attained as a simple and useful model of the photosynthetic reaction center. Acr+-Mes has been used as an effective photoredox catalyst for photocatalytic hydrogen evolution and regioselective reduction of NAD(P)+ from plastoquinone analogs as a molecular functional model of PSI. A functional molecular model system to mimic the function of PSII has also been developed to oxidize water by plastoquinone analogs to produce O2 and plastoquinol analogs. The PSI molecular models have finally been integrated with the PSII molecular models to achieve production of a solar fuel (hydrogen) and NAD(P)H and its analogs from water by use of solar energy as a molecular artificial photosynthesis.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Research Institute for Basic Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
6
|
Shao S, Gobeze HB, De Silva IW, Schaffner J, Verbeck G, Karr PA, D'Souza F. Photoinduced Energy and Electron Transfer in a 'Two-Point' Bound Panchromatic, Near-Infrared-Absorbing Bis-styrylBODIPY(Zinc Porphyrin) 2 - Fullerene Self-Assembled Supramolecular Conjugate. Chemistry 2024; 30:e202401892. [PMID: 38857115 DOI: 10.1002/chem.202401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Structurally well-defined self-assembled supramolecular multi-modular donor-acceptor conjugates play a significant role in furthering our understanding of photoinduced energy and electron transfer events occurring in nature, e. g., in the antenna-reaction centers of photosynthesis and their applications in light energy harvesting. However, building such multi-modular systems capable of mimicking the early events of photosynthesis has been synthetically challenging, causing a major hurdle for its growth. Often, multi-modularity is brought in by combining both covalent and noncovalent approaches. In the present study, we have developed such an approach wherein a π-extended conjugated molecular cleft, two zinc(II)porphyrin bearing bisstyrylBODIPY (dyad, 1), has been synthesized. The binding of 1 via a 'two-point' metal-ligand coordination of a bis-pyridyl fulleropyrrolidine (2), forming a stable self-assembled supramolecular complex (1 : 2), has been established. The self-assembled supramolecular complex has been fully characterized by a suite of physico-chemical methods, including TD-DFT studies. From the established energy diagram, both energy and electron transfer events were envisioned. In dyad 1, selective excitation of zinc(II)porphyrin leads to efficient singlet-singlet excitation transfer to (bisstyrly)BODIPY with an energy transfer rate constant, kEnT of 2.56×1012 s-1. In complex 1 : 2, photoexcitation of zinc(II)porphyrin results in ultrafast photoinduced electron transfer with a charge separation rate constant, kCS of 2.83×1011 s-1, and a charge recombination rate constant, kCR of 2.51×109 s-1. For excitation at 730 nm corresponding to bisstyrylBODIPY, similar results are obtained, where a biexponential decay yielded estimated values of kCS 3.44×1011 s-1 and 2.97×1010 s-1, and a kCR value of 2.10×1010 s-1. The newly built self-assembled supramolecular complex has been shown to successfully mimic the early events of the photosynthetic antenna-reaction center events.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Habtom B Gobeze
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Imesha W De Silva
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Jacob Schaffner
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| | - Guido Verbeck
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA, 0912, U.S.A
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 1111 Main Street, Wayne, Nebraska, 68787, U.S.A
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, U.S.A
| |
Collapse
|
7
|
Chatterjee P, Mishra R, Chawla S, Sonkar AK, De AK, Patra AK. Dual Photoreactive Ternary Ruthenium(II) Terpyridyl Complexes: A Comparative Study on Visible-Light-Induced Single-Step Dissociation of Bidentate Ligands and Generation of Singlet Oxygen. Inorg Chem 2024; 63:14998-15015. [PMID: 39092885 DOI: 10.1021/acs.inorgchem.4c01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered 1O2 generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl]+ to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L). For a systematic study, we designed four Ru(II) polypyridyl complexes: [Ru(ptpy)(L-L)Cl](PF6), ([1]-[4]), where L-L = 1,2-bis(phenylthio)ethane (SPH) [1], N,N,N',N'-tetramethylethylenediamine (TMEN) [2], N1,N2-diphenylethane-1,2-diimine (BPEDI) [3], and bis[2-(diphenylphosphino)phenyl]ether (DPE-Phos) [4]. The detailed photochemical studies suggest a single-step dissociation of L-L from the bis-thioether (SPH) complex [1] and diamine (TMEN) complex [2], while no photosubstitution was observed for [3] and [4]. Complex [1] and [2] demonstrated a dual role, involving both photosubstitution and 1O2 generation, while [3] and [4] solely exhibited poor to moderate 1O2 production. The interplay of excited states leading to these behaviors was rationalized from the lifetimes of the 3MLCT excited states by using transient absorption spectroscopy, suggesting intricate relaxation dynamics and 1O2 generation upon excitation. Therefore, the photolabile complexes [1] and [2] could potentially act as dual photoreactive agents via the phototriggered release of L-L (PACT) and/or 1O2-mediated PDT mechanisms, while [4] primarily can be utilized as a PDT agent.
Collapse
Affiliation(s)
- Pritha Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Ramranjan Mishra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Avinash Kumar Sonkar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
8
|
Cruz Neto DH, Pugliese E, Gotico P, Quaranta A, Leibl W, Steenkeste K, Peláez D, Pino T, Halime Z, Ha-Thi MH. Time-Resolved Mechanistic Depiction of Photoinduced CO 2 Reduction Catalysis on a Urea-Modified Iron Porphyrin. Angew Chem Int Ed Engl 2024; 63:e202407723. [PMID: 38781123 DOI: 10.1002/anie.202407723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The development of functional artificial photosynthetic devices relies on the understanding of mechanistic aspects involved in specialized photocatalysts. Modified iron porphyrins have long been explored as efficient catalysts for the light-induced reduction of carbon dioxide (CO2) towards solar fuels. In spite of the advancements in homogeneous catalysis, the development of the next generation of catalysts requires a complete understanding of the fundamental photoinduced processes taking place prior to and after activation of the substrate by the catalyst. In this work, we employ a state-of-the-art nanosecond optical transient absorption spectroscopic setup with a double excitation capability to induce charge accumulation and trigger the reduction of CO2 to carbon monoxide (CO). Our biomimetic system is composed of a urea-modified iron(III) tetraphenylporphyrin (UrFeIII) catalyst, the prototypical [Ru(bpy)3]2+ (bpy=2,2'-bipyridine) used as a photosensitizer, and sodium ascorbate as an electron donor. Under inert atmosphere, we show that two electrons can be successively accumulated on the catalyst as the fates of the photogenerated UrFeII and UrFeI reduced species are tracked. In the presence of CO2, the catalytic cycle is kick-started providing further evidence on CO2 activation by the UrFe catalyst in its formal FeI oxidation state.
Collapse
Affiliation(s)
- Daniel H Cruz Neto
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Eva Pugliese
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Philipp Gotico
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Annamaria Quaranta
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Winfried Leibl
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif-sur-Yvette, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Zakaria Halime
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91400, Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| |
Collapse
|
9
|
Rubert-Albiol R, Cerdá J, Calbo J, Cupellini L, Ortí E, Aragó J. Theoretical description of photoinduced electron transfer in donor-acceptor supramolecular complexes based on carbon buckybowls. J Chem Phys 2024; 161:014304. [PMID: 38953447 DOI: 10.1063/5.0215339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Herein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy. In this intricate scenario, we have adopted a theoretical approach combining electronic structure calculations at (time-dependent) density functional theory, a multistate multifragment diabatization method, the Marcus-Levitch-Jortner semiclassical rate expression, and a kinetic model to estimate the charge separation rate constants of the supramolecular heterodimers. Our outcomes highlight that the efficiency of the photoinduced charge-separation process increases with the extension of the buckybowl backbone. The supramolecular heterodimer with the largest buckybowl (truxTTF·C38H14) displays multiple and efficient electron-transfer pathways, providing a global photoinduced charge separation in the ultrafast time scale in line with the experimental findings. The study reported indicates that modifications in the shape and size of buckybowl systems can give rise to attractive novel acceptors for potential photovoltaic applications.
Collapse
Affiliation(s)
- Raquel Rubert-Albiol
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Jesús Cerdá
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
- Laboratory for Chemistry of Novel Materials, Université de Mons, Mons 7000, Belgium
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Enrique Ortí
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| | - Juan Aragó
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Paterna 46980, Spain
| |
Collapse
|
10
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
11
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
12
|
Gutiérrez-Vílchez AM, Ileperuma CV, Navarro-Pérez V, Karr PA, Fernández-Lázaro F, D'Souza F. Excited Charge Transfer Promoted Electron Transfer in all Perylenediimide Derived, Wide-Band Capturing Conjugates: A Mimicry of the Early Events of Natural Photosynthesis. Chempluschem 2024:e202400348. [PMID: 38856517 DOI: 10.1002/cplu.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant and bacterial photosynthesis, the primary donor, a chlorophyll or bacteriochlorophyll dimer, forms an initial excited symmetry-breaking charge transfer state (1CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events. This is unlike monomeric photosensitizer-bearing donor-acceptor dyads where ET occurs from the excited donor or acceptor (1D* or 1A*). In the present study, we successfully demonstrated the former photochemical event using an excited charge transfer molecule as a donor. Electron-deficient perylenediimide (PDI) is functionalized with three electron-rich piperidine entities at the bay positions, resulting in a far-red emitting CT molecule (DCT). Further, this molecule is covalently linked to another PDI (APDI) carrying no substituents at the bay positions, resulting in wide-band capturing DCT-APDI conjugates. Selective excitation of the CT band of DCT in these conjugates leads to an initial 1DCT* that undergoes subsequent ET involving APDI, resulting in DCT +-APDI - charge separation product (kCS~109 s-1). Conversely, when APDI was directly excited, ultrafast energy transfer (ENT) from 1APDI* to DCT (kENT~1011 s-1) followed by ET from 1DCT* to PDI is witnessed. While increasing solvent polarity improved kCS rates, for a given solvent, the magnitude of the kCS values was almost the same, irrespective of the excitation wavelengths. The present findings demonstrate ET from an initial CT state to an acceptor is key to understanding the intricate ET events in complex natural and bacterial photosynthetic systems possessing multiple redox- and photoactive entities.
Collapse
Affiliation(s)
- Ana M Gutiérrez-Vílchez
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Chamari V Ileperuma
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Valeria Navarro-Pérez
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Fernando Fernández-Lázaro
- División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
13
|
Yadagiri B, Kaswan RR, Tagare J, Kumar V, Rajesh MN, Singh SP, Karr PA, D'Souza F, Giribabu L. Excited Charge Separation in a π-Interacting Phenothiazine-Zinc Porphyrin-Fullerene Donor-Acceptor Conjugate. J Phys Chem A 2024; 128:4233-4241. [PMID: 38758579 DOI: 10.1021/acs.jpca.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have designed, synthesized, and characterized a donor-acceptor triad, SPS-PPY-C60, that consists of a π-interacting phenothiazine-linked porphyrin as a donor and sensitizer and fullerene as an acceptor to seek charge separation upon photoexcitation. The optical absorption spectrum revealed red-shifted Soret and Q-bands of porphyrin due to charge transfer-type interactions involving the two ethynyl bridges carrying electron-rich and electron-poor substituents. The redox properties suggested that the phenothiazine-porphyrin part of the molecule is easier to oxidize and the fullerene part is easier to reduce. DFT calculations supported the redox properties wherein the electron density of the highest molecular orbital (HOMO) was distributed over the donor phenothiazine-porphyrin entity while the lowest unoccupied molecular orbital (LUMO) was distributed over the fullerene acceptor. TD-DFT studies suggested the involvement of both the S2 and S1 states in the charge transfer process. The steady-state emission spectrum, when excited either at porphyrin Soret or visible band absorption maxima, revealed quenched emission both in nonpolar and polar solvents, suggesting the occurrence of excited state events. Finally, femtosecond transient absorption spectral studies were performed to witness the charge separation by utilizing solvents of different polarities. The transient data was further analyzed by GloTarAn by fitting the data with appropriate models to describe photochemical events. From this, the average lifetime of the charge-separated state calculated was found to be 169 ps in benzonitrile, 319 ps in dichlorobenzene, 1.7 ns in toluene for Soret band excitation, and ∼320 ps for Q-band excitation in benzonitrile.
Collapse
Affiliation(s)
- B Yadagiri
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Ram Ratan Kaswan
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Jairam Tagare
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
| | - Vinay Kumar
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Manne Naga Rajesh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Surya Prakash Singh
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska 68787, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5017, United States
| | - Lingamallu Giribabu
- Department of Polymers and Functional Materials, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, CSIR-IICT, Tarnaka, Hyderabad 500007, India
| |
Collapse
|
14
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Qin C, Wang X, Zhou Z, Song J, Jia G, Ma S, Zhang J, Jiao Z, Zheng S. Ultrafast energy transfer dynamics in CsPbBr 3 nanoplatelets-BODIPY heterostructure. OPTICS EXPRESS 2024; 32:9306-9315. [PMID: 38571168 DOI: 10.1364/oe.516679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 04/05/2024]
Abstract
Understanding and directing the energy transfer in nanocrystals-chromophore heterostructure is critical to improve the efficiency of their photocatalytic and optoelectronic applications. In this work, we studied the energy transfer process between inorganic-organic molecular complexes composed of cesium halide perovskite nanoplatelets (CsPbBr3 NPLs) and boron dipyrromethene (BODIPY) by photoluminescence spectroscopy (PL), time-correlated single photon-counting (TCSPC) and femtosecond transient absorption spectroscopy. The quenching of PL in CsPbBr3 NPLs occurred simultaneously with the PL enhancement of BODIPY implied the singlet energy transfer process. The rate of energy transfer has been determined by transient absorption spectrum as kET = 3.8 × 109 s-1. The efficiency of Förster energy transfer (FRET) has been quantitatively calculated up to 70%. Our work advances the understanding of the interaction between BODIPY and perovskite nanoplatelets, providing a new solution based on their optoelectronic and photocatalytic applications.
Collapse
|
16
|
Dunbar MN, Steinke SJ, Piechota EJ, Turro C. Differences in Photophysical Properties and Photochemistry of Ru(II)-Terpyridine Complexes of CH 3CN and Pyridine. J Phys Chem A 2024; 128:599-610. [PMID: 38227956 DOI: 10.1021/acs.jpca.3c07432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A series of 22 Ru(II) complexes of the type [Ru(tpy)(L)(L')]n+, where tpy is the tridentate ligand 2,2';6,2″-terpyridine, L represents bidentate ligands with varying electron-donating ability, and L' is acetonitrile (1a-11a) or pyridine (1b-11b), were investigated. The dissociation of acetonitrile occurs from the 3MLCT state in 1a-11a, such that it does not require the population of a 3LF state. Electrochemistry and spectroscopic data demonstrate that the ground states of these series do not differ significantly. Franck-Condon line-shape analysis of the 77 K emission data shows no significant differences between the emitting 3MLCT states in both series. Arrhenius analysis of the temperature dependence of 3MLCT lifetimes shows that the energy barrier (Ea) to thermally populating a 3LF state from a lower energy 3MLCT state is significantly higher in the pyridine than in the CH3CN series, consistent with the photostability of complexes 1b-11b, which do not undergo pyridine photodissociation under our experimental conditions. Importantly, these results demonstrate that ligand photodissociation of pyridine in 1b-11b does not take place directly from the 3MLCT state, as is the case for 1a-11a. These findings have potential impact on the rational design of complexes for a number of applications, including photochemotherapy, dye-sensitized solar cells, and photocatalysis.
Collapse
Affiliation(s)
- Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Marchini E, Caramori S, Carli S. Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs). Molecules 2024; 29:293. [PMID: 38257206 PMCID: PMC10818894 DOI: 10.3390/molecules29020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Since Mallouk's earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed.
Collapse
Affiliation(s)
- Edoardo Marchini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Caramori
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Stefano Carli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
18
|
Zhu H, Chen B, Yakovlev VV, Zhang D. Time-resolved vibrational dynamics: Novel opportunities for sensing and imaging. Talanta 2024; 266:125046. [PMID: 37595525 DOI: 10.1016/j.talanta.2023.125046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
The evolution of time-resolved spectroscopies has resulted in significant advancements across numerous scientific disciplines, particularly those concerned with molecular electronic states. However, the intricacy of molecular vibrational spectroscopies, which provide comprehensive molecular-level information within complex structures, has presented considerable challenges due to the ultrashort dephasing time. Over recent decades, an increasing focus has been placed on exploring the temporal progression of bond vibrations, thereby facilitating an improved understanding of energy redistribution within and between molecules. This review article focuses on an array of time-resolved detection methodologies, each distinguished by unique technological attributes that offer exclusive capabilities for investigating the physical phenomena propelled by molecular vibrational dynamics. In summary, time-resolved vibrational spectroscopy emerges as a potent instrument for deciphering the dynamic behavior of molecules. Its potential for driving future progress across fields as diverse as biology and materials science is substantial, marking a promising future for this innovative tool.
Collapse
Affiliation(s)
- Hanlin Zhu
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| | - Bo Chen
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| | - Vladislav V Yakovlev
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Delong Zhang
- Interdisciplinary Center for Quantum Information, Zhejiang Province Key Laboratory of Quantum Technology and Device, and Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310028, China.
| |
Collapse
|
19
|
Ileperuma CV, Garcés-Garcés J, Shao S, Fernández-Lázaro F, Sastre-Santos Á, Karr PA, D'Souza F. Panchromatic Light-Capturing Bis-styryl BODIPY-Perylenediimide Donor-Acceptor Constructs: Occurrence of Sequential Energy Transfer Followed by Electron Transfer. Chemistry 2023; 29:e202301686. [PMID: 37428999 DOI: 10.1002/chem.202301686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Two wide-band-capturing donor-acceptor conjugates featuring bis-styrylBODIPY and perylenediimide (PDI) have been newly synthesized, and the occurrence of ultrafast excitation transfer from the 1 PDI* to BODIPY, and a subsequent electron transfer from the 1 BODIPY* to PDI have been demonstrated. Optical absorption studies revealed panchromatic light capture but offered no evidence of ground-state interactions between the donor and acceptor entities. Steady-state fluorescence and excitation spectral recordings provided evidence of singlet-singlet energy transfer in these dyads, and quenched fluorescence of bis-styrylBODIPY emission in the dyads suggested additional photo-events. The facile oxidation of bis-styrylBODIPY and facile reduction of PDI, establishing their relative roles of electron donor and acceptor, were borne out by electrochemical studies. The electrostatic potential surfaces of the S1 and S2 states, derived from time-dependent DFT calculations, supported excited charge transfer in these dyads. Spectro-electrochemical studies on one-electron-oxidized and one-electron-reduced dyads and the monomeric precursor compounds were also performed in a thin-layer optical cell under corresponding applied potentials. From this study, both bis-styrylBODIPY⋅+ and PDI⋅- could be spectrally characterizes and were subsequently used in characterizing the electron-transfer products. Finally, pump-probe spectral studies were performed in dichlorobenzene under selective PDI and bis-styrylBODIPY excitation to secure energy and electron-transfer evidence. The measured rate constants for energy transfer, kENT , were in the range of 1011 s-1 , while the electron transfer rate constants, kET , were in the range of 1010 s-1 , thus highlighting their potential use in solar energy harvesting and optoelectronic applications.
Collapse
Affiliation(s)
- Chamari V Ileperuma
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Shuai Shao
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College, 111 Main Street, Wayne, Nebraska, 68787, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA
| |
Collapse
|
20
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
21
|
Alsaleh AZ, Pinjari D, Misra R, D'Souza F. Far-Red Excitation Induced Electron Transfer in Bis Donor-AzaBODIPY Push-Pull Systems; Role of Nitrogenous Donors in Promoting Charge Separation. Chemistry 2023; 29:e202301659. [PMID: 37401835 DOI: 10.1002/chem.202301659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
A far-red absorbing sensitizer, BF2 -chelated azadipyrromethane (azaBODIPY) has been employed as an electron acceptor to synthesize a series of push-pull systems linked with different nitrogenous electron donors, viz., N,N-dimethylaniline (NND), triphenylamine (TPA), and phenothiazine (PTZ) via an acetylene linker. The structural integrity of the newly synthesized push-pull systems was established by spectroscopic, electrochemical, spectroelectrochemical, and DFT computational methods. Cyclic and differential pulse voltammetry studies revealed different redox states and helped in the estimation of the energies of the charge-separated states. Further, spectroelectrochemical studies performed in a thin-layer optical cell revealed diagnostic peaks of azaBODIPY⋅- in the visible and near-IR regions. Free-energy calculations revealed the charge separation from one of the covalently linked donors to the 1 azaBODIPY* to yield Donor⋅+ -azaBODIPY⋅- to be energetically favorable in a polar solvent, benzonitrile, and the frontier orbitals generated on the optimized structures helped in assessing such a conclusion. Consequently, the steady-state emission studies revealed quenching of the azaBODIPY fluorescence in all of the investigated push-pull systems in benzonitrile and to a lesser extent in mildly polar dichlorobenzene, and nonpolar toluene. The femtosecond pump-probe studies revealed the occurrence of excited charge transfer (CT) in nonpolar toluene while a complete charge separation (CS) for all three push-pull systems in polar benzonitrile. The CT/CS products populated the low-lying 3 azaBODIPY* prior to returning to the ground state. Global target (GloTarAn) analysis of the transient data revealed the lifetime of the final charge-separated states (CSS) to be 195 ps for NND-derived, 50 ps for TPA-derived, and 85 ps for PTZ-derived push-pull systems in benzonitrile.
Collapse
Affiliation(s)
- Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, TX 76203-5017, USA
| | - Dilip Pinjari
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX 76203-5017, USA
| |
Collapse
|
22
|
Mukherjee M, Chatterjee A, Bhunia S, Purkayastha P. Hydrophobic Chain-Induced Conversion of Three-Dimensional Perovskite Nanocrystals to Gold Nanocluster-Grafted Two-Dimensional Platelets for Photoinduced Electron Transfer Substrate Formulation. J Phys Chem Lett 2023; 14:8251-8260. [PMID: 37676104 DOI: 10.1021/acs.jpclett.3c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Considering the augmentation of new generation energy harvesting devices and applications of electron-hole separation therein, conversion of 3D cubic CsPbBr3 perovskite nanocrystals into 2D-platelets through ligand-ligand hydrophobic interactions has been conceived here. Cationic surfactants with various chain length coated the gold nanoclusters (AuNCs) that interact with oleic acid (OA) and oleylamine (OAm) coated 3D CsPbBr3 nanocrystals to disintegrate the crystallinity of the perovskites and reformation of AuNC-grafted 2D-platelets of unusually large size. The planar perovskite-derivatives act as an exciton donor to the embedded AuNCs through photoinduced electron transfer (PET). This process is controlled by the optimum surfactant chain length. Transient absorption spectroscopy shows that the fastest radical growth time (4 ps) was with the 14-carbon containing tail of the surfactant, followed by the 16-carbon (45 ps) and the 12-carbon (290 ps) ones. PET is administered by the energy gaps of the participating candidates that control the transition dynamics. Our findings can be a potential tool to develop metal nanocluster-based hybrid 2D perovskite-derived platelets for optoelectronic applications.
Collapse
Affiliation(s)
- Manish Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Arunavo Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Soumyadip Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
- Center for Advanced Functional materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
23
|
Lee D, Choe MS, Lee HJ, Shin JY, Kim CH, Son HJ, Kang SO. Accumulative Charge Separation in a Modular Quaterpyridine Bridging Ligand Platform and Multielectron Transfer Photocatalysis of π-Linked Dinuclear Ir(III)-Re(I) Complex for CO 2 Reduction. Inorg Chem 2023. [PMID: 37220663 DOI: 10.1021/acs.inorgchem.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four sterically distorted quaterpyridyl (qpy) ligand-bridged Ir(III)-Re(I) heterometallic complexes (Ir-qpymm-Re, Ir-qpymp-Re, Ir-qpypm-Re, and Ir-qpypp-Re), in which the position of the coupling pyridine unit of the two 2,2'-bipyridine ligands was varied (meta (m)- or para (p)-position), pypyx-pyxpy (x = m and m, qpymm; x = m and p, qpymp; x = p and m, qpypm; x = p and p, qpypp), were prepared, along with the fully π-conjugated Ir(III)-[π linker]-Re(I) complexes (π linker = 2,2'-bipyrimidine (bpm), Ir-bpm-Re; π linker = 2,5-di(pyridin-2-yl)pyrazine (dpp), Ir-dpp-Re) to elucidate the electron mediating and accumulative charge separation properties of the bridging π-linker in a bimetallic system (photosensitizer-π linker-catalytic center). From the photophysical and electrochemical studies, it was found that the quaterpyridyl (qpy) bridging ligand (BL), in which the two planar Ir/Re metalated bipyridine (bpy) ligands were connected but slightly canted relative to each other, linking the heteroleptic Ir(III) photosensitizer, [(piqC^N)2IrIII(bpy)]+, and catalytic Re(I) complex, (bpy)ReI(CO)3Cl, minimized the energy lowering of the qpy BL, which hampers the forward photoinduced electron transfer (PET) process from [(piqC^N)2IrIII(N^N)]+ to (N^N)ReI(CO)3Cl (Ered1 = -(0.85-0.93) V and Ered2 = -(1.15-1.30) V vs SCE). This result contrasts with the fully π-delocalized bimetallic systems (Ir-bpm-Re and Ir-dpp-Re) that show a significant energy reduction due to the considerable π-extension and deshielding effect caused by the neighboring Lewis acidic metals (Ir and Re) on the electrochemical scale (Ered1 = -0.37 V and Ered2 = -1.02 and -0.99 V vs SCE). Based on a series of anion absorption studies and spectroelectrochemical (SEC) analyses, all Ir(III)-BL-Re(I) bimetallic complexes were found to exist as dianionic form (Ir(III)-[BL]2--Re(I)) after a fast reductive-quenching process in the presence of excess electron donor. In the photolysis experiment, the four Ir-qpy-Re complexes displayed the reasonable photochemical CO2-to-CO conversion activities (TON of 366-588 for 19 h) owing to the moderated electronic coupling between two functional Ir(III) and Re(I) centers through the slightly distorted qpy ligand, whereas Ir-bpm-Re and Ir-dpp-Re displayed negligible performances as a result of the strong electronic coupling via π-conjugation between the two functional components resulting in the energetic constraints for PET and an unwanted side reactions competing with the forward processes. These results confirm that the qpy unit can be utilized as an efficient BL platform in π-linked bimetallic systems.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
24
|
Cruz Neto DH, Soto J, Maity N, Lefumeux C, Nguyen T, Pernot P, Steenkeste K, Peláez D, Ha-Thi MH, Pino T. A Novel Pump-Pump-Probe Resonance Raman Approach Featuring Light-Induced Charge Accumulation on a Model Photosystem. J Phys Chem Lett 2023; 14:4789-4795. [PMID: 37186953 DOI: 10.1021/acs.jpclett.3c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Light-induced charge accumulation is at the heart of biomimetic systems aiming at solar fuel production in the realm of artificial photosynthesis. Understanding the mechanisms upon which these processes operate is a necessary condition to drive down the rational catalyst design road. We have built a nanosecond pump-pump-probe resonance Raman setup to witness the sequential charge accumulation process while probing vibrational features of different charge-separated states. By employing a reversible model system featuring methyl viologen (MV) as a dual electron acceptor, we have been able to watch the photosensitized production of its neutral form, MV0, resulting from two sequential electron transfer reactions. We have found that, upon double excitation, a fingerprint vibrational mode corresponding to the doubly reduced species appears at 992 cm-1 and peaks at 30 μs after the second excitation. This has been further confirmed by simulated resonance Raman spectra which fully support our experimental findings in this unprecedented buildup of charge seen by a resonance Raman probe.
Collapse
Affiliation(s)
- Daniel H Cruz Neto
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, E-29071 Málaga, Spain
| | - Nishith Maity
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Christophe Lefumeux
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Thai Nguyen
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Pascal Pernot
- Institut de Chimie Physique (ICP), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Karine Steenkeste
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Minh-Huong Ha-Thi
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Thomas Pino
- Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
25
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
26
|
Sheokand M, Alsaleh AZ, D'Souza F, Misra R. Excitation Wavelength-Dependent Charge Stabilization in Highly Interacting Phenothiazine Sulfone-Derived Donor-Acceptor Constructs. J Phys Chem B 2023; 127:2761-2773. [PMID: 36938962 DOI: 10.1021/acs.jpcb.2c08472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Prolonging the lifetime of charge-separated states (CSS) is of paramount importance in artificial photosynthetic donor-acceptor (DA) constructs to build the next generation of light-energy-harvesting devices. This becomes especially important when the DA constructs are closely spaced and highly interacting. In the present study, we demonstrate extending the lifetime of the CSS in highly interacting DA constructs by making use of the triplet excited state of the electron donor and with the help of excitation wavelength selectivity. To demonstrate this, π-conjugated phenothiazine sulfone-based push-pull systems, PTS2-PTS6 have been newly designed and synthesized via the Pd-catalyzed Sonogashira cross-coupling followed by [2 + 2] cycloaddition-retroelectrocyclization reactions. Modulation of the spectral and photophysical properties of phenothiazine sulfones (PTZSO2) and terminal phenothiazines (PTZ) was possible by incorporating powerful electron acceptors, 1,1,4,4-tetracyanobutadiene (TCBD) and cyclohexa-2,5-diene-1,4-diylidene-expanded TCBD (exTCBD). The quadrupolar PTS2 displayed solvatochromism, aggregation-induced emission, and mechanochromic behaviors. From the energy calculations, excitation wavelength-dependent charge stabilization was envisioned in PTS2-PTS6, and the subsequent pump-probe spectroscopic studies revealed charge stabilization when the systems were excited at the locally excited peak positions, while such effect was minimal when the samples were excited at wavelengths corresponding to the CT transitions. This work reveals the impact of wavelength selectivity to induce charge separation from the triplet excited state in ultimately prolonging the lifetime of CCS in highly interacting push-pull systems.
Collapse
Affiliation(s)
- Manju Sheokand
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, United States
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| |
Collapse
|
27
|
Utschig LM, Zaluzec NJ, Malavath T, Ponomarenko NS, Tiede DM. Solar water splitting Pt-nanoparticle photosystem I thylakoid systems: Catalyst identification, location and oligomeric structure. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOENERGETICS 2023; 1864:148974. [PMID: 37001790 DOI: 10.1016/j.bbabio.2023.148974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Photosynthetic conversion of light energy into chemical energy occurs in sheet-like membrane-bound compartments called thylakoids and is mediated by large integral membrane protein-pigment complexes called reaction centers (RCs). Oxygenic photosynthesis of higher plants, cyanobacteria and algae requires the symbiotic linking of two RCs, photosystem II (PSII) and photosystem I (PSI), to split water and assimilate carbon dioxide. Worldwide there is a large research investment in developing RC-based hybrids that utilize the highly evolved solar energy conversion capabilities of RCs to power catalytic reactions for solar fuel generation. Of particular interest is the solar-powered production of H2, a clean and renewable energy source that can replace carbon-based fossil fuels and help provide for ever-increasing global energy demands. Recently, we developed thylakoid membrane hybrids with abiotic catalysts and demonstrated that photosynthetic Z-scheme electron flow from the light-driven water oxidation at PSII can drive H2 production from PSI. One of these hybrid systems was created by self-assembling Pt-nanoparticles (PtNPs) with the stromal subunits of PSI that extend beyond the membrane plane in both spinach and cyanobacterial thylakoids. Using PtNPs as site-specific probe molecules, we report the electron microscopic (EM) imaging of oligomeric structure, location and organization of PSI in thylakoid membranes and provide the first direct visualization of photosynthetic Z-scheme solar water-splitting biohybrids for clean H2 production.
Collapse
|
28
|
K/Bidi L, Desjonquères A, Izzet G, Guillemot G. H 2 Evolution at a Reduced Hybrid Polyoxometalate and Its Vanadium-Oxo Derivative Used as Molecular Models for Reducible Metal Oxides. Inorg Chem 2023; 62:1935-1941. [PMID: 35912483 DOI: 10.1021/acs.inorgchem.2c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We herein report our investigations on the use of a tris-silanol-decorated polyoxotungstate, [SbW9O33(tBuSiOH)3]3-, as a molecular support model to describe the coordination of an isolated vanadium atom at metal oxides, focusing on the reactivity of the reduced derivatives in the presence of protons. Accumulation of electrons and protons at an active site is a main feature associated with heterogeneous catalysts able to conduct the (oxy)dehydrogenation of alkanes or alcohols. Our results indicate that two-electron reduced derivatives release H2 upon protonation, a reaction that probably takes place at the polyoxotungstic framework rather than at the vanadium center.
Collapse
Affiliation(s)
- Ludivine K/Bidi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Alix Desjonquères
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Guillaume Izzet
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| | - Geoffroy Guillemot
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, F-75005 Paris, France
| |
Collapse
|
29
|
Salamatian AA, Bren KL. Bioinspired and biomolecular catalysts for energy conversion and storage. FEBS Lett 2023; 597:174-190. [PMID: 36331366 DOI: 10.1002/1873-3468.14533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low-energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided.
Collapse
Affiliation(s)
| | - Kara L Bren
- Department of Chemistry, University of Rochester, NY, USA
| |
Collapse
|
30
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
31
|
Photoinduced electron transfer in triazole-bridged donor-acceptor dyads – A critical perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Mahmoudi H, El Kharbachi A, Safari H, Jafari AA. Tetrathiafulvalene-Benzothiadiazole: A Metal-Free Photocatalyst for Hydrogen Production. ACS OMEGA 2022; 7:42283-42291. [PMID: 36440178 PMCID: PMC9685743 DOI: 10.1021/acsomega.2c05185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
In this work, a series of hybrid tetrathiafulvalene-benzothiadiazole (TTF-BTD) are designed and applied as a metal-free photocatalyst for hydrogen production, particularly under visible light irradiation. Density functional theory calculations are used to shed light on the photophysical properties observed in the various TTF-BTD derivatives and investigated by the obtained data. Because band gap engineering has normally been used as an effective approach, we studied the effect of the various functional groups on the band gap to set a favorable band alignment with photocatalysts. An increase in highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels is observed in the order CH3 < Br < CF3 < COOMe < CN. The results discover that COOMe-TTF-CN-BTD can have a clear photocatalytic potential in the hydrogen production for specific applications. Our experimental and theoretical studies reveal that the CN-withdrawing group increases the reduction potential of the conduction band; meanwhile, COOMe decreases the reduction potential of the valance band. Moreover, we demonstrate that H2O reduction and oxidation reaction energies are both located inside the COOMe-TTF-CN-BTD band gap that enables an enhanced photocatalytic hydrogen evolution rate of 122 μmol h-1 g-1 under visible light. The efficiency of the COOMe-TTF-CN-BTD photocatalyst is also described in terms of medium pH and the nature of the sacrificial agent, where the maximum hydrogen production efficiency is observed at high pH. The findings point to a means of efficient production of hydrogen that can be directly achieved under visible light irradiation without any modifications.
Collapse
Affiliation(s)
- Hajar Mahmoudi
- Department
of Photonics, Graduate University of Advanced
Technology, Kerman 7631885356, Iran
| | | | - Hassan Safari
- Department
of Photonics, Graduate University of Advanced
Technology, Kerman 7631885356, Iran
| | | |
Collapse
|
33
|
Waqas M, Hadia N, Hessien M, Javaid Akram S, Shawky AM, Iqbal J, Ibrahim MA, Ahmad Khera R. Designing of symmetrical A-D-A type non-fullerene acceptors by side-chain engineering of an indacenodithienothiophene (IDTT) core based molecule: A computational approach. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Steinke SJ, Piechota EJ, Loftus LM, Turro C. Acetonitrile Ligand Photosubstitution in Ru(II) Complexes Directly from the 3MLCT State. J Am Chem Soc 2022; 144:20177-20182. [DOI: 10.1021/jacs.2c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sean J. Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Eric J. Piechota
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Lauren M. Loftus
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
35
|
Song H, Amati A, Pannwitz A, Bonnet S, Hammarström L. Mechanistic Insights into the Charge Transfer Dynamics of Photocatalytic Water Oxidation at the Lipid Bilayer-Water Interface. J Am Chem Soc 2022; 144:19353-19364. [PMID: 36250745 DOI: 10.1021/jacs.2c06842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosystem II, the natural water-oxidizing system, is a large protein complex embedded in a phospholipid membrane. A much simpler system for photocatalytic water oxidation consists of liposomes functionalized with amphiphilic ruthenium(II)-tris-bipyridine photosensitizer (PS) and 6,6'-dicarboxylato-2,2'-bipyridine-ruthenium(II) catalysts (Cat) with a water-soluble sacrificial electron acceptor (Na2S2O8). However, the effect of embedding this photocatalytic system in liposome membranes on the mechanism of photocatalytic water oxidation was not well understood. Here, several phenomena have been identified by spectroscopic tools, which explain the drastically different kinetics of water photo-oxidizing liposomes, compared with analogous homogeneous systems. First, the oxidative quenching of photoexcited PS* by S2O82- at the liposome surface occurs solely via static quenching, while dynamic quenching is observed for the homogeneous system. Moreover, the charge separation efficiency after the quenching reaction is much smaller than unity, in contrast to the quantitative generation of PS+ in homogeneous solution. In parallel, the high local concentration of the membrane-bound PS induces self-quenching at 10:1-40:1 molar lipid-PS ratios. Finally, while the hole transfer from PS+ to catalyst is rather fast in homogeneous solution (kobs > 1 × 104 s-1 at [catalyst] > 50 μM), in liposomes at pH = 4, the reaction is rather slow (kobs ≈ 17 s-1 for 5 μM catalyst in 100 μM DMPC lipid). Overall, the better understanding of these productive and unproductive pathways explains what limits the rate of photocatalytic water oxidation in liposomal vs homogeneous systems, which is required for future optimization of light-driven catalysis within self-assembled lipid interfaces.
Collapse
Affiliation(s)
- Hongwei Song
- Department of Chemistry-Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Agnese Amati
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Andrea Pannwitz
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Leif Hammarström
- Department of Chemistry-Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
36
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
37
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Visible-Light Photocatalytic Reduction of Aryl Halides as a Source of Aryl Radicals. Molecules 2022; 27:molecules27175364. [PMID: 36080129 PMCID: PMC9458128 DOI: 10.3390/molecules27175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Aryl- and heteroaryl units are present in a wide variety of natural products, pharmaceuticals, and functional materials. The method for reduction of aryl halides with ubiquitous distribution is highly sought after for late-stage construction of various aromatic compounds. The visible-light-driven reduction of aryl halides to aryl radicals by electron transfer provides an efficient, simple, and environmentally friendly method for the construction of aromatic compounds. This review summarizes the recent progress in the generation of aryl radicals by visible-light-driven reduction of aryl halides with metal complexes, organic compounds, semiconductors as catalysts, and alkali-assisted reaction system. The ability and mechanism of reduction of aromatic halides in various visible light induced systems are summarized, intending to illustrate a comprehensive introduction of this research topic to the readers.
Collapse
|
39
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
40
|
Utschig LM, Brahmachari U, Mulfort KL, Niklas J, Poluektov OG. Biohybrid photosynthetic charge accumulation detected by flavin semiquinone formation in ferredoxin-NADP + reductase. Chem Sci 2022; 13:6502-6511. [PMID: 35756516 PMCID: PMC9172293 DOI: 10.1039/d2sc01546c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Flavin chemistry is ubiquitous in biological systems with flavoproteins engaged in important redox reactions. In photosynthesis, flavin cofactors are used as electron donors/acceptors to facilitate charge transfer and accumulation for ultimate use in carbon fixation. Following light-induced charge separation in the photosynthetic transmembrane reaction center photosystem I (PSI), an electron is transferred to one of two small soluble shuttle proteins, a ferredoxin (Fd) or a flavodoxin (Fld) (the latter in the condition of Fe-deficiency), followed by electron transfer to the ferredoxin-NADP+ reductase (FNR) enzyme. FNR accepts two of these sequential one electron transfers, with its flavin adenine dinucleotide (FAD) cofactor becoming doubly reduced, forming a hydride which is then passed onto the substrate NADP+ to form NADPH. The two one-electron potentials (oxidized/semiquinone and semiquinone/hydroquinone) are similar to each other with the FNR protein stabilizing the hydroquinone, making spectroscopic detection of the intermediate semiquinone state difficult. We employed a new biohybrid-based strategy that involved truncating the native three-protein electron transfer cascade PSI → Fd → FNR to a two-protein cascade by replacing PSI with a molecular Ru(ii) photosensitizer (RuPS) which is covalently bound to Fd and Fld to form biohybrid complexes that successfully mimic PSI in light-driven NADPH formation. RuFd → FNR and RuFld → FNR electron transfer experiments revealed a notable distinction in photosynthetic charge accumulation that we attribute to the different protein cofactors [2Fe2S] and flavin. After freeze quenching the two-protein systems under illumination, an intermediate semiquinone state of FNR was readily observed with cw X-band EPR spectroscopy. The increased spectral resolution from selective deuteration allowed EPR detection of inter-flavoprotein electron transfer. This work establishes a biohybrid experimental approach for further studies of photosynthetic light-driven electron transfer chain that culminates at FNR and highlights nature's mechanisms that couple single electron transfer chemistry to charge accumulation, providing important insight for the development of photon-to-fuel schemes.
Collapse
Affiliation(s)
- Lisa M Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Udita Brahmachari
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory Lemont IL 60439 USA
| |
Collapse
|
41
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
42
|
Schwarz J, Ilic A, Johnson C, Lomoth R, Wärnmark K. High turnover photocatalytic hydrogen formation with an Fe(III) N-heterocyclic carbene photosensitiser. Chem Commun (Camb) 2022; 58:5351-5354. [PMID: 35373799 DOI: 10.1039/d2cc01016j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the first high turnover photocatalytic hydrogen formation reaction based on an earth-abundant FeIII-NHC photosensitiser. The reaction occurs via reductive quenching of the 2LMCT excited state that can be directly excited with green light and employs either Pt-colloids or [Co(dmgH)2pyCl] as proton reduction catalysts and [HNEt3][BF4] and triethanolamine/triethylamine as proton and electron donors. The outstanding photostability of the FeIII-NHC complex enables turnover numbers >1000 without degradation.
Collapse
Affiliation(s)
- Jesper Schwarz
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Aleksandra Ilic
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Catherine Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| |
Collapse
|
43
|
Shukla J, Illathvalappil R, Kumar S, Chorol S, Pandikassala A, Kurungot S, Mukhopadhyay P. Synthesis of a Highly Electron-Deficient, Water-Stable, Large Ionic Box: Multielectron Accumulation and Proton Conductivity. Org Lett 2022; 24:3038-3042. [PMID: 35439020 DOI: 10.1021/acs.orglett.2c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
π-acidic boxes exhibiting electron reservoir and proton conduction are unprecedented because of their instability in water. We present the synthesis of one of the strongest electron-deficient ionic boxes showing e- uptake as well as proton conductivity. Two large anions fit in the box to form anion-π interactions and form infinite anion-solvent wires. The box with NO3-···water wires confers high proton conductivity and presents the first example that manifests redox and ionic functionality in an organic electron-deficient macrocycle.
Collapse
Affiliation(s)
- Jyoti Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajith Illathvalappil
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sharvan Kumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajmal Pandikassala
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, National Chemical Laboratory (NCL), Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Pritam Mukhopadhyay
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
44
|
Müller C, Schwab A, Randell NM, Kupfer S, Dietzek‐Ivanšić B, Chavarot‐Kerlidou M. A Combined Spectroscopic and Theoretical Study on a Ruthenium Complex Featuring a π-Extended dppz Ligand for Light-Driven Accumulation of Multiple Reducing Equivalents. Chemistry 2022; 28:e202103882. [PMID: 35261087 PMCID: PMC9311760 DOI: 10.1002/chem.202103882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/10/2022]
Abstract
The design of photoactive systems capable of storing and relaying multiple electrons is highly demanded in the field of artificial photosynthesis, where transformations of interest rely on multielectronic redox processes. The photophysical properties of the ruthenium photosensitizer [(bpy)2 Ru(oxim-dppqp)]2+ (Ru), storing two electrons coupled to two protons on the π-extended oxim-dppqp ligand under light-driven conditions, are investigated by means of excitation wavelength-dependent resonance Raman and transient absorption spectroscopies, in combination with time-dependent density functional theory; the results are discussed in comparison to the parent [(bpy)2 Ru(dppz)]2+ and [(bpy)2 Ru(oxo-dppqp)]2+ complexes. In addition, this study provides in-depth insights on the impact of protonation or of accumulation of multiple reducing equivalents on the reactive excited states.
Collapse
Affiliation(s)
- Carolin Müller
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
| | - Alexander Schwab
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Nicholas M. Randell
- Univ. Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38000GrenobleFrance
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Research Department Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Murielle Chavarot‐Kerlidou
- Univ. Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux17 rue des MartyrsF-38000GrenobleFrance
| |
Collapse
|
45
|
Steinke SJ, Gupta S, Piechota EJ, Moore CE, Kodanko JJ, Turro C. Photocytotoxicity and photoinduced phosphine ligand exchange in a Ru(ii) polypyridyl complex. Chem Sci 2022; 13:1933-1945. [PMID: 35308843 PMCID: PMC8848995 DOI: 10.1039/d1sc05647f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
Two new tris-heteroleptic Ru(ii) complexes with triphenylphosphine (PPh3) coordination, cis-[Ru(phen)2(PPh3)(CH3CN)]2+ (1a, phen = 1,10-phenanthroline) and cis-[Ru(biq)(phen)(PPh3)(CH3CN)]2+ (2a, biq = 2,2'-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH3CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru(ii) polypyridyl complex has not previously been reported, and calculations reveal that it results from a trans-type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh3 and CH3CN for use in photochemotherapy.
Collapse
Affiliation(s)
- Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Eric J Piechota
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 United States
| |
Collapse
|
46
|
Mennicken M, Peter SK, Kaulen C, Simon U, Karthäuser S. Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:219-229. [PMID: 35281628 PMCID: PMC8895035 DOI: 10.3762/bjnano.13.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The performance of nanoelectronic and molecular electronic devices relies strongly on the employed functional units and their addressability, which is often a matter of appropriate interfaces and device design. Here, we compare two promising designs to build solid-state electronic devices utilizing the same functional unit. Optically addressable Ru-terpyridine complexes were incorporated in supramolecular wires or employed as ligands of gold nanoparticles and contacted by nanoelectrodes. The resulting small-area nanodevices were thoroughly electrically characterized as a function of temperature and light exposure. Differences in the resulting device conductance could be attributed to the device design and the respective transport mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge transfer in the Ru-terpyridine complexes used as switching ligands. Finally, our results reveal a superior device performance of nanoparticle-based devices compared to molecular wire devices based on Ru-terpyridine complexes as functional units.
Collapse
Affiliation(s)
- Max Mennicken
- Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- RWTH Aachen University, 52062 Aachen, Germany
| | - Sophia Katharina Peter
- Institute of Inorganic Chemistry and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Corinna Kaulen
- Institute of Inorganic Chemistry and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
- Faculty of Medical Engineering and Applied Mathematics, FH Aachen, University of Applied Science, 52428 Jülich, Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry and JARA-FIT, RWTH Aachen University, 52074 Aachen, Germany
| | - Silvia Karthäuser
- Peter Grünberg Institut (PGI-7) and JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
47
|
Kupfer S, Wächtler M, Guthmuller J. Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Kupfer
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat Institute of Physical Chemistry Helmholtzweg 1 07743 Jena GERMANY
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology: Leibniz-Institut fur Photonische Technologien Functional Interfaces GERMANY
| | - Julien Guthmuller
- Gdansk University of Technology: Politechnika Gdanska Institute of Physics and Computer Science POLAND
| |
Collapse
|
48
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|
49
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Li
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S. Wenger
- Department of Chemistry University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
50
|
Mims D, Herpich J, Lukzen NN, Steiner UE, Lambert C. Readout of spin quantum beats in a charge-separated radical pair by pump-push spectroscopy. Science 2021; 374:1470-1474. [PMID: 34914495 DOI: 10.1126/science.abl4254] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David Mims
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jonathan Herpich
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Nikita N Lukzen
- International Tomography Center and Novosibirsk State Universit, Novosibirsk 630090, Russia
| | - Ulrich E Steiner
- Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany
| | - Christoph Lambert
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany.,Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|